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Integrated Model Predictive Traffic and Emission

Control Using a Piecewise-Affine Approach
Noortje Groot, Student Member, IEEE, Bart De Schutter, Senior Member, IEEE, and Hans Hellendoorn

Abstract—This paper addresses the computational intractabil-
ity of traffic control when applying the integrated METANET
freeway traffic model and the VT-macro emission model in
a model-based predictive control (MPC) framework. In order
to facilitate real-time implementation, a piecewise-affine (PWA)
approximation of the nonlinear METANET model is proposed.
While a direct MPC approach based on the full PWA model
is intractable for on-line applications, a conversion to a mixed-
logical dynamic (MLD) model description is made instead. The
resulting MLD-MPC problem, written as a mixed-integer linear
program, can be solved much more efficiently as it does not
explicitly state all model equations for each particular region.
As a benchmark, the computational efficiency and accuracy of
the MLD-MPC approach is tested on a case study including
variable speed limits and a metered on-ramp while optimizing
the total time spent, as well as taking into account emissions and
fuel consumption of the vehicles. The performance is evaluated
against the original nonlinear and nonconvex MPC problem and
shows an improved computational speed at the cost of some
deviation in the cost function values.

Index Terms—Emission control, model-based predictive con-
trol (MPC), piecewise linear approximation, ramp metering,
variable speed limits

I. INTRODUCTION

IN the model-based control of large-scale traffic networks

it is important to adopt a modeling framework that is both

accurate and that yields a fast solution when incorporated with

the optimization framework, in order to be able to apply on-

line traffic control. An often used model for freeways is the

second-order macroscopic METANET model [1]–[3]. Such a

model is commonly used as it has shown to provide good

accuracy while it does not require as much computation time

as microscopic traffic models that take individual vehicles into

account [4]. The main variables considered in METANET are

the density, flow, and average velocity of traffic. This model

can be complemented by the VT-macro model for vehicular

emission and fuel consumption [5].

As control framework, a well-known method is model-based

predictive control (MPC) [6], [7]. In the application of MPC to

traffic systems, based on measurements of the system, optimal

control inputs are computed, e.g., on-ramp metering rates and

variable speed limits that yield an optimal traffic throughput

based on both current and predicted, future state variables.

After the implementation of the first set of these control inputs

the process is repeated, which is referred to as the moving

horizon approach of MPC. MPC has often been adopted as
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it easily incorporates various constraints and adapts well to

uncertain systems and structural changes in the system due

to the moving horizon strategy. Additionally, the prediction

model can be adapted during the control process.

When using the METANET traffic flow model comple-

mented by the VT-macro emission and fuel consumption

model in combination with MPC in order to minimize the

total time spent (TTS) by traffic in the network as well as

to reduce the vehicular emissions, a nonlinear and nonconvex

optimization problem results. Such a problem can be solved

with global or multi-start local optimization [8]–[10]. How-

ever, this approach is subject to computational issues that

prevent the real-time implementation on traffic networks, and

a global optimum cannot be guaranteed. Hence, the main

objective we like to address is to develop an accurate yet

computationally efficient approach to applying MPC based on

the integrated METANET and VT-macro models. One way

to address this computational inefficiency is to approximate

the underlying model [11]. Other ways are to address the

optimization approach itself and reformulate, e.g., decompose

or distribute the problem solving [12], [13].

In the current paper, we focus on the underlying model

and propose to adopt a piecewise-affine (PWA) approximation

of the nonlinear elements within METANET and VT-macro.

Nonlinear functions can be approximated by PWA functions

with arbitrary accuracy, partitioning the function domain in

a finite number of polyhedra, each associated with an affine

function. Based on the PWA model, an iteration of the MPC

problem can then be more easily solved to optimality when

formulated as a mixed-integer linear program (MILP). How-

ever, since the class of integer programs is proven to be NP-

complete [14], attention should be paid to keeping the number

of binary variables caused by the PWA model formulation

small, as they increase the MILP’s complexity. At the same

time, the fewer such variables are allowed in the approximation

and thus the fewer the number of affine pieces, the larger the

discrepancy with the original function. In other words, it is

important to find a good trade-off between accuracy of the

approximation and computational complexity.

