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Existence Conditions for an Optimal Affine

Leader Function in the Reverse Stackelberg

Game

Noortje Groot ∗ Bart De Schutter ∗ Hans Hellendoorn ∗

∗ Delft Center for Systems and Control, Delft University of
Technology, Delft, The Netherlands. E-mail: n.b.groot@tudelft.nl

Abstract: We investigate the solvability of the reverse Stackelberg game. Here, a leader player
acts first by presenting a leader function that maps the follower decision space into the leader
decision space. Subsequently, the follower acts by determining his optimal decision variable.
Such a game setting can be adopted within a multi-level optimization approach for large-scale
control problems like road tolling. However, due to the complexity of the general game, results
often rely on specific examples. As a starting point towards developing a systematic approach
for the use of reverse Stackelberg games in control, a characterization of cases is given in which
the desired leader equilibrium can be achieved by an affine leader function. Here, we focus on the
single-leader single-follower deterministic, static (one-shot) case. This characterization follows
a geometric approach and extends the special cases considered in the existing literature to also
incorporate the more general case in which nonconvex and nonsmooth sublevel sets apply.

Keywords: Stackelberg games, hierarchical decision making, existence conditions

1. INTRODUCTION

In the context of large-scale control problems, smart op-
timization methods have to be implemented in order to
obtain a good performance in an acceptable time frame.
Whereas a centralized approach is intractable in large-
scale networks, a decentralized method generally yields an
insufficient performance. A distributed control approach
may work efficiently, yet in networks where a natural
division in levels applies, e.g., due to the operation of
controllers on different time scales and sizes of a network,
a multi-level approach may fit better (Scattolini, 2009).

In multi-level control, a leader-follower game structure
can be applied as a means to structure and facilitate
the problem solving. The reverse Stackelberg game is
such a game (Ho et al., 1981), also known in the control
community under the concept ‘incentives’ (Ho et al., 1982)
and more recently as inverse Stackelberg game (Olsder,
2009). Whereas the original Stackelberg game considers a
hierarchical framework in which leader and follower player
act sequentially by presenting their decision variable values
(von Stackelberg, 1934), in the reverse Stackelberg game
the leader action is of a different type. Here, the leader acts
first by presenting a mapping of the follower decision space
into the leader decision space, after which the follower still
acts by determining his optimal decision variable.

Since the 1970s, several results have been obtained on both
static and dynamic (open and closed-loop or feedback)
Stackelberg games (Simaan and Cruz, Jr., 1973; Tolwinski,
1981) and reverse Stackelberg games (Li et al., 2002),
also considering cases with uncertainty (Başar, 1984; Can-
sever and Başar, 1985b,a). Other extensions include partial
information (Zheng and Başar, 1982) and different time

scales of operation (Salman and Cruz, Jr., 1983). More re-
cently, results in Stackelberg games have included switch-
ing positions of leader and follower (Nie, 2010; Başar et al.,
2010). However, it should be emphasized that the game
is complex due to e.g., the composed functions involved
(Olsder, 2009). Nonetheless, the game has been applied
to network pricing (Shen and Başar, 2007) and electricity
pricing (Luh et al., 1982) as well as to road tolling problems
(Staňková et al., 2009). Still, current research mostly re-
mains restricted to the special case of an affine leader func-
tion in applications with convex, quadratic cost functions
and, in the dynamic case, linear state equations (Ehtamo
and Hämäläinen, 1985). In particular, in Zheng and Başar
(1982) some conditions were developed for the existence of
an optimal affine leader function, arguing that the class of
problems with a differentiable and strictly convex follower
objective function is sufficiently large. Nonetheless, real-
life control problems occur with many different structures.

In the current paper, necessary and sufficient conditions
are therefore presented for the existence of an affine leader
function that returns the desired reverse Stackelberg equi-
librium. Here, existing sufficiency results for the strictly
convex case are extended, considering also nondifferen-
tiable objective functions and sublevel sets. Moreover, the
convexity requirement of the follower’s objective function
is relaxed and later on a constrained decision space is
considered. The extension is not so trivial, as will be
illustrated by some examples. While this extension is only
a first step in relaxing the assumptions made so far, it aims
towards extending and developing a structured approach
for solving more general subclasses of this complex game.

