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Abstract

We propose a distributed optimization algorithm for mixed £1/L2-norm optimization based on accelerated gradient methods
using dual decomposition. The algorithm achieves convergence rate O(k%), where k is the iteration number, which significantly
improves the convergence rates of existing duality-based distributed optimization algorithms that achieve O(%) The perfor-
mance of the developed algorithm is evaluated on randomly generated optimization problems arising in distributed model
predictive control (DMPC). The evaluation shows that, when the problem data is sparse and large-scale, our algorithm can
outperform current state-of-the-art optimization software CPLEX and MOSEK.
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1 Introduction

Gradient-based optimization methods are known for
their simplicity and low complexity within each itera-
tion. A limitation of classical gradient-based methods is
the slow rate of convergence. It can be shown [3], [20]
that for functions with a Lipschitz-continuous gradient,
i.e., smooth functions, classical gradient-based methods
converge at a rate of O(), where k is the iteration
number. In [16] it was shown that a lower bound on the
convergence rate for gradient-based methods is O(7%).
Nesterov showed in his work [17] that an accelerated
gradient algorithm can be constructed such that this
lower bound on the convergence rate is achieved when
minimizing unconstrained smooth functions. This re-
sult has been extended and generalized in several pub-
lications to handle constrained smooth problems and
smooth problems with an additional non-smooth term
[18], [19], [2] and [24]. Gradient-based methods are suit-
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able for distributed optimization when they are used in
combination with dual decomposition techniques.

Dual decomposition is a well-established concept since
around 1960 when Uzawa’s algorithm [1] was presented.
Similar ideas were exploited in large-scale optimization
[6]. Over the next decades, methods for decomposition
and coordination of dynamic systems were developed
and refined [9], [13], [23] and used in large-scale applica-
tions [5]. In [25] a distributed asynchronous method was
studied. More recently dual decomposition has been ap-
plied in the distributed model predictive control litera-
ture in [7], [8], [11] and [15] for problems with a strongly
convex quadratic cost and arbitrary linear constraints.
The above mentioned methods rely on gradient-based
optimization, which suffers from slow convergence prop-
erties O(%) Also the step size parameter in the gradient
scheme must be chosen appropriately to get good perfor-
mance. Such information has not been provided or has
been chosen conservatively in these publications.

In this work, we improve on the previously presented
distributed optimization methods by using an acceler-
ated gradient method to solve the dual problem instead
of a classical gradient method. We also extend the class
of problems considered by allowing an additional sparse
but non-separable 1-norm penalty. Such 1-norm terms
are used as regularization term or as penalty for soft con-



straints [22]. Further, we provide the optimal step size
parameter for the algorithm, which is crucial for per-
formance. The convergence rate for the dual function
value using the accelerated gradient method is implic-
itly known from [2], [24]. However, the convergence rate
in the dual function value does not indicate the rate at
which the primal iterate approaches the primal optimal
solution. In this paper we also provide convergence rate
results for the primal variables.

Related to our work is the method presented in [14] for
systems with a (non-strongly) convex cost. It is based on
the smoothing technique presented by Nesterov in [19].
Other relevant work is presented in [12], [21] in which op-
timization problems arising in model predictive control
(MPCQ) are solved in a centralized fashion using accel-
erated gradient methods. These methods are, however,
restricted to handle only box-constraints on the control
signals.

To evaluate the proposed distributed algorithm, we solve
randomly generated large-scale and sparse optimization
problems arising in distributed MPC and compare the
execution times to state-of-the-art optimization soft-
ware for large-scale optimization, in particular CPLEX
and MOSEK. We also evaluate the performance loss
obtained when suboptimal step lengths are used.

The paper is organized as follows. In Section 2, the prob-
lem setup is introduced. The dual problem to be solved
is introduced in Section 3 and some properties of the
dual function are presented. The distributed solution al-
gorithm for the dual problem is presented in Section 4.
In Section 5 a numerical example is provided, followed
by conclusions drawn in Section 6.

2 Problem setup

In this paper we present a distributed algorithm for op-
timization problems with cost functions of the form

1
J(2) = ga"He + 9"z + 5| Pr = plh- (1)
The full decision vector, x € R"™, is composed of local de-
cision vectors, z; € R accordingtoz = [z7,...,27,]7.

