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A Predictive Traffic Controller for Sustainable

Mobility Using Parameterized Control Policies
S. K. Zegeye, B. De Schutter Senior IEEE member, J. Hellendoorn, E. A. Breunesse, and A. Hegyi

Abstract—We present a freeway-traffic control strategy that
continuously adapts the traffic control measures to the prevailing
traffic conditions and that features faster computation speed than
conventional model-based predictive control (MPC). The control
approach is based on the principles of state feedback control
and MPC. Instead of computing the control input sequence, the
proposed controller optimizes the parameters of control laws
that parameterize the control input sequences. In this way, the
computational burden of the controller is reduced substantially.
We demonstrate the proposed control approach on a calibrated
model of a part of the Dutch A12 freeway using variable speed
limits and ramp metering rate.

Index Terms—Traffic control, MPC, parameterized controller,
sustainable mobility, variable speed limits, ramp metering

I. INTRODUCTION

C
ONTROLLING the traffic network to get a system or

user optimum flow is one of the challenges that traffic

practitioners face every day. The demand to increase the traffic

safety and the increasingly stringent environmental policies

exacerbate the task of traffic control engineers. The multi-

faceted control objectives of traffic systems also vary both

spatially and temporally. Moreover, depending on the traffic

conditions the multiple objectives of a traffic controller may

be conflicting or compatible [1], [31].

There are several research results on the design of traffic

controllers that can improve the traffic flow under certain

traffic conditions [6], [9], [11], [15], [26], [27] and on the

design of vehicle control strategies that can improve the

fuel efficiency [34]. The freeway traffic controller in [15] is

designed to eliminate shock waves on freeways. The freeway

controllers designed in [6], [9], [26], [27] are state feedback

control policies where the parameters of the control policies

are determined using off-line optimization approaches based

on simulation or historical data. This means that the control

policies perform well for the specific scenarios they are

optimized to. However, in general the traffic conditions may

change so frequently that the performance of the controllers
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is most often reduced. Moreover, it is not possible to either

change the desired control objective at any time or to adapt

the control policies on-line to the prevailing traffic conditions.

An excellent traffic control solution for freeway traffic

problems is a controller that takes the current and future traffic

situation into account and that predicts the consequences of

its control actions. One such traffic control strategy, based

on model predictive control (MPC), has been independently

proposed and re-proposed by several authors in the past

decades [4], [8], [10], [22]–[24]. MPC can handle model

uncertainties, include constraints, support multi-objective per-

formance criteria, and can be used with nonlinear models [19].

Moreover, in several case studies MPC has proven to yield

significant gains in the performance of the traffic network [5],

[13], [33]. However, this comes with one main limitation: the

computation time is very large, which makes the approach

intractable in practice [11].

There are many advancements in the literature (e.g. [12],

[16], [18], [28]) to address the computational complexity

problems of general MPC. Almost all available literature

deals either with linear time-invariant systems or specific

classes of nonlinear systems (such as linear time-varying,

linear parameter-varying, and piecewise affine systems). How-

ever, traffic systems are too complex and nonlinear to fall

within the specific classes of nonlinear systems for which the

methodologies to reduce the computation time are developed.

This paper contributes a new general theoretical approach

for the design of a centralized traffic controller that yields

fast computation speeds. The paper proposes a receding-

horizon parameterized (RHP) traffic control approach that

combines the advantages of conventional MPC (i.e., pre-

diction, adaptation, and handling constraints, multi-objective

criteria, and nonlinear models) and the advantages of state

feedback controllers (i.e., faster computation speed and easier

implementation). Moreover, the paper applies the theoretical

approach to design control laws for variable speed limits and

ramp metering. Furthermore, the paper illustrates the proposed

control approach with a simulation-based case study on a part

of the Dutch A12 freeway. In addition to the substantial reduc-

tion of computation times, the case study also demonstrates

that for the given scenario the proposed RHP traffic controller

performs almost the same as conventional MPC. This paper

further considers different objective functions to demonstrate

how the controller can be used to obtain a balanced trade-off

between emissions, fuel efficiency, and travel times.
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II. MODELS

Since the proposed control strategy is model-based, this

section gives a brief account of the traffic flow, emission,

and fuel consumption models used in this paper is given. In

particular, we discuss the METANET [21] traffic flow model

and the VT-macro [31] emission and fuel consumption model.

Note, however, that the control approach presented is generic;

hence, it can also be used with other, more complex models.

A. METANET

METANET [17], [21] is a macroscopic second-order traffic

flow model. The model describes the evolution of the average

density ρ [veh/km/lane], average flow q [veh/h], and average

space-mean speed v [km/h] as nonlinear difference equations.