The remainder of this paper is structured as follows.
After the definition of the reverse Stackelberg game in



Section 2, some preliminary notation and assumptions are
stated. In Section 3 the affine leader function structure is
presented, after which the existence results for an optimal
affine leader function for a convex respectively nonconvex
sublevel set are presented in Section 4 and 5. Section 6
includes a brief analysis of the constrained case and the
paper is concluded in Section 7.

2. PRELIMINARIES

2.1 The Reverse Stackelberg Game

In the following definition of the reverse Stackelberg game,
we assume that the leader seeks to achieve a unique
global optimum (ud

L, u
d
F) of leader and follower inputs

ud
L ∈ ΩL ⊆ RnL, ud

F ∈ ΩF ⊆ RnF. The problem then
becomes for the leader to determine an optimal leader
function γL : ΩF → ΩL that leads to this equilibrium. In
the case of multiple optima, the leader may choose any of
them as the desired solution. Further, leader and follower
objective functions are denoted J· : ΩL × ΩF → R and
ΓL denotes the class of admissible leader functions in a
particular game context.

To find: γL ∈ ΓL, γL : ΩF → ΩL (1)

s.t. arg min
uL∈ΩL,uF∈ΩF

JL(uL, uF) = (ud
L, u

d
F), (2)

arg min
uF∈ΩF

JF(γL(uF), uF) = ud
F, (3)

γL(u
d
F) = ud

L. (4)

In other words, the leader should construct her function
γL such that it passes through her desired optimum but
such that it does not touch other points in the sublevel set

Λd := {(uL, uF) ∈ ΩL × ΩF|JF(uL, uF) ≤ JF(u
d
L, u

d
F)}.

For such γL the follower will select ud
F under the minimiza-

tion of his objective function.

As a first step in our analysis of the problem, we like to
know under what conditions the leader is able to induce
the follower to choose the input ud

F and thus reach the
desired solution. The property of a particular equilibrium
to be feasible for an instance of the reverse Stackelberg
game is known as incentive compatibility (Ho et al.,
1982). In this paper, linear incentive compatibility will be
considered, i.e., regarding an affine structure of γL.

2.2 Notation

The reader is assumed to be familiar with some con-
cepts occurring in convex analysis and geometry, such as
hyperplanes and strictly convex functions and sets (see
e.g., Auslender and Teboulle (2003); Rockafellar (1970);
Dattorro (2005)). In addition, we will use the following
definitions:

• ΠX(x) denotes a supporting hyperplane to the set X
at the point x ∈ X.

• As in Auslender and Teboulle (2003) a set X is an
affine subspace if y, z ∈ X ⇐⇒ αy + (1 − α)z ∈
X∀α ∈ R.

• As in Dattorro (2005), a vertex point or exposed
point v of a convex set X is defined as a point in its
closure X̄ that intersects with a strictly supporting
hyperplane. Similarly, a point x̃ in the closure of a

nonconvex set X̃ is a vertex point if there exists a
neighborhood of x̃, N (x̃), such that x̃ intersects with
a strictly supporting hyperplane to N (x̃).

• The projection of a vectorv on the vectorx is denoted
projx(v). The projection of the set P ⊆ Rn onto the
space X = Rm,m ≤ n is denoted projX(P ).

• By {0}nL ×ΩF we denote the decision space in which
the leader components are taken to be zero.

• A generalized gradient ∂f(x) of a locally Lipschitz
continuous function f : Rn → R at x is defined
as follows: ∂f(x) := conv({limm→∞ ∇f(xm)|xm →
x, xm ∈ dom(f) \ Ωf}), with Ωf being the set of
points where f is nondifferentiable and where no limit
limm→∞ ∇f(xm) exists (Clarke, 1983). By V(X(x))
we denote the generalized normal to the set X at the
point x ∈ X̄, defined as the set of normal vectors to
the possible tangent hyperspaces to X at x.