The quadratic cost matrix H € R™*" is assumed separa-
ble, i.e., H = blkdiag(H1, ..., Hy) where H; € R™*™i,
Further, H is assumed positive definite with o(H)I =<
H < 5(H)I, where 0 < g(H) < 6(H) < c0. The linear
part g € R™ consists of local parts, g = [¢7,...,9%,]T
where ¢g; € R™. Further, P € R"™*™ is composed of
P =[Py,...,Py,)T, where each P, = [P],...,PL,|T €
R™ and P,; € R™. We do not assume that the matrix
P should be block-diagonal which means that the cost
function J is not separable. However, we assume that
the vectors P, have sparse structure. Sparsity refers to
the property that for each r» € {1,...,m} there exist

some i € {1,..., M} such that P.; = 0. We also have
p = [p1,...,pm]T and v > 0. This gives the following
equivalent formulation of (1)

M m M
1
J@) =3 [2xiTHixi + giTxi] S Pl
i=1 r=11|11=1

(2)
Minimization of (1) is subject to linear equality and in-
equality constraints

Arx = By, Asx < By

where 4; € R7*™ and Ay € RE~9DX" contain a; € R” as
A = [aq,... ,aq]T and Ay = [ag41, ... ,as]T. Further,
each aq; = [alq;, .. ,alTM]T where a;; € R™. Further we
have By € R? and By € R*9 where By = [by,...,by|"
and By = [bgi1,...,bs]7. We assume that the matri-
ces A1 and A, are sparse. By introducing the auxiliary
variables y and the constraint Pxr — p = y we get the
following optimization problem

min %xTH;v + g%z + 9|yl

z,y

s.t. Alx = Bl (3)
AQiL’ S BQ
Pr—p=y.

The objective of the optimization routine is to solve
(3) in a distributed fashion using several computational
units, where each computational unit computes the op-
timal local variables, denoted 7, only. Each computa-
tional unit is assigned a number of constraints in (3) for
which it is responsible. We denote the set of equality
constraints that unit 4 is responsible for by £}, the set of
inequality constraints by £7 and the set of constraints
originating from the 1-norm by R;. This division is obvi-
ously not unique but all constraints should be assigned
to one computational unit. Further for [ € £} and | € £?
we require that a;; # 0 and for r € R; that P,.; # 0. Now
we are ready to define two sets of neighbors to compu-
tational unit 4

No={je{l,...,M}| 3l €Llst.ay#0
ordl € L?st. a;#0
or Ir € R; s.t. Py # 0},
, M} Hleﬁ} s.t.a; #0
or 3l € [,? s.t.a;; #0
or dr € R;s.t. Py # O}.

Mi:{jG{l,...



Through the introduction of these sets, the constraints
that are assigned to unit ¢ can equivalently be written as

alz=b Z alzjj =y, le L] (4)
JEN;

alr<b & Z aj;x; < by, lel; (5
JEN;

and the 1-norm term can equivalently be written as

|PTz—p,| = ‘ > Plaj—p.
JEN;

s reR;. (6)

In the following section, the dual function to be maxi-
mized is introduced. First, we state an assumption that
will be useful in the continuation of the paper.

Assumption 1 We assume that there exists a vector &
such that A1T = by and AT < by. Further, we assume
that a;,l = 1,...,q and P.,v = 1,....,m are linearly
independent.

Remark 2 Assumption 1 is known as the Mangasarian-
Fromovitz constraint qualification (MFCQ). In [10] it
was shown that MFCQ is equivalent to the set of opti-
mal dual variables being bounded. For convex problems,
MFCQ is equivalent to Slater’s constraint qualification
with the additional requirement that the vectors defining
the equality constraints should be linearly independent.

3 Dual problem

In this section we introduce a dual problem to (3) from
which the primal solution can be obtained. We show that
this dual problem has the properties required to apply
accelerated gradient methods.

3.1  Formulation of the dual problem

We introduce Lagrange multipliers, A\ € R?, u € R,

v € R™ for the constraints in (3). Under Assumption 1
it is well known (cf. [4, §5.2.3]) that there is no duality
gap and we get the following dual problem

. 1
sup inf {;UTHx + g7z + 4|yl + AT (A — By)+
Au=0p Ty 2

+uT<A2x—BQ>+vT<Px—p—y>}. (7)

After rearranging the terms we get

1
sup { inf [(AIT)\ + AT+ PTv 4 g)Ta + mTHx}
A0 | @ 2
(8)

~M'B, —u"By —vTp+ inlf [Yllylli — v"y] }

The infimum over y can be solved explicitly

-y {gl]g (ol - [u]i[ym}
{ 0 if |[v]lse <

irylf{'yHyHl —vTy} = inf {Z (vI[ylil — [V]i[yh)}

—oo  else

where []; denotes the i-th element in the vector. The
infimum over y becomes a box-constraint for the dual
variables v. This is a crucial observation for distribution
reasons.