The METANET model is both temporally and spatially dis-

cretized. The model uses directed graphs to represent the traffic

network. In the graph, a node is placed wherever there is a

change in the geometry of a freeway (such as a lane drop,

on-ramp, off-ramp, or a bifurcation). A homogeneous freeway

stretch that connects such nodes is represented by a link. Links

are further divided into segments of equal length (typically

300-500 m). The equations that describe the traffic dynamics

in segment i of link m are given by

qm,i(k) =λmρm,i(k)vm,i(k) (1)

ρm,i(k + 1) =ρm,i(k) +
T

Lmλm

(

qm,i−1(k)− qm,i(k)
)

(2)

vm,i(k + 1) =vm,i(k) +
T

τ

(

V [ρm,i(k)]− vm,i(k)
)

+
T

Lm

vm,i(k)
(

vm,i−1(k)− vm,i(k)
)

−
Tη

τLm

ρm,i+1(k)− ρm,i(k)

ρm,i(k) + κ
(3)

V [ρm,i(k)] =vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcr,m

)am
]

(4)

where qm,i(k) denotes the outflow of segment i of link m

during the time period [kT, (k + 1)T ), ρm,i(k) denotes the

density of segment i of link m at simulation time step k,

vm,i(k) denotes space-mean speed of segment i of link m at

simulation time step k, Lm denotes the length of the segments

of link m, λm denotes the number of lanes of link m, and T

denotes the simulation time step (a typical value for T is 10 s).

Furthermore, ρcr,m is the critical density, vfree,m is the free-

flow speed of link m, τ a time constant, η the anticipation

constant, am the parameter of the fundamental diagram, and

κ is a model parameter.

The desired speed V [ρm,i(k)] in (4) is given for the uncon-

trolled case, where the speed limit is kept constant and equal

to vfree,m. For the controlled case, where the speed limit is

dynamic, the desired speed is determined according to [13]

V [ρm,i(k)] =min

{

(αm + 1)usl,m,i(k),

vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcr,m

)am
]}

(5)

where usl,m,i(k) is the speed limit of segment i of link m and

αm is the drivers’ non-compliance factor.

For origins (such as on-ramps and mainstream entry points)

a queue model is used. The dynamics of the queue length wo

at the origin o are modeled as

wo(k + 1) = wo(k) + T (do(k)− qo(k)) (6)

where do(k) and qo(k) denote respectively the demand and

outflow of origin o. The outflow qo(k) is given by

qo(k) = min

[

do(k) +
wo(k)

T
, ro(k)Co,

Co

(

ρjam,m − ρm,1(k)

ρjam,m − ρcr,m

)]

, (7)

with ro(k) the ramp metering rate (where ro(k) ∈ [0 1] for a

metered on-ramp and ro(k) = 1 for an unmetered on-ramp or

mainstream origin), ρjam,m the maximum density of link m,

and Co the capacity of origin o. For refinements and extensions

we refer an interested reader to [14], [17], [21].

B. VT-macro

The VT-macro model [31] is a macroscopic emission model

that in particular developed for the METANET traffic flow

model. The model takes the dynamics of the space-mean speed

of the traffic flow model into account. The inputs of the model

are the average space-mean speed, average acceleration, and

the number of vehicles subject to the speed and acceleration

pairs. The average acceleration and number of vehicles are

computed from the space-mean speed v, density ρ, and flow

q variables of the METANET model. A detailed explanation

of the way to compute the average acceleration and number

of vehicles subject to it is provided in [31]. In the sequel we

briefly describe the formulas for these quantities.

Since the METANET model is discrete both in time and

in space, the acceleration and the number of vehicles that are

subject to the acceleration are differentiated as segmental and

cross-segmental variables. The segmental acceleration aseg,m,i

is the rate of change in space-mean speed of the vehicles in

one simulation time step within segment i of link m. The

segmental acceleration of the vehicles in the segment i of link

m at time step k is given by

aseg,m,i(k) =
vm,i(k + 1)− vm,i(k)

T
(8)

and the corresponding number of vehicles subject to the

segmental acceleration is given by

nseg,m,i(k) = Lmλmρm,i(k)− Tqm,i(k). (9)

The cross-segmental acceleration is the change in speed ex-

perienced by vehicles moving from one segment of a link to

another segment of the same or a different link. The expression

for the cross-segmental acceleration of the vehicles depends

on the geometry of the traffic network: the formula is different

for vehicles in a link, on-ramp, off-ramp, merging links,

and splitting links. However, all expressions have a similar

structure of the form

across,α,β(k) =
vβ(k + 1)− vα(k)

T
(10)
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for vehicle going from one segment α, which can represent

a segment-link pair or an on-ramp to the next segment β, a

representing segment-link pair or an off-ramp.