2.3 Assumptions

[A.1] Let ΩL,ΩF be convex sets.
[A.2] Let Λd be a connected set.
[A.3] Let nL, nF be finite.
[A.4] Let Λd 6= {(ud

L, u
d
F)}.

The first assumption is taken from the literature on
Stackelberg games, e.g., Zheng and Başar (1982); Başar
and Olsder (1999), and is required for convexity of JF and
Λd. Assumption [A.2] is a less restricted case of taking
JF and therefore also Λd to be strictly convex, as done in
Zheng and Başar (1982). Note that [A.2] is automatically
satisfied if it holds that JF is a convex or quasiconvex
function. Assumption [A.3] is necessary in order to use the
concept of a supporting hyperplane and it is an accepted
assumption in many control applications (Åström and
Wittenmark, 1997). Finally, the special case excluded by
assumption [A.4] presents the trivial situation in which
(ud

L, u
d
F) is automatically optimal for the follower.

3. AN AFFINE LEADER FUNCTION

In the following we assume an affine leader function γL :
ΩF → ΩL, i.e., of the form

uL := γL(uF) = ud
L +B(uF − ud

F), (5)

withB a linear operator mappingΩF→ΩL, represented by
an nL×nF matrix in the considered finite-dimensional case.

Recall from the definition of the reverse Stackelberg game
that the variable ud

F is optimal for the follower if and only
if γL ∩ Λd = {(ud

L, u
d
F)}. Recall also that a supporting

hyperplane intersects solely with points on the boundary of
a set. Therefore, in the following results we make use of the
latter concept, requiring γL to lie on a strictly supporting
hyperplane ΠΛd

: ΠΛd
∩ Λd = {(ud

L, u
d
F)}. Here, γL can be

described as an affine hyperspace of dimension nL, i.e., it
is a subset of an (nL + nF − 1)-dimensional hyperplane.

From now on, we denote by AL the set of affine relations
through (ud

L, u
d
F) defined as sets of dimension nF in ΩL×ΩF

and such that for αL ∈ AL, αL ∩ Λd = {(ud
L, u

d
F)}. Note

that this construction is necessary in order to be able to
work with the function γL : ΩF → ΩL as a set of points
{(uL, uF)|uF ∈ ΩF, uL = γL(uF)}. For αL ∈ AL, αL(ΩL) =
ΩF, we can then characterize a candidate leader function

by γL :=(αL)
−1. Finally, let A

ΠΛd

L :={αL∈AL|αL⊆ΠΛd
}.



For the sake of clarity, we now provide a high-level sum-
mary of the results presented in the remainder.

Overview of Results

• Unconstrained decision space
[4] Λd convex

- JF differentiable (Thm. 5)
- JF nondifferentiable, Λd smooth (Remark 6)
- Λd nonsmooth (Thm. 7)

[5] Λd nonconvex
[A] nL = 1

- JF differentiable (Prop. 11)
- Λd nonsmooth (Prop. 12)

[B] nL > 1
- (ud

L
, ud

F
) 6∈ int(conv(Λd)) (Prop. 13)

- (ud

L
, ud

F
) ∈ int(conv(Λd)) (Prop. 14)

• Constrained decision space [6]

4. Λd CONVEX

In the following, results of Zheng and Başar (1982) are
extended into a stronger, necessary and sufficient condition
(Theorem 5) and subsequently formulated for the case
of a nonsmooth sublevel set (Theorem 7). Some special
cases are further pointed out in several remarks. It should
be noted that when relaxing the strict convexity of the
follower objective function, the desired leader equilibrium
is not automatically a boundary point of the sublevel set.
Exclusion of this case prevents the current theory from
being generally applicable.

Lemma 1 and 2 required for the remainder of the analysis
follow automatically from the supporting hyperplane the-
orem (e.g., Theorem 11.6 in Rockafellar (1970)) and the
definition of a strictly supporting hyperplane.