Before we explicitly solve the minimization over z in (8)
the following notation is introduced

A=[AT A7 PTI" B=[B{ By p"]" z=D" """

where A € RGstm)xn B e R+™ and z € RT™. We also
introduce the set of feasible dual variables

z1 €R led{l,....q}
Z = Zz€RT™ | >0 le{g+1,...,s}
|zl <~y le{s+1,....,s+m}

(9)
The minimization over z in (8) can be solved explicitly

inf [(ATZ +9) 'z + ;xTHx} =
= ATz ) H (A2 4 g)

and we get the following dual problem

sup { — %(ATZ + ) TH Y (A 2 +g) — BTz}. (10)
z€Z

We introduce the following definition of the negative
dual function

F(2) = 5 (AT2 4 ) H ™ (AT2 4 g) + B

Since f consists of a quadratic term with positive
semidefinite hessian and a linear term, f is differentiable
and has the following gradient

Vi(z)=AH YAz +g) + B. (11)
Further, from the min-max theorem we have that

the smallest Lipschitz constant, L, to Vf is L =
|AHTAT 5.



4 Distributed optimization algorithm

In this section we show how the accelerated gradient
method can be used to distributively solve (3) by min-
imizing the negative dual function f. The accelerated
proximal gradient method for problem (10) is defined by
the following iteration as presented in [24, Algorithm 2]
and [2, Eq. 4.1-4.3]

k_ ok R=1 ke
vt =20+ T2 (2" =271 (12)
FH=p, (vk — in(vk)) (13)

where Pz is the Euclidean projection onto the set Z.
Thus, the new iterate, z*1, is the previous iterate plus
a step in the negative gradient direction projected onto
the feasible set.

We define the primal iteration ¥ = H~'(—AT2F — g).
Using this definition, straightforward insertion of v* into
(11) gives

Vi) =-A (:Ck + Z:L;(xk —xk_l)) +B

By defining z* = 2% + %(wk — 2*~1) and recalling the

partition z = [AT p? vT]T and the definition (9) of the
set Z, we find that (12)-(13) can be parallelized:

o = H Y (—ATZF — g) (14)
-1 ,
e k+2(xk —zhh (15)
AP =k E(/\’“ — A 4 l(aTaz’c —b) (16)
l - M k;+2 l l L 1 1}
, k—1 -
pptt = max {0, uf + m(#f — )+
1
+ E(G;‘Fﬂ?k b))} (A7)
k—
vF — min {r,max [ — v, vk + T 2(1/7’,C — N+
1
F LT - p]). (19

From these iterations it is not obvious that the algorithm
is distributed. By partitioning the constraint matrix as

A=[An..., Ayl

where each A; = [a1,...,asi, Pliy---, Pmi]t €
R+m)xmi - and noting that H is block-diagonal, the
local primal variables are updated according to

i = H ' (= A"~ gi) (19)
= —H%.*1 [gi + Z |: Z a“)\f + Z ali,u,éc -+ Z Priyf:H
JEMi TieL] lec? reR;

Thus, each local primal update, aci?, can be computed
after communication with neighbors j € M;. Through
(4)-(6) we note that the dual variable iterations can be
updated after communication with neighbors i € N;. We
get the following distributed algorithm.

Algorithm 1 Distributed accelerated gradient al-
gorithm

1 1

Initialize \* =21, 00 = = 1,00 = v and 20 = 2~
In every node, i, the following computations are per-
formed:

For k>0

(1) Compute z¥ according to (19) and set

k—1
k_ k k k—1
xz_x1+k+2( )

(2) Send z¥ to each j € M,, receive i;“ from each
jEN;

(3) Compute \J™ according to (16), (4) forl € L}
Compute puyt* according to (17), (5) forl € L2
Compute v according to (18), (6) forl € R,

(4) Send {/\fﬂ}zeﬁgv{ﬂfﬂ}lecf; {vit Y rer, to each
j €N,
receive. (N ieer, i e and {04} er,
from each j € M,

The convergence rates for the dual function f and the
primal variables when running Algorithm 1 are stated
in the following theorem.

Theorem 3 Algorithm 1 has the following convergence
rate properties:

(1) Denote an optimizer of the dual problem (10) as z*.
The convergence rate is:

2L|=° — =*|13

JE) = 1) < =gy k=1 (20)

(2) Denote the unique optimizer of the primal problem
as x*. The rate of convergence for the primal vari-
able is

AL|2° — 2*|I3

k _ x 2 <

VE>1  (21)



PROOF. Algorithm 1 is a distributed implementation
of [24, Algorithm 2] and [2, Eq. 4.1-4.3] applied to mini-
mize f. The convergence rate in argument 1 follows from
[24, Proposition 2| and [2, Theorem 4.4].