In earlier work, the intractability of MPC based on a fully

PWA model was pointed at, resulting from the large number

of regions that need to be considered in the integrated PWA

model for the entire traffic network [15]. Instead, applying

MPC based on a mixed-logical dynamic (MLD) description of

the PWA system showed encouraging results towards the real-

time application of MPC in traffic control with increased com-

putational gains when considering larger control and prediction

horizons. Details on methods to arrive at a PWA approximation
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of the METANET model can be found in [16], where several

levels of accuracy of the individual approximations were

evaluated. In the current paper, the superior performance of the

PWA-MPC method as compared to the original nonlinear MPC

is illustrated in the more encompassing context of integrated

speed limit and ramp metering controls, optimizing also the

vehicular emissions.

The remainder of this paper is organized as follows. In Sec-

tion II the original METANET traffic flow model is presented

together with the VT-macro model for vehicular emissions and

fuel consumption. Section III includes a description of the

MPC approach and the optimization objectives we propose for

traffic control. In Section IV we describe how the nonlinear

model equations can be approximated in a PWA manner

according one of the selected methods. Subsequently, it is

shown how the resulting PWA model can be recast as an

MLD model in order to arrive at a feasible MILP (Section

V). The proposed MLD-MPC approach is applied in the case

study of Section VI, where its performance w.r.t. accuracy

and computational speed is briefly analyzed. Conclusions and

recommendations are presented in Section VII.

II. THE METANET AND VT-MACRO MODELS

A. METANET

The original METANET model for traffic flows as devel-

oped by Papageorgiou and Messmer [1], [2] is discrete in

time and space. The traffic network can be described by a

graph with links representing homogeneous parts of a freeway,

separated by nodes representing changes like on-ramps and

the increase or decrease of the number of lanes. Links are

further divided into segments of equal distance. As regards

the discretization in time, typically a simulation time step Ts

of about 10 s is used, where t = kTs for a time instant t and

the corresponding time step counter k.

The evolution of traffic flow qm,i (veh/h), density ρm,i

(veh/km/lane) and space-mean speed vm,i (km/h) for segment

i of link m for time step k is described by:

qm,i(k) = λmρm,i(k)vm,i(k) (1)

ρm,i(k + 1) = ρm,i(k) +
Ts

Lmλm

[qm,i−1(k)− qm,i(k)] (2)

vm,i(k + 1) = vm,i(k) +
Ts

τ
[V [ρm,i(k)]− vm,i(k)]

+
Tsvm,i(k) [vm,i−1(k)− vm,i(k)]

Lm

−
Tsη [ρm,i+1(k)− ρm,i(k)]

τLm (ρm,i(k) + κ)
, (3)

with λm the number of lanes in link m, Lm the length of the

segments of link m (m), and η (km2/h), κ (veh/km/lane), and

τ (h) model parameters. Commonly used values of these and

other parameters are provided in Table I.

The desired speed V [ρm,i(k)] (km/h) is represented by:

V [ρm,i(k)] = min

[

vfree,m exp

[

−
1

am

(

ρm,i(k)

ρcr,m

)am
]

,

(1 + α)vctrl,m,i(k)

]

, (4)

where the second term applies in case of variable-speed control

on segment i of link m, where the speed limit is denoted by the

speed control variable vctrl,m,i(k) (km/h) [17]. Here, vfree,m
(km/h) denotes the free-flow speed and α is a factor set to

model the non-compliance of traffic participants to the speed

limit based on whether the limit is obligatory or recommended,

resulting in a lower respectively higher speed. Further, am is a

model parameter and ρcr,m (veh/km/lane) denotes the critical

density of a link m connected to the given origin.

Mainstream origins and on-ramps are modeled as a queue

where wo (veh) represents the queue length at origin o:

wo(k + 1) = wo(k) + Ts(do(k)− qo(k)). (5)

Here, do (veh/h) denotes the traffic demand and qo (veh/h) the

outflow of origin o:

qo(k) = min

[

do(k)+
wo(k)

Ts
, ro(k)Co,

Co

(

ρjam,m − ρm,1(k)

ρjam,m − ρcr,m

)]

, (6)

for a metered on-ramp with ramp-metering rate ro(k) ∈ [0, 1].
For non-metered on-ramps or mainstream origins the decision

variable ro(k) is set to one. Further, Co (veh/h) represents the

capacity of origin o and ρjam,m (veh/km/lane) represents the

maximum density of a link m connected to the given origin.