Lemma 1. Assume Λd to be convex. Let ΩL = RnL ,ΩF =
RnF and let αL ∈ AL be any affine function through
(ud

L, u
d
F) such that αL ∩ Λd = {(ud

L, u
d
F)}. Then αL lies

on a supporting hyperplane ΠΛd
(ud

L, u
d
F).

Lemma 2. Assume Λd to be convex and assume Λd to
be locally strictly convex at (ud

L, u
d
F). Then there exists a

supporting hyperplane ΠΛd
(ud

L, u
d
F) that intersects with Λd

only in the point (ud
L, u

d
F): ΠΛd

(ud
L, u

d
F)∩Λd = {(ud

L, u
d
F)}.

Remark 3. There exists a more general class of sublevel
sets Λd that are not necessarily locally strictly convex at
the equilibria (ud

L, u
d
F), but for which it does hold that

∃ΠΛd
: ΠΛd

(ud
L, u

d
F) ∩ Λd = {(ud

L, u
d
F)}. Here we refer to

the vertex points of Λd; Lemma 2 can thus be extended
to include sets Λd for which (ud

L, u
d
F) is a vertex point.

The proof would be as before where instead of the convex
set Λd that is locally strictly convex at (ud

L, u
d
F), a strictly

convex superset of Λd is considered with (ud
L, u

d
F) still as a

boundary point.

Remark 4. Consider the case with Λd convex and again
under the relaxed property that Λd is no longer locally
strictly convex at (ud

L, u
d
F). Further, let (u

d
L, u

d
F) 6∈ int(Λd)

and suppose that no supporting hyperplane ΠΛd
(ud

L, u
d
F)

exists that intersects with Λd solely in the point (ud
L, u

d
F).

(It follows that (ud
L, u

d
F) is not a vertex point.) By con-

γL

Λd

uF

ud
F

uL,2

ud
L,2

uL,1ud
L,1

Fig. 1. Affine γL lying on a supporting hyperplane
ΠΛd

(ud
L, u

d
F) that is not strictly supporting.

vexity of Λd there does exist a supporting hyperplane
Π̃Λd

(ud
L, u

d
F) such that Π̃Λd

(ud
L, u

d
F) ∩ Λd \ {(ud

L, u
d
F)} 6= ∅.

For this case an optimal affine γL may still exist that lies on
a supporting hyperplane Π̃Λd

(ud
L, u

d
F). Refer to Figure 1 for

an example: although no strictly supporting hyperplane at
(ud

L, u
d
F) exists, there does exist a γL : γL∩Λd = {(ud

L, u
d
F)}.

Theorem 5. Let Λd be convex and let Λd be locally strictly
convex at (ud

L, u
d
F). Additionally, let JF be differentiable

at (ud
L, u

d
F) and assume that ΩL = RnL ,ΩF = RnF . Then

the desired equilibrium (ud
L, u

d
F) can be reached under an

affine γL : ΩF → ΩL if and only if ∇uL
JF(u

d
L, u

d
F) 6= 0.

Proof. From Lemma 1 and 2 it follows that there exists
an affine α

ΠΛd

L ∈ A
ΠΛd

L with ΠΛd
∩ Λd = {(ud

L, u
d
F)}.

Under the use of a leader function associated with α
ΠΛd

L ,
by definition of the level set Λd the minimum value of
JF will be obtained at (ud

L, u
d
F). Hence, (u

d
L, u

d
F) can be

reached under an affine α
ΠΛd

L .

It remains to show that in order for α
ΠΛd

L (ΩL) = ΩF to
hold it is necessary and sufficient that ∇uL

JF(u
d
L, u

d
F) 6= 0.

First note that since JF is differentiable at (ud
L, u

d
F) the

normal vector to Λd at (ud
L, u

d
F) exists and is equal to

∇JF(u
d
L, u

d
F), which is unique and hence the supporting

hyperplane ΠΛd
(ud

L, u
d
F) is unique, i.e., it is a tangent

hyperplane corresponding to the equation

∇T
uF
JF(u

d
L, u

d
F)(u

d
F−uF)+∇

T
uL
JF(u

d
L, u

d
F)(u

d
L−uL)=0. (6)

(⇒) By contraposition: Suppose that ∇uL
JF(u

d
L, u

d
F) = 0.