For argument 2 we get that the necessary and sufficient
KKT conditions [4, p. 244] implies 2* = H (- AT z* —
g) since H is invertible. This leads to

lo* = 2|5 = [ H(AT=" = ATZ9)|3

<[l ATE - AT

_ O.(]'I{) (Zk _Z*)TAHflAT(Zk o Z*)
— 0(;{) ((Zk)TAH—lATZk _ (Z*)TAH—lATZ*_

—2(AH YA )T (2F — %)+
+ 2B+ AH 1g)T(2F — 2% 4 2 — z*)>

2 (i e
— (- s

C(AH AT 1 g) + BT z*>)

_ 2 2FY — r(e*) — T (G
= ot VEH = £ = VA )
2 4L)|2° — 2*||3

where the first inequality comes from the min-max the-
orem, the equalities are algebra with addition of some
zero-terms, the first inequality in the final row is from
the first-order optimality condition [20, Theorem 2.2.5],
and the final inequality is due to (20). This completes
the proof.

5 Numerical example

In this section we evaluate the performance of Algo-
rithm 1. We compare the presented algorithm to state-of-
the-art centralized optimization software for large-scale
optimization implemented in C, namely CPLEX and
MOSEK. We also evaluate the performance loss when us-
ing suboptimal step sizes. Our algorithm is implemented
on a single processor to be able to compare execution
times.

The comparison is made on 100 random optimization
problems arising in distributed MPC. A batch of ran-
dom stable controllable dynamical systems with random
structure and random initial conditions are created. The
sparsity fraction, i.e., the fraction of non-zero elements in
the dynamics matrix and the input matrix, is chosen to
be 0.1. We have random inequality constraints that are
generated to guarantee a feasible solution and a 1-norm

cost where the P-matrix and p-vector are randomly cho-
sen. The quadratic cost matrices are chosen () = I and
R = I. Table 1 shows the numerical results obtained
running MATLAB on a Linux PC with a 3 GHz Intel
Core i7 processor and 4 GB memory. The optimization
software used is CPLEX V12.2 and MOSEK 6.0.0.114
that are accessed via the provided MATLAB interfaces.

Table 1

Algorithm comparison with 1-norm cost term and random
state and input constraints. Algorithm 1 is implemented in
MATLAB while CPLEX and MOSEK are implemented in
C.

Alg. vars./constr. | tol. # iters exec (ms)
mean | max | mean | max
1(L) 4320/3231 0.005 | 69.8 160 253 609
1 (L1) 4320/3231 0.005 160 420 594 1532
1 (Lr) 4320/3231 0.005 248 640 934 2444
MOSEK 4320/3231 - - - 1945 | 2674
CPLEX 4320/3231 0.005 - - 1663 | 2832
1(L) 2160/1647 0.005 | 63.8 100 94 200
1 (L) 2160/1647 0.005 | 75.8 180 115 368
1(Lp) | 2160/1647 | 0.005 | 121 | 320 | 185 | 488
MOSEK 2160/1647 - - - 334 399

CPLEX 2160/1647 0.005 - - 282 522

The first column specifies the algorithm used where
Algorithm 1 is supplemented with the step size used.
L is the optimal step size L = ||[AH AT, Lr =
| AHA | and Ly = /[AHLAT],[JAH T AT..
We compare to the suboptimal step sizes L; and Lp
since they can be computed in distributed fashion. The
step sizes satisfy L. < L; and L < Lg. The second col-
umn specifies the number of variables and constraints
in the optimization problems. In the third column we
have information about the duality gap tolerance that
is used as stopping condition in the algorithms (if possi-
ble to set). The two final columns present the results in
terms of number of iterations and execution time. The
difference between the upper and lower halves of the
table is the size of the problems that are solved.

Table 1 reveals that Algorithm 1 performs better than
CPLEX and MOSEK on these large-scale sparse prob-
lems despite the fact that CPLEX and MOSEK are im-
plemented in C and Algorithm 1 is implemented in MAT-
LAB. We also conclude that the choice of step size in
Algorithm 1 is important for performance reasons.

6 Conclusions

We have presented a distributed optimization algorithm
for strongly convex optimization problems with sparse
problem data. The algorithm is based on an accelerated
gradient method that is applied to the dual problem. The



algorithm was applied to large-scale sparse optimization
problems originating from a distributed model predic-
tive control formulation. Our algorithm performed bet-
ter than state-of-the-art optimization software for large-
scale sparse optimization, namely CPLEX and MOSEK,
on these problems.
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