For the first segment of an outgoing link of each on-ramp

or origin, the following speed-drop factor is added to speed

equation (3) with δ as a model parameter:

−
δTsqo(k)vm,1(k)

Lmλm(ρm,1(k) + κ)
. (7)

As a final part of the model, equations should be added

that take into account the existence of multiple incoming and

outgoing links of the nodes and accordingly the distribution

of flow and density. The following two equations represent

the total flow Qn(k) (veh/h) entering a node n and the flow

qm,0(k) leaving n via link m:

Qn(k) =
∑

µ∈In

qµ,Nµ
(k) (8)

qm,0(k) = βn,m(k)Qn(k). (9)

Here, In denotes the set of links entering n, Nm the index of

the last segment of a link m that enters node n, and βn,m(k)
the fraction of the total flow to node n leaving via link m.

For a node with multiple outgoing links, the virtual down-

stream density ρm,Nm+1(k) (‘virtual’ due to the nonexistence

of a segment of index Nm + 1) of link m entering an origin

is modeled as:

ρm,Nm+1(k) =

∑

µ∈On
ρ2µ,1(k)

∑

µ∈On
ρµ,1(k)

, (10)

with On the set of outgoing links for node n.

Similarly, for a node with multiple incoming links, the

virtual upstream speed vm,0(k) of outgoing link m is modeled

as:

vm,0(k) =

∑

µ∈In
vµ,Nµ

(k)qµ,Nµ
(k)

∑

µ∈In
qµ,Nµ

(k)
. (11)
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TABLE I
METANET PARAMETER SETTINGS [2], [17]

Ts = 10 s κ = 40 veh/km/lane δ = 0.0122 η = 60 km2/h
τ = 18 s ρmax = 180 veh/km/lane am = 1.867 vfree = 102 km/h
Lm = 1 km ρcrit = 33.5 veh/km/lane α = 0.1

The METANET model can be further complemented to take

into account e.g., merges and drops of lanes and the resulting

speed drops, main-stream metering, or it can be adapted to

different models for dynamic speed limits [2], [10], [17], [18].

B. VT-macro Emission Model

In order to take into account emissions and fuel consump-

tion of the vehicles, the METANET model can be extended

with the equations of the VT-macro model. For more detailed

information on this model, the reader is referred to [5]. The

VT-macro model estimates traffic emissions and fuel consump-

tion using either the temporal or spatio-temporal accelerations

of vehicles. For instance, the spatio-temporal acceleration and

number of vehicles subject to it while moving from segment

i to the next segment i+ 1 of a link m are given by:

am,i,i+1(k)=
vm,i+1(k)− vm,i(k − 1)

Ts
(12)

nm,i,i+1(k)=Tsqm,i(k). (13)

Similar expressions apply to e.g., on-ramps, off-ramps, junc-

tions, etc. Slightly different, the temporal accelerations and

number of vehicles subject to it refer to the values of those

variables within the same segment i of a link m:

am,i(k) =
vm,i(k)− vm,i(k − 1)

Ts
(14)

nm,i(k) = Lmλmρm,i(k)− Tsqm,i(k). (15)

The vehicular emissions and fuel consumption become ap-

parent in the cost function of the traffic control problem when

minimizing the following expression for the total emissions [g]

or fuel consumption [l] within the time period [kTs, (k+1)Ts]:

Jγ,TEFC(k)=Ts

∑

ℓ∈Lall

nℓ(k) exp
(

v̆⊤ℓ (k)Pγ ăℓ(k)
)

, (16)

with the speed and acceleration vectors v̆⊤ℓ (k) =
[1 vℓ(k) v2ℓ (k) v3ℓ (k)] and ă⊤ℓ (k) = [1 aℓ(k) a2ℓ(k) a3ℓ(k)],
and with Lall the set of indices of all triples (aℓ, nℓ, vℓ) of

spatio-temporal or temporal accelerations and the correspond-

ing numbers of vehicles and speeds. Moreover, Pγ denotes the

model parameter for γ ∈ Γ = {CO emission, HC emission,

NOx emission, fuel consumption}. The values of the parameter

matrices Pγ can be found in [19]. Plots of the different

emission components can be found in Fig. 1.