Then ΠΛd
(ud

L, u
d
F) will be defined only by the first term

of (6), i.e., ∇T
uF

JF(u
d
L, u

d
F)(u

d
F − uF) = 0. By locally

strict convexity of Λd at (ud
L, u

d
F) and by exclusion of

the possibility that Λd = {(ud
L, u

d
F)} [A.4] we know that

it is not possible to also have ∇uF
JF(u

d
L, u

d
F) = 0. We

can derive this from the first-order condition for strictly
convex functions f , (Bertsekas (2003),Proposition B.3.)
which states that f(y) > f(x) + (y − x)T∇f(x) ∀x, y ∈
dom(f), x 6= y.

It follows that the normal vector defining the hyperplane
ΠΛd

(ud
L, u

d
F) is parallel to the decision space ΩF, i.e.,

the hyperplane is orthogonal to {0}nL × ΩF. Therefore,



Λ

V(Λd(u
d

L
, ud

F
))

Λd

ud
L

uL

uF,2

ud
F,2

uF,1
ud
F,1

Fig. 2. Example of a convex set Λd nonsmooth at (ud
L, u

d
F),

for which no optimal affine leader function exists.

projΩF

(

ΠΛd
(ud

L, u
d
F)
)

6⊃ ΩF and ΠΛd
(ud

L, u
d
F) will not

include any elements (uL, uF) ∈ ΩL × (ΩF \ {ud
F}), which

implies that α
ΠΛd

L (ΩL)  ΩF.

(⇐) If ∇uL
JF(u

d
L, u

d
F) 6= 0, the normal vector nΠΛd

(ud
L
,ud

F
)

defining the hyperplane ΠΛd
(ud

L, u
d
F) is not orthogonal

to the decision space ΩL: projΩL
(nΠΛd

(ud
L
,ud

F
)) 6= {0}. It

follows that the hyperplane is not orthogonal to {0}nL ×
ΩF: projΩF

(

ΠΛd
(ud

L, u
d
F)
)

= ΩF.

Hence, ∀uF ∈ ΩF∃uL ∈ ΩL : (uL, uF) ∈ ΠΛd
(ud

L, u
d
F).

Thus, there exists an affine α
ΠΛd

L : α
ΠΛd

L (ΩL) = ΩF and
therefore (ud

L, u
d
F) can be reached under an affine leader

function γL.

Remark 6. It should be noted that the differentiability
requirement of JF could be replaced by the more general
condition of Λd being smooth at (ud

L, u
d
F). In case JF

is strictly convex, differentiability of JF indeed implies
smoothness of Λd at (ud

L, u
d
F). However, in some cases

JF may be nonsmooth in (ud
L, u

d
F), while Λd is in fact

smooth. In this case, the gradient∇JF(u
d
L, u

d
F) in Theorem

5 should be replaced by the normal vector to Λd(u
d
L, u

d
F).

In the following theorem, the case where Λd is nons-
mooth at (ud

L, u
d
F) is considered. In addition, locally strict

convexity of Λd at (ud
L, u

d
F) is replaced with the more

general property of a vertex point as discussed in Re-
mark 3. An example of a case in which Λd is nonsmooth
and no affine γL exists is depicted in Figure 2: here,
projΩL

(V(Λd(u
d
L, u

d
F))) = {0}.

Theorem 7. Let Λd be convex and let (ud
L, u

d
F) be a vertex

point. Additionally, let Λd be nonsmooth at (ud
L, u

d
F) and

assume that ΩL = RnL ,ΩF = RnF . Then the desired
equilibrium (ud

L, u
d
F) can be reached under an affine γL :

ΩF → ΩL if and only if projΩL
(V(Λd(u

d
L, u

d
F))) 6= {0}.