The number of vehicles ncross,α,β that are subject to the

cross-segmental acceleration in (10) is obtained as

ncross,α,β(k) = Tqα(k). (11)

With the segmental and cross-segmental variables as input,

the VT-macro model is given as

J
seg
y,m,i(k) = nseg,m,i(k) exp

(

ṽm,i(k)Pyã
T
seg,m,i(k)

)

or (12)

Jcross
y,α,β(k) = ncross,α,β(k) exp

(

ṽα(k)Pyã
T
cross,α,β(k)

)

(13)

where J ·
y,·,·(k) is the estimate or prediction of the variable

y ∈ Y = {CO, NOx, HC} for the given segment, on-ramp, or

off-ramp from time step k to time step k + 1, the operator x̃

defines a vector of the scalar variable x as x̃ = [1 x x2 x3]⊤,

and Py denotes the model parameter matrix for the variable

y. The values of the entries of Py are given in [32].

By summing J
seg
y,m,i(k) and Jcross

y,α,β(k) for all segments, on-

ramps, and off-ramps we get the total emissions J tot
y (k) for

the entire network during the time period [kT, (k + 1)T ).
Note that the VT-macro model may not reflect the real world

conditions, as this is also the case with any other model. There

is always a trade-off between accuracy and computational

efficiency. In [32] the VT-macro traffic emissions and fuel

consumption model has been validated and has been compared

with the VT-micro and COPERT [25] models based on a case

study. Moreover, the error introduced due to the integration of

macroscopic traffic flow variables to microscopic emissions

and fuel consumption model has been analyzed in [32].

III. MODEL PREDICTIVE CONTROL

A. Conventional MPC

Conventional Model Predictive Control (MPC) is a control

approach in which the current control action to be applied

is obtained by solving an on-line open-loop optimal control

problem using the current state of the plant as the initial state.

The optimization process yields an optimal control sequence

and the first control input in the sequence is applied to the

plant [19]. In other words, unlike other control methods, con-

ventional MPC does not use a precomputed (or pre-designed)

control law to yield control signals [20]. MPC is capable of

controlling multivariable and nonlinear systems, and it can

handle state and input constraints. Moreover, conventional

MPC can to some extent address the prediction errors resulting

from model mismatches (or uncertainity) and disturbances due

to the feedback and receding horizon approaches [19]. By

introducing an on-line identification of parameters for freeway

traffic, the issues due to model mismatches can also be handled

[3].

In the context of MPC, dynamic systems are often described

or approximated by a system of ordinary difference equations

x(k + 1) = f(x(k), u(k)), y(k) = h(x(k)), (14)

where x(k) ∈ R
nx , u(k) ∈ R

nu , and y(k) ∈ R
ny are

respectively the state, input, and output vectors, f(·) ∈ R
nx

is the state vector field, and h(·) ∈ R
ny is the output vector

field, with nx, nu, and ny being positive integer numbers.

At each control step the MPC controller determines a

sequence of control inputs that optimize a given performance

criterion over a given prediction period Np control steps ahead,

subject to model equation (14) and operational constraints.

Next, only the value of the first control input of the optimal

sequence is applied to the system until the control time step,

after which the MPC controller repeats the above process all

over again using a rolling horizon approach.

MPC, and in particular, MPC for nonlinear systems has

certain disadvantages. The main disadvantage emanates from

the nonlinear and nonconvex optimization problem involved.

Such optimization problems do not only pose difficulty in

computing optimal solutions, but also the computation time

involved to get the (sub-)optimal solutions is very high.

Usually, the computation time exponentially increases as the

number of control inputs or the prediction horizon increases.

To alleviate the computational problems several approaches

can be used. E.g., in order to limit the number of variables

to be optimized, a positive integer control horizon Nc is

defined after which the control input is kept constant, i.e.

û(kc + ℓ|kc) = û(kc + ℓ − 1|kc) for ℓ = Nc, . . . , Np − 1,

where Nc ≤ Np and kc is the control time step counter which

is related to the simulation time step k as k = Mkc for a

positive integer M [19].

Another interesting approach that can reduce the computa-

tion time considerably is the parameterization of the control

inputs (by a small number of parameters) [12], [16], [18], [28],

so that the controller optimizes a set of parameters instead

of optimizing a sequence of control inputs as in the case of

conventional MPC. This approach is discussed next.

B. Parameterized MPC

In parameterized MPC, the control signals are parameterized

according to some control laws. The parameters of the control

policies are optimized over certain time horizon to reduce

defined objective (cost) function [12], [16], [18], [28]. The

parameters of the control policies can be optimized in such a

way that they are constant over the prediction horizon [16],

[18], [28] or they can be considered to be time-varying over the

prediction horizon [12]. However, most of the work on MPC

with feedback control policies focus on linear time-invariant

[12], [18], [28], linear time-varying [16], and linear parameter-

varying [7], [30] systems. The general class of nonlinear

systems (such as traffic systems) has not yet been addressed.