III. MPC FOR TRAFFIC CONTROL

Using MPC [6], [7], based on measurements of the current

state variables at the control step kc, future states are predicted

for a prediction horizon of Np control steps, using the model

presented in the previous section. By optimization of the

objective function over this horizon, the sequence of optimal
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Fig. 1. Plots of the vehicular emissions and fuel consumption term
exp

(

v̆T
ℓ
Pγ ăℓ

)

in (16)

decision variables is determined. Implementing only the first

of these inputs, the procedure is repeated in a moving horizon

fashion for a simulation time horizon with a simulation time

step T and control time step Tc.

Amongst the possible optimization goals for traffic networks

are the maximization of traffic flow, spreading traffic density,

and minimizing the variation in control variables [17]. We

chose as our objective function the following linear combina-

tion of terms:

J(kc) = c1
JMPC
TTS (kc)

TTSnorm
+
∑

γ∈Γ

c2,γ
JMPC
γ,TEFC(kc)

TEFCγ,norm
+c3

JMPC
pen (kc)

pennorm
,

(17)

namely the minimization of the total time vehicles spend

in the system (TTS), i.e., the time vehicles wait at an on-

ramp or mainstream origin before joining the freeway plus

the time spent on the freeway, the traffic emissions and fuel

consumption, and a penalty term on the variations of the deci-

sion variables, respectively, weighted by nonnegative constants

c1, c2,γ , and c3. The three respective terms are normalized with

the nominal values TTSnorm, TEFCγ,norm, and pennorm,

which are obtained by considering the uncontrolled system.

To elaborate, the first objective term of the MPC controller

is to reduce the TTS over the prediction horizon Np, i.e.,

JMPC
TTS (kc)= Ts

∑

k∈K(kc,kc+Np)





∑

(m,i)∈Iall

Lmλmρm,i(k)+
∑

o∈Oall

wo(k)



.

(18)

Here, Iall denotes the set of index pairs (m, i) of all links

and segments in the network, and Oall denotes the set of

indices of all origins. Further, K(kc, kc+Np) = {Mkc,Mkc+
1, . . . ,M(kc+Np)−1} where M is such that Tc = MT . Note

that the TTS cost function term is linear in the state variables

ρm,i(k) and wo(k).
Further, the total vehicular emissions and fuel consumption

introduced in (16) are captured in the linear expression

JMPC
γ,TEFC(kc) =

∑

k∈K(kc,kc+Np)

Jγ,TEFC(k). (19)
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Hence, if a linearized expression for (16) is found, the emis-

sion and fuel consumption factors enter the objective function

linearly.

Finally, the penalty term on deviations of the decision

variables can be written:

JMPC
pen (kc)=

Nc−1
∑

j=1

{

∑

o∈Oall

|ro(kc + j)− ro(kc + j − 1)|+

aspeed
∑

(m,i)∈Call

|vctrl,m,i(kc + j)−vctrl,m,i(kc+ j−1)|

}

,

(20)

where aspeed is a nonnegative weighting coefficient and where

Call is the set of all pairs of indices (m, i) of links and

segments in which a variable speed limit is applied. In order to

reduce the number of decision variables often a control horizon

Nc < Np is introduced and from control step kc + Nc − 1
onwards the control signals are taken to be constant. Note

that instead of a 1-norm, alternatively a quadratic penalty term

could be adopted. This penalty term can be transformed into

a linear form, such that the overall objective function is linear

and convex. This transformation, for which some additional

real-valued auxiliary variables need to be introduced, will be

explained in Section V.

All in all, given a linear expression for (16), the above MPC

objective is linear and convex, yet the underlying METANET

prediction model is nonlinear and nonconvex. As a result,

the optimization problem based on the original models is

intractable for real-life implementation. Hence, in order to

reduce the computation time, in the following, a PWA ap-

proximation of the METANET model is proposed.