Proof. Refer to the proof of Theorem 5 in combination
with Remark 3 for the existence of an optimal affine

α
ΠΛd

L . It remains to show that in order for α
ΠΛd

L (ΩL) =
ΩF to hold, it is necessary and sufficient that ∃ ν ∈
V(Λd(u

d
L, u

d
F)) : projΩL

(ν) 6= {0}, from which it follows

that projΩL
(V(Λd(u

d
L, u

d
F))) 6= {0}. This property can be

proven to be necessary and sufficient along the lines of the
proof of Theorem 5 regarding ∇uL

JF(u
d
L, u

d
F).

Remark 8. Consider the case described in Theorem 7 and
in addition, let both inputs be scalar (nF = 1, nL = 1).
For this special case an affine γL : ΩF → ΩL leading to
(ud

L, u
d
F) automatically exists.

Since Λd is nonsmooth at (ud
L, u

d
F), a supporting hyper-

plane to Λd will not be a unique (tangent) hyperplane. By
both the convexity of Λd and by (ud

L, u
d
F) being a vertex

point, we know that ∄uL ∈ ΩL \ {ud
L} : {(uL, u

d
F)} ∈ Λd.

Therefore there must exist an alternative normal vector
defining the hyperplane ΠΛd

(ud
L, u

d
F) that is not orthogonal

to {0}nL×ΩF. For such a vector, ΠΛd
(ud

L, u
d
F) and therefore

α
ΠΛd

(ud
L,u

d
F)

L will cover ΩF : dom(γL) = ΩF.

5. Λd NONCONVEX

In the current section, we show that in case the sublevel set
Λd is allowed to be nonconvex, the results presented for the
convex case may still apply if we consider the convex hull
of Λd. Further, for the specific case where uL is a scalar,
a necessary and sufficient condition is provided for the
use of an affine leader function. However, for nL > 1 the
concept of a supporting hyperplane used so far may be too
restrictive, as will finally be considered in Proposition 14.

Lemma 9. A supporting hyperplane ΠΛd
(ud

L, u
d
F) exists at

(ud
L, u

d
F) if and only if (ud

L, u
d
F) 6∈ int(conv(Λd)). Further,

for a vertex point (ud
L, u

d
F) of conv(Λd), ΠΛd

(ud
L, u

d
F) ∩

Λd = {(ud
L, u

d
F)}.

Proof. By definition of a convex hull, a supporting hy-
perplane ΠΛd

(ud
L, u

d
F) exists if and only if there exists a

supporting hyperplane Πconv(Λd)(u
d
L, u

d
F) to conv(Λd) at

(ud
L, u

d
F). Further, it is clear that a supporting hyperplane

to conv(Λd) exists at (ud
L, u

d
F) if and only if (ud

L, u
d
F) is a

boundary point of conv(Λd) and thus also of Λd (Rockafel-
lar (1970), Theorem 11.6). Now, by definition, a vertex of
conv(Λd) is such a boundary point.

For an intersection of ΠΛd
(ud

L, u
d
F) with Λd solely in the

point (ud
L, u

d
F), it is required that (ud

L, u
d
F) is a vertex

point of conv(Λd). (Note that it is therefore sufficient for
conv(Λd) to be locally strictly convex around (ud

L, u
d
F).)

5.1 nL = 1

Lemma 10. Assume there exists a strictly supporting
hyperplane Πconv(Λd)(u

d
L, u

d
F) : Πconv(Λd)(u

d
L, u

d
F) ∩Λd =

{(ud
L, u

d
F)}. Then an affine α

Πconv(Λd)(u
d
L,u

d
F)

L coincides with
Πconv(Λd)(u

d
L, u

d
F) if and only if uL is scalar (nL = 1).

Proof. Only in case of uL scalar the dimension of a hyper-
plane ΠΛd

, i.e., (nL + nF)− 1, equals the number of inde-
pendent variables, nF, of an affine leader function. If there
exists a strictly supporting hyperplane Πconv(Λd)(u

d
L, u

d
F),

it follows that this plane coincides with α
Πconv(Λd)(u

d
L,u

d
F)

L .