IV. ROLLING-HORIZON PARAMETERIZED (RHP) TRAFFIC

CONTROLLER

A. Philosophy of RHP traffic controller

The concept of RHP can be illustrated with the schematic

diagram depicted in Fig. 1. The system block designates the

real traffic system where the measurements of the traffic states

(such as speed, flow, emissions, and fuel consumption) are fed

to the RHP controller. The RHP controller contains the model

of the traffic system, the optimization tool, and the control law

blocks. Using the current measurements of the traffic states as
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the initial states of the model, the RHP controller predicts

the evolution of the system states. The optimization block

optimizes a set of parameters that describe the control policy

in such a way that the defined objective function is reduced

while the constraints are met. The optimal set of parameters

is fed to the control policy block that uses them along with

the predict traffic states from the model to generate the traffic

control measures (such as speed limits, ramp metering rate,

and route guidance signals). The parameters are optimized

and generated as to be used for the whole prediction horizon.

However, the RHP controller applies only the first parameter

set to the system. At the next control time step, the prediction

horizon shifts one control time step, and the controller repeats

the optimization process all over again.

By defining the control policy in different ways, the concept

presented above can be realized in three different ways. This

is a consequence of the fact that only the first parameter set—

out of the parameter sets optimized for the entire prediction

horizon—is used for controlling the system. These three

different ways are:

1. Control policies with constant parameters. This option is

used in most of the literature. In this approach a constant

state feedback controller (control law) is designed. The

parameters of the control law do not change over the

prediction horizon. Thus, the number of parameters is

smaller, which leads to reduced computation time. In

general, since this approach limits the domain of the

parameters, it is conservative, and could have lower

performance than the two approaches presented next.

2. Control policies with variable parameters. In this ap-

proach the parameters of the control policies vary over

the whole prediction horizon. Hence, the space of the

control inputs is larger. This control approach requires

higher computation times but in general yields better

performance than the first option. However, in general

this approach is still faster than the conventional MPC

approach provided that the number of parameters is less

than the number of control measures (see Remark 1).

3. The third approach combines the characteristics of both

control policies with constant and variable parameters.

In this approach different options can be used to vary

the control law parameters while keeping the variation

limited. One way is to use blocking, i.e., to force the

parameters to remain constant during some pre-defined

non-uniform intervals over the prediction horizon [19].

Another approach is to allow the parameters to vary for

certain control time horizon Nc that is smaller than the

prediction horizon Np and to keep them constant for the

rest of the prediction period.

B. General formulation of RHP for traffic systems

In general, the traffic system can be described by the

systems of nonlinear difference equations given in (14). De-

pending on the model type, the state vector x(·) represents the

dynamic states of the traffic system. For example for macro-

scopic traffic models, it contains the average speeds, flows,

densities, and queue lengths. The variable u(·) represents the

D
is

tu
rb

an
ce

Measurement

Control law

Parameters

Optimization

Prediction
Control

Control
inputs

inputs

RHP controller

System

Model

Objective,

Constraints

Fig. 1. Model-based Receding-Horizon Parameterized (RHP) control.

control signals (such as the dynamic speed limits and the ramp

metering rates) and the variable y(·) contains the outputs of

the traffic system. This could be the travel time, throughput,

and emissions.

We denote1 xme(kc) as the measured or estimated value

of the traffic system state x(·) at time instant t = kcTc.

Similarly, we denote yme(kc) as the measured or estimated

value of the traffic system output y(·) at time t = kcTc. In

the RHP control formulation, the discrete-time control input

uc(kc) for the time period [Tckc, Tc(kc + 1)) can be defined

as a parameterized function of the measured or estimated

traffic state vector xme(kc − 1), output vector yme(kc − 1),
and parameter vector θ(kc−1). So, the RHP control law is in

general given by

uc(kc + 1 + j′|kc) = F
(

x̂me(kc + j′|kc), ŷme(kc + j′|kc),

θ(kc + j′|kc)
)

(15)

for j′ = 0, 1, . . . , Np − 1, where F is a user-defined mapping

and the notation x̂me(kc + j′|kc) and ŷme(kc + j′|kc) denote

the predicted values of x and y at time step kc + j′ using the

information available at time step kc.

At every control time step kc, the RHP controller collects

all the parameters of the control law (15) and it optimizes the

control objective over the parameters in the same way as the

conventional MPC.

Next, only the first value of the parameter is implemented

for traffic system, until the next control time step kc + 1, at

which the RHP controller repeats the above process all over

again using a receding horizon approach as described in the

previous sections.

Since the RHP optimization problem is nonconvex and

nonlinear, global or multi-start local optimization methods are

required, such as multi-start sequential quadratic programming

(SQP), pattern search, generic algorithms, or simulated anneal-

ing.