IV. PWA APPROXIMATION

A function f : Ω → R
m is PWA if there exists a polyhedral

partition {Ωi}i∈I of Ω ⊆ R
n such that f is affine on each

polyhedron Ωi, i.e.,

f(x) = Aix+ bi ∀x ∈ Ωi, ∀i ∈ I, (21)

with Ai, bi constants. Here, a polyhedral partition of Ω rep-

resents a finite number of nonempty polyhedra {Ωi}i∈I :
∪i∈IΩi = Ω,Ωi ∩ Ωj = ∅ ∀i 6= j. For a continuous PWA

function we only require that int(Ωi) ∩ int(Ωj) = ∅ ∀i 6= j.

For more information on general PWA theory, see [20].

One can approximate a nonlinear function in a PWA manner

with arbitrary accuracy, i.e., by considering a sufficiently large

number of regions. However, as will be pointed out in Section

V, this comes at the cost of a larger computational burden if the

approximated model equation is to be applied in the eventual

optimization approach. Therefore, as a main consideration in

the PWA approximation, the number of affine pieces should be

kept small, while safeguarding a close match to the original

traffic model. In return for a less accurate model, one then

arrives at a PWA model description that is faster to deal with

in optimizations and which solution could alternatively be used

as an initial starting point for control when using the nonlinear

model.

In the remainder of this section a selection is provided of

possible methods to arrive at a PWA approximation. These

methods will subsequently be used for the approximation of

the nonlinear METANET equations in Section IV-B.

A. PWA Approximation Methods

Four approaches for PWA approximation of nonlinear func-

tions are least-squares optimization, PWA identification, (par-

tially) piecewise constant approximation, and PWA approxi-

mation of a multivariate function by reduction to separable

quadratic terms. Here it should be noted that there is a

large difference in complexity between the approximation of

single and multi-variable functions, both of which occur in

the METANET setting we consider in this paper. More in-

formation on the various available methods for PWA function

approximations can be found in [21] and [22].
1) Least-squares optimization: A well-known optimization-

based approximation approach comprises the minimization of

the squared error or difference between the original function

and the approximation curve. For single-variate nonlinear

functions this method is easy to apply and accurate. After

one specifies the desired number of regions or intervals of

the PWA function, both the optimal intervals and parameters

of the affine functions are determined using least-squares

optimization. Additionally, one may add positive weights to

parts of the function that especially require a high accuracy.

E.g., the following PWA problem may be solved in a least-

squares manner – here given for an approximation of a

function f defined on an interval [xmin, xmax] by a continuous

PWA function fPWA(x) with three intervals:

min
α,β,γ,δ,ǫ,ζ

∫ xmax

xmin

w(x) (fPWA(x)− f(x))
2
dx (22)

s.t.

fPWA(x)=























γ +
x− xmin

α− xmin
(δ − γ) for xmin ≤ x < α

δ +
x− α

β − α
(ǫ− δ) for α ≤ x < β

ǫ+ x−β
xmax−β

(ζ − ǫ) for β ≤ x ≤ xmax,

(23)

where w denotes a weighting function. Least-squares opti-

mization can be solved using e.g., a multi-start Gauss-Newton

or Levenberg-Marquardt approach [23].
2) Piecewise-affine identification: An alternative approach

is hybrid or piecewise-affine identification. Differently from

the previous method, PWA identification is a clustering al-

gorithm that returns a PWA approximation based on a set

of data points or discretized version of a model. Therefore,

this approach is especially useful for complex, multi-variate

functions. In general, the three available methods described

next create local data sets after which the clustering algorithm

creates local affine models by classifying the points. Similar

models are again grouped into clusters, depending on the

number of regions required [21].

Amongst the available methods for identification, the most

precise for bivariate identification is the algorithm Multicate-

gory Robust Linear Programming (MRLP) [24]. However, this

method is computationally expensive and generally works for

the identification of up to three polytopes based on up to 200

data points. This is due to the fact that one linear program

is solved to find boundaries of all regions simultaneously.

Alternatively, the clustering algorithms Support Vector Clas-

sification (SVC) and Proximal Support Vector Classification
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(PSVC) can be used, yet for multivariate estimation the

original domain of the variables may then not be completely

covered by the union of computed subregions. In contrast

to MRLP the SVC approach [25] solves several quadratic

programs in order to sequentially find boundaries between

two regions or half-spaces at a time. PSVC [26] is the most

time-efficient algorithm of the three and only requires a single

system of linear equations. Compared to the non-proximal

version, it assigns data points to the closest of two parallel

half-planes that are maximally separated, leading to a strongly

convex objective.