Lemma 10 implies that for nL > 1 and for Λd nonconvex,
requiring αL ∈ AL to lie on a supporting hyperplane



γL

Λd

F

uF

ud
F

uL,2

ud
L,2

uL,1ud
L,1

Fig. 3. Example of an optimal affine leader function γL
not lying on a supporting hyperplane ΠΛd

(ud
L, u

d
F) for

nL>1, (ud
L, u

d
F)∈ int(conv(Λd)).

separating the full (nF + nL)-dimensional decision space
is generally too restrictive for the existence of an optimal
affine leader function. This applies to e.g., the case where
(ud

L, u
d
F) ∈ int(conv(Λd)) as depicted in Figure 3. Still, it

is necessary that coverage of ΩF is achieved by an affine
αL ∈ AL in the sense that αL(ΩL) = ΩF, and that the
associated γL : ΩF → ΩL does not intersect Λd in any other
point than (ud

L, u
d
F). Hence, instead of using the supporting

hyperplane concept, a condition will be developed based
on a tangent hyperplane (Proposition 14). However, we
first extend the results of Theorem 5 and 7 to the cases
with respectively Λd nonconvex and nondifferentiable at
(ud

L, u
d
F), for nL = 1.

Proposition 11. Let conv(Λd) be locally strictly convex at
(ud

L, u
d
F) and assume that nL = 1. Additionally, let JF be

differentiable at (ud
L, u

d
F) and let ΩL = RnL ,ΩF = RnF .

Then the desired equilibrium (ud
L, u

d
F) can be reached

under an affine γL : ΩF → ΩL if and only if it both holds
that (ud

L, u
d
F) 6∈ int(conv(Λd)) and that∇uL

JF(u
d
L, u

d
F) 6= 0.

Proof. First note that since nL = 1, an affine αL ∈ AL co-
incides with the supporting hyperplane Πconv(Λd)(u

d
L, u

d
F),

as shown in Lemma 10. Further, by Lemma 9, a sup-
porting hyperplane Πconv(Λd)(u

d
L, u

d
F) exists if and only if

(ud
L, u

d
F) 6∈ int(conv(Λd)). For the remainder of the proof

we refer to the proof of Theorem 5 where Λd should be
replaced by conv(Λd), and where Lemma 9 is used as the
nonconvex equivalent to Lemma 2.

In the following proposition, differentiability of JF is again
relaxed and locally strict convexity of Λd at (ud

L, u
d
F) is

replaced with the more general property of a vertex point
as discussed in Remark 3.

Proposition 12. Let (ud
L, u

d
F) be a vertex point of conv(Λd)

and assume that nL = 1. Additionally, allow Λd to
be nonsmooth at (ud

L, u
d
F) and assume that ΩL =

RnL ,ΩF = RnF . Then the desired equilibrium (ud
L, u

d
F) can

be reached under an affine γL : ΩF → ΩL if and only if
projΩL

(V(conv(Λd(u
d
L, u

d
F)))) 6= {0}.

Proof. Note that since (ud
L, u

d
F) is a vertex point of

conv(Λd), it is automatically satisfied that (ud
L, u

d
F) 6∈

int(conv(Λd)). Hence by Lemma 9 a supporting hyper-
plane exists that in addition contains only (ud

L, u
d
F) of the

set Λd.

For the remainder of the proof we refer to the proof of
Theorem 7 where Λd should be replaced by conv(Λd), and
where the proof of Proposition 11 is used as the nonconvex
equivalent to Theorem 5.

5.2 nL > 1

Proposition 13. Let nL > 1 and assume that (ud
L, u

d
F)

is a vertex point of conv(Λd). Allow Λd to be nons-
mooth at (ud

L, u
d
F) and assume that ΩL = RnL ,ΩF =

RnF . Then the desired equilibrium (ud
L, u

d
F) can be

reached under an affine γL : ΩF → ΩL if and only if
projΩL

(V(conv(Λd(u
d
L, u

d
F)))) 6= {0}.