1We use the subscript ‘me’ in order make a distinction between the real
(or simulated) traffic state x at time step k and its measured (or estimated)
value at every control time step kc. Since we make measurements and apply
new control measures to the systems only once every M ∈ N simulation
time steps, we use a different counter kc to denote the control time step as
opposed to the simulation time step counter k.
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Fig. 2. A freeway link with N segments and variable speed limits.

V. RHP FOR VARIABLE SPEED LIMIT CONTROL

A. General variable speed limit control law

Although one can design an RHP controller for any dynamic

traffic model here we design the RHP controller based on a

macroscopic model. Actually, since speed limits are used to

limit the speed of all vehicles within the same segment of a

link, it is logical to use the macroscopic variables such as the

average speed, density, or flow of the vehicles to design the

RHP controller for speed limit control. So, in this particular

case we consider a link with a number of segments as depicted

in Fig. 2. There are two ways to control the variable speed

limits on a link of the freeway. One option is to control the

variable speed limits of each segment independently; and the

second option is to group a number of neighboring variable

speed limits together and assign them the same value. The

general strategy to be presented below holds for both options.

So, we will first present the first option and the second option

easily follows.

From traffic theory, we know that the density of every

segment is affected by the density of the downstream segment

(cf. (2)). Hence, it is important to consider the density of

the downstream segment in determining the speed limit of

the segment. However, density alone cannot describe the flow

relation of the two consecutive segments. Therefore, we also

need to use the speed to determine the control signal that

can produce the desired flow. In fact, it is logical to take

the downstream speed, because drivers can only adapt their

speeds to the speeds of the leading vehicles. This means that

in addition to the downstream density, the downstream speed

is also important in the parameterization of the control signals.

In the sequel we give a general approach for designing the

dynamic speed limit controller for a link of a freeway depicted

in Fig. 2. The dynamic speed limit usl,m,i of segment i at

control time step kc + 1 can thus be expressed as

usl,m,i(kc + 1) =fm
(

vme,m,i(kc), vme,m,i+1(kc),

ρme,m,i(kc), ρme,m,i+1(kc), θm(kc)
)

(16)

where fm(·) is a general mapping that determines the control

law of the speed limit of segment i of link m, θm(kc) is the

parameter vector, vme,m,i(kc) is the measured or estimated

average speed of segment i of link m at time t = kcTc, and

ρme,m,i(kc) is the measured or estimated average density of

segment i of link m at time t = kcTc.

The number of the parameters needed to describe fm should

be less than the number of the variable speed limits, because in

general, the RHP controller results in lower computation time

than the cMPC controller provided that the control polices are

defined in such a way that the number of parameters is smaller

than the number of control signals.

In general one can use different relations. Here we propose a

variable speed limit control policy where the parameterization

describes the relation of the speeds and densities in a linear

form. In this form we can easily describe the functions

pertaining speed or density separately as

usl,m,i(kc + 1) = θ0,m(kc)usl,ref,m(kc)

+ θ1,m(kc)f1,m(vme,m,i(kc), vme,m,i+1(kc))

+ θ2,m(kc)f2,m(ρme,m,i(kc), ρme,m,i+1(kc)) (17)

where usl,ref,m(kc) is the reference speed that can be either

the maximum speed limit of the link or the speed limit that

was one control time step back and f1,m(·), f2,m(·) are

respectively any state feedback functions that relate the speeds

and densities to the variable speed limit control, and θ0,m(kc),
θ1,m(kc) and θ2,m(kc) are time-dependent parameters that

parameterize the speed limit control signals. In the sequel we

provide a specific example of the speed limit controller given

in (17).

B. Speed limit controller

The intention of traffic control solutions using speed limits

is to attain homogenized traffic flows (such as homogenizing

speed and density of vehicles on the freeway [2], [29]) so that

the desired performance measure can be met. The speed limit

controller presented in (17) is general. The functions f1,m(·)
and f2,m(·) could be defined in different ways. Here, we

define the two functions by considering the relative difference

of the corresponding variables of the functions. The function

f1,m(·) is defined as the relative-speed difference of a segment

with respect to the speed of the downstream segment, and the

function f2,m(·) is defined as the relative-density difference

of a segment with respect to the density of the downstream

segment. Then the controller can make its decision based

on these quantities in order to minimize the differences in

speed and density between the segments. Mathematically,

these functions are given by

f1,m(vme,m,i(kc),vme,m,i+1(kc)) =

vme,m,i+1(kc)− vme,m,i(kc)

vme,m,i+1(kc) + κv

, (18)

f2,m(ρme,m,i(kc),ρme,m,i+1(kc)) =

ρme,m,i+1(kc)− ρme,m,i(kc)

ρme,m,i+1(kc) + κρ

, (19)

where κv and κρ are fixed parameters introduced to prevent

division by 0.

We chose the reference speed usl,ref,m(kc) in (17) to be

constant independent of time and it is taken to be equal to the

maximum speed limit vref,m of the traffic network. Hence, the

RHP speed limit controller becomes

usl,m,i(kc + 1) = θ0,m(kc)vref,m

+ θ1,m(kc)
vme,m,i+1(kc)− vme,m,i(kc)

vme,m,i+1(kc) + κv

+ θ2,m(kc)
ρme,m,i+1(kc)− ρme,m,i(kc)

ρme,m,i+1(kc) + κρ

. (20)
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The proposed controller has only 3 × Np parameters2 to be

optimized in the RHP control strategy. This means that this

speed limit controller can reduce the computation time if it

is used with a freeway link with at least four independent

variable speed limits (4 × Np speed limit variables over the

prediction horizon).

Usually, the speed limits are constrained. The speed limit

constraint Ll,m ≤ usl,m,i(kc + 1) ≤ Lu,m where Ll,m and

Lu,m are respectively the lower and upper speed limits, can

also be recast as constraints for the parameterization vector

θ·,m(kc).

VI. RHP FOR RAMP METERING CONTROL

A. General ramp metering control law

The design of an RHP controller for ramp metering is

similar to the way we design the RHP variable speed limit

controller. In the case of ramp metering control, the main

goal of the controller is to increase the throughput of the on-

ramp without affecting the traffic flow in the freeway. The

on-ramp flow is basically dependent on the current density

and critical density of the freeway. Hence, the ramp metering

control signal has to consider these effects. We then propose

a ramp metering control which is affine with respect to the

time-dependent parameter θ3,m(kc) as

ur,m,i(kc + 1) =ur,ref,m(kc)

+ θ3,m(kc)f3,m(ρme,m,i(kc), ρcr,m) (21)

where ur,ref,m(kc) is the reference ramp metering rate and

f3,m(·) is a mapping.

The reference ramp metering rate ur,ref,m,i(kc) can be either

the maximum rate that results in desired flow or the rate

one control time step back. One possible specific on-ramp

controller is presented in the sequel.

B. On-ramp controller

With similar reasoning as in (18) and (19), for the on-ramp

control, we define the RHP ramp metering controller to be

ur,m,i(kc + 1) =ur,m,i(kc)

+ θ3,m(kc)
ρcr,m − ρme,m,i(kc)

ρcr,m
. (22)

In this controller, the reference ur,ref,m,i(kc) is taken to be the

ramp metering rate one control time step back. The idea behind

the structure of the controller is the same as that of ALINEA

[26]. In the RHP approach, θ3,m(kc) is updated every control

time step and it is optimized on-line, while in ALINEA the

parameter is optimized off-line and is constant irrespective of

the prevailing traffic conditions.

Similar to the speed limit control, the ramp metering rate

is also constrained as 0 ≤ ur,m,i(kc + 1) ≤ 1, which can be

recast as a constraint on the parameter θ3,m(kc).

2This is so for the second option in Section IV-A. But, if option 1 or 3 in
Section IV-A are used, the number of parameter can be lower than 3×Np.

VII. CASE STUDY

A. Freeway stretch

The freeway stretch that we consider to illustrate the pro-

posed control approach is a part of the Dutch A12 freeway

going from the connection with the N11 at Bodegraven up to

Harmelen, and is shown in Fig. 3. The freeway has three lanes

in each direction. The part that we consider is approximately

14650 m long and it has two on-ramps and three off-ramps.

The stretch is equipped with double-loop detectors at a typical

distance of 500 to 600 m, measuring the average speed and

flow every minute. It has 24 segments, each equipped with

a dynamic speed limit. In [15] real-life data of the freeway

has been used to calibrate the METANET model. In our case

study we will use the parameters that have been obtained in

[15].

B. Control objective

We define our objective function as a weighted sum of the

following traffic performance measures: travel time, emissions,

and the variance in the control signals (because fast and big

changes in the control signals can increase the nervousness

of the drivers.)Mathematically, the objective function as com-

puted based on the prediction model is given by

J(kc) = α1
TTS(kc)

TTSn
+ α2TE(kc) + α3

∆(kc)

∆n
(23)

where α1, α2, and α3 are weighting factors, and

TTS(kc) = T
∑

k∈K(kc,Np)





∑

(m,i)∈Iall

λmLmρm,i(k) +
∑

o∈Oall

wo(k)



 ,

TE(kc) =
∑

y∈Y

µy

Jy(kc)

Jy,n
, Jy(kc) =

∑

k∈K(kc,Np)