Proof. Refer to the proof of Theorem 7, but where the
convex set Λd is replaced by conv(Λd). As discussed in
Lemma 9, since (ud

L, u
d
F) is a vertex point we know that

∃Πconv(Λd)(u
d
L, u

d
F) : Πconv(Λd)(u

d
L, u

d
F) ∩ Λd = {(ud

L, u
d
F)}.

Proposition 14. Let nL > 1 and assume that (ud
L, u

d
F) ∈

int(conv(Λd)). Allow Λd to be nonsmooth at (ud
L, u

d
F) and

assume that ΩL = RnL ,ΩF = RnF . Then the desired
equilibrium (ud

L, u
d
F) can be reached under an affine γL :

ΩF → ΩL if and only if there exists an nF-dimensional
tangent, affine subspace Πt

d(u
d
L, u

d
F) to Λd at (ud

L, u
d
F)

such that Πt
d(u

d
L, u

d
F) ∩ Λd = {(ud

L, u
d
F)} and such that

projΩL
(V(Λd(u

d
L, u

d
F))) 6= {0}.

Proof. First note that because αL ∈ AL is of the same
dimension as the tangent, affine subspace Πt

d(u
d
L, u

d
F), it

holds that ∃αL : αL ∩ Λd = {(ud
L, u

d
F)} if and only if

∃Πt
d(u

d
L, u

d
F) : Π

t
d(u

d
L, u

d
F) ∩ Λd = {(ud

L, u
d
F)}.

Additionally, given that an optimal affine αL ∈ AL exists,
in order for αL to be a mapping ΩF → ΩL it is sufficient
and necessary that projΩL

(V(Λd(u
d
L, u

d
F))) 6= {0} as proven

before in e.g., Theorem 7.

Finally, note that Remark 4, 6, and 8 of Section 4 – the
latter for (ud

L, u
d
F) 6∈ int(conv(Λd)) – also translate to the

case in which Λd is nonconvex.

6. CONSTRAINED DECISION SPACE

So far the unbounded case is considered and conditions
have been provided under which an optimal affine leader
function exists that leads to the desired equilibrium. In
the constrained case however, the complexity arises that
additionally ΠΛd

(ud
L, u

d
F) – or Π

t
Λd

(ud
L, u

d
F) for the case with

nL > 1 and (ud
L, u

d
F) ∈ int(conv(Λd)) – should be within

the constrained decision space ΩL ×ΩF. This implies that
the supporting or tangent hyperplane should contain an
nF-dimensional affine subspace γL satisfying (I) γL(ΩF) ⊆
ΩL while (II) γL should cover ΩF, i.e., dom(γL) = ΩF.

For this constrained case with Λd convex, Theorem 5
and 7 pose necessary – but not necessarily sufficient
– conditions for JF smooth and for Λd nonsmooth at
(ud

L, u
d
F), respectively. The same applies to Propositions

11–14 that hold for Λd nonconvex.



7. CONCLUSION AND FURTHER RESEARCH

We have studied necessary and sufficient conditions un-
der which an affine leader function can solve the single-
leader single-follower deterministic static reverse Stackel-
berg game to optimality for a particular desired leader
equilibrium. While in the literature the focus is on a
special class of problems, we have developed more general
conditions and extended the existing results by considering
nonconvex and nonsmooth sublevel sets. These conditions
can be used for further derivation of an optimal leader
function and they therefore provide a basic step towards
developing a systematic approach for solving more general
subclasses of the complex reverse Stackelberg game.

Topics for future research include the investigation of
a more diverse class of nonlinear leader functions, e.g.,
piecewise-affine and smooth (piecewise) polynomial struc-
tures, and the formulation of sufficient conditions in case
of a constrained decision space. The development of nu-
merical derivation methods for the leader function could
facilitate the formulation of such conditions. Here, the
development of a tractable solution approach of the re-
verse Stackelberg game will be a focal point of continued
research, to-be-applied in applications like road tolling.
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431–458. Birkhäuser Boston, New York, NY, USA.

Simaan, M. and Cruz, Jr., J.B. (1973). On the Stackelberg
strategy in nonzero-sum games. Journal of Optimization
Theory and Applications, 11(5), 533–555.
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