J tot
y (k),

∆(kc) =

kc+Np−1
∑

ℓ=kc

[

∑

s∈Sall

αs

(

us(ℓ)− us(ℓ− 1)
)2

+
∑

(s1,s2)∈Pall

αcs

(

us1(ℓ)− us2(ℓ)
)2

+
∑

r∈Rall

αr

(

ur(ℓ)− ur(ℓ− 1)
)2

]

with J tot
y (k) denoting the sum of the emissions given by (12)

and (13), K(kc, Np) denoting the set defined as K(kc, Np) =
{Mkc, . . . ,M(kc +Np)− 1}, µy denoting the weights of the

emissions and fuel consumption (in particular we consider

µy = 1 in our case study), Iall denoting the set of all

segments of links in the traffic network, Oall denoting the

set of all origins in the traffic network, Sall denoting the

set of all speed limits, Pall denoting pairs of consecutive

speed limits, Rall denoting the set of all controlled on ramps,

αs = (#(Sall)v
2
step)

−1, αcs = (#(Pall)v
2
step)

−1, and αr =
(#(Rall))

−1 are respectively the normalization factors of the

variation of the speed limits over time, the variation speed

limits in space, and the variation of the ramp metering rate

over time, #(·) denoting the set cardinality, and the subscript

‘n’ denoting the nominal value of the quantities TTS, Jy, and
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Fig. 3. A part of the Dutch A12 highway considered in the case study.

∆. For our case study, the nominal values of TTS and Jy are

computed by simulating the uncontrolled traffic system (which

is equivalent to a control system with all speed limits set to

vfree,m = 120 km/h and all ramp metering rates equal to 1).

The nominal value for ∆ is equal to Np.

C. Optimization

In this particular case study we use the first approach of the

RHP control strategy of Section IV-A, where the parameters of

the control policy are maintained constant over the prediction

horizon Np. This means that the number of optimization

variables is equal to the number of the controller parameters

θm(kc), i.e. 4.

We use the upper speed limit Lu,m = vref,m = 120 km/h

and the lower speed limit Ll,m = 40 km/h. The ramp metering

rate is also constrained 0 ≤ ur(k) ≤ 1. To solve the

optimization problem we use multi-start SQP. We use 5 initial

starting points of which 1 is random, while the rest consists

of the lower bounds of the optimization variables, the upper

bounds, the average of the lower and upper bounds, and the

one time- step forward-shifted version of the solution of the

previous optimization step.

D. Comparison of conventional MPC and RHP

In order to compare the conventional MPC (cMPC) and

RHP traffic controllers, we simulate the case study for three

different sets of weights for the performance measures of the

objective function given in (23). Since our main objective is

to optimize the control measures such that the TTS or TE can

be reduced, we assign smaller value for α3 than α1 and α2.

In this way the fluctuation of the control measures over time

and space is not overemphasized. For all the cases the weight

of the control input α3 is assigned the same value, and it is

equal to α3 = 0.01. The three cases considered to compare

the cMPC and RHP are:

1) α1 = 1 and α2 = 0, i.e., the focus of the controllers is

to reduce only the total time spent (TTS).

2) α1 = 0 and α2 = 1. In this case the focus of the

controllers is to reduce the total emissions (TE).

3) α1 = 9 and α2 = 1, i.e., the controllers will focus on

the reduction of the TTS and the TE with a different

degree of emphasis. This combination should result in a

balanced trade-off between travel time and emissions.

The 24 speed limits of the freeway stretch are coupled in

groups of three, where each speed limit control in the group

is assigned the same value (see Fig. 3). Thus there are 8

variable speed limit values. Moreover, the two ramp meters are

controlled independently. Thus, in total there are 10 (8 speed

limit values and 2 ramp metering rates) control variables. This

means that the number of the optimization variables of the

cMPC controller is 10 × Nc per control time step. For the

RHP controller we use the control laws given in (20) and

(22). Thus, due to the parameterization of control inputs, the

RHP controller will have 4×Nc optimization variables.

We consider the traffic flow in one direction (from left to

right in Fig. 3). We use Tc = 60 s, Np = 15 control time

steps (15 min), Nc = 10 control time steps (10 min), and T =
10 s. We simulate the evolution of the case study over 1 h

of the real system. Moreover, the conventional MPC (cMPC)

is also simulated under constrained optimization time, where

the cMPC is allowed to optimize the traffic control variable

as long as the computation time is less than the control time

step. This option is called constrained optimization time cMPC

(COT-cMPC).

The results of the simulations of the three cases are pre-

sented in Table I. The results give the values of each per-

formance indicator for each controlled case. For comparison

reasons, Table I presents the simulation results of the cMPC,

COT-cMPC, and the RHP controllers. It can be seen that

the performance measures (TTS and TE) for the cMPC and

RHP control approaches is almost the same for the three

different combinations of weights. However, the difference in

the average computation time (CPU Time) per control step

of the cMPC and RHP controllers is significant. The RHP

controller improves the computation times of all cases by

more than 96%. Note, however, that it is possible that the

performance (in terms of TTS or TE) of the RHP controller can

be worse than the performance of the cMPC controller as the

RHP controller is an approximation of the cMPC controller.

In the case where the computation time of the cMPC

controller is not allowed to exceed the control time step Tc, the

COT-cMPC controller performs badly. In all the three cases

presented in Table I, the TTS is worst than the uncontrolled

case. The simulation results presented in Fig. 7 also conform

to these results.

Moreover, the on-ramp queue length produced under the

RHP and cMPC TTS-controlled scenarios and for the uncon-

trolled scenario are plotted in Fig. 4. The plots show that
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TABLE I
SIMULATION RESULTS FOR THE CONVENTIONAL MPC (CMPC) TRAFFIC

CONTROLLER AND THE RHP TRAFFIC CONTROLLER.

Objective Controller
Performance measures

TTS TE CPU Time
(veh·h) (kg) (seconds)

Uncontrolled — 1045.8 219.5 0.0

TTS
RHP 841.0 216.9 10.9

cMPC 811.5 230.5 375.2
COT-cMPC 1295.2 164.5 60.0

TE
RHP 2377.5 82.7 25.7

cMPC 2283.1 92.0 1862.7
COT-cMPC 1317.5 153.5 60.0

9TTS+TE
RHP 842.7 213.9 40.4

cMPC 807.4 214.0 1809.3
COT-cMPC 1271.6 148.4 60.0
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Fig. 4. On-ramp queue length of TTS controlled scenarios.

the queue-length formed using either the RHP or the cMPC

controllers are almost the same for this particular case study.

The control inputs of the two controllers are also plotted in

Fig. 6 for the TTS-controlled case. Fig. 6 shows no relation

between the control inputs generated by the RHP controller

and the control inputs of the cMPC controller. The variation

of the parameters of the RHP controller that resulted in the

control inputs in Fig. 6 are also depicted in Fig. 5. One can

clearly see that the variation of the parameters and the control

inputs are not explainable. At the same time, for the same

parameter the control inputs of each segment are different

(compare Fig. 6 and Fig. 5). Due to limited space, the queue

length, control inputs, and parameters of the different control

scenarios are not displayed.

E. RHP and cMPC under varying weightings

Furthermore, we use the RHP, cMPC, and COT-cMPC

controllers to simulate several possible weight combinations

of the TTS and the TE. We consider the relation α2 = 10−α1,

where α1 = 0, 1, 2, ..., 10, and α3 = 0.01. The results of the

simulation for the different weight combinations are depicted
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Fig. 5. The parameters of the RHP controller for TTS controlled case.

in Fig. 7. The figure provides the percentage reduction or

increment of the TTS and TE as the weights vary.

The figure shows that the TTS can be reduced by a factor

of more than 19% and the TE by less than 2% when the

focus of the RHP controller is on TTS (α1 = 10, α2 = 0)

only. Moreover, it shows that the TE can be reduced by more

than 58% if the focus of the RHP controller is on TE (α1 = 0,

α2 = 10) only, but then the TTS increases by more than 120%.

The figure also indicates that a reduction of more than 30%

in emissions can be attained without affecting the travel time

if the relative weight of the TTS is about α1 = 4 while the

TE has a weight of α2 = 6 when the controller is RHP and

if the relative weight of the TTS is about α1 = 2.5 while the

TE has a weight of α2 = 7.5 when the controller is cMPC.

Although the performance of the cMPC controller under

the unlimited computation time is almost similar even in

many of the cases better than the RHP controller, the COT-

cMPC performs worst than the RHP controller. In all the

cases, the performance of the COT-cMPC is worst than even

the uncontrolled scenario. In this particular case study, the

results show that limiting the optimization time of the cMPC

controller can negatively impact the traffic flow. However, with

the use of RHP and with appropriate definition of the control

laws, the computation time can be reduced significantly while

the performance of the controller is negligibly degraded.

VIII. CONCLUSIONS

We have presented a new traffic control approach (called

rolling-horizon parameterized (RHP) traffic control) that con-

siders the prevailing traffic conditions and the consequences

of its control actions to optimize the performance of the traffic

network. We have discussed the general philosophy behind the

RHP approach and its possible derivatives. Since the presented

control strategy is general, we have selected a specific model

class, in particular macroscopic models, in order to illustrate

how to design and use the controller for traffic systems. In

this respect, we have given a general description of variable

speed limit control and ramp metering control design strategies

derived from a general RHP problem formulation.

We have demonstrated the control approach for a simulation

based case study on a part of the Dutch A12 freeway. With this

case study we have compared the performance of the proposed

RHP controller with the conventional MPC controller. The

comparison shows that the RHP controller results in a perfor-

mance that is almost the same as that of conventional MPC,

while it only requires very low computation times, which is

important for the realization of the controller in practice.

We will also extend the proposed control strategy to in-

clude the dispersion of emissions as additional performance

criterion, we will use other traffic control measures, and we

will consider other more complex case studies.
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