These algorithms are implemented in the Hybrid Identifi-

cation Toolbox (HIT) [27], a platform embedded within the

Multi-Parametric Toolbox for Matlab [28].

3) Partially piecewise-constant approximation: An approx-

imation approach for bivariate functions that uses relatively

few auxiliary variables is by segmentation of the domain of

one of the variables, where in each region or subdomain that

variable is assigned a constant value. In general, a bivariate

function f(x, y) can be approximated as follows. Assume that

based on the relative ranges xmax−xmin

xmax
and ymax−ymin

ymax
(in case

xmax = 0 or ymax = 0, only the numerator applies) or the

magnitude of the partial derivatives, variable x is selected to be

taken constant in each region. For a selection of N consecutive

intervals [xi, xi+1] for i = 1, . . . , N − 1 and with x1 = xmin,

xN = xmax, we can set e.g.,

f(x, y) ≈ f

(

xi + xi+1

2
, y

)

for x ∈ [xi, xi+1]. (24)

Now, if f is linear in y (as will be the case for several

functions appearing in the METANET model), this approach

results in a PWA approximation of f . Alternatively the least-

squares optimization approach discussed in Section IV-A1 can

be applied for each function f(xi+xi+1

2 , y).

Substitution of one of the variables can be seen as a

specific case of PWA approximation where instead of an affine

piece, a constant value is associated with each region of the

domain. Nonetheless, this piecewise-constant approach can

deliver adequate approximation results for some functions. In

the particular case that the approximated variable coincides

with the mean value of the region, no approximation error

applies, which is generally not the case for an approximation

derived from PWA identification. For single-variate functions

this partially piecewise-constant approach may also be applied,

but in general it is not very difficult to obtain a more accurate

PWA formulation for this class of functions.

4) PWA approximation by reduction: Finally, as proposed

in [29], [30], a bivariate term of the structure x · y, with

x, y ∈ R can be recast without approximation in the equivalent

form 1
4 [z

2
+−z2−], where two new real variables are introduced,

i.e., z+ := x+ y, z− := x− y. The PWA approximation now

reduces to replacing both quadratic terms z2+, z
2
− in a PWA

manner, for which any of the previous methods can be adopted.

Since these terms can be approximated independently, this ap-

proach results in a relatively small number of binary variables,

also if it would be extended to factors of higher order.
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B. PWA Approximation of METANET and VT-macro

In this section the nonlinear elements of the METANET

model are dealt with. In general, application-specific knowl-

edge could be applied in the approximation of model equa-

tions. In other words, information from other model equations

can facilitate the approximation, e.g., by weighting areas that

require a close match. When applied to this specific case, it

indeed pays off to make use of physical information, e.g., the

fundamental diagram of traffic flow depicted in Fig. 2 will

be used also in the approximation of other functions of the

METANET model.

First, note that (2), (5), and (6) do not need to be approx-

imated as the first two functions are already linear and the

latter equation is PWA. The remaining nonlinear terms can be

divided into three main groups:

1) Fundamental diagram: The first nonlinear term of (4)

corresponds to one of the fundamental diagrams of traffic flow

depicted in Fig. 2, which represent the equilibrium relations

between speed, flow, and density in a homogeneous part

of a freeway [31]. For this single-variate nonlinear term, a

least-squares approach is adopted as shown in Fig. 3. An

approximation in two affine pieces was applied, as this yielded

a good accuracy at a better efficiency as compared to a more

accurate division in three pieces. Since the second term in (4)

is a linear expression, a PWA fundamental diagram combined

with a variable speed limit leads to a PWA expression of the

desired speed equation.

2) Speed equation (3): Several variables that give rise to the

nonlinear terms in (3) are kept constant at a value determined

by historical data or equal to the currently measured value

for predictions in receding horizon. The accuracy can be

improved by adopting a sequence of different, predicted values

that varies for each simulation step, i.e., by using the values

of the state variables that result from a simulation of the

traffic prediction model, in which the optimal control sequence

consisting of Nc control inputs is considered. Alternatively,

a more exact approximation could be obtained using PWA
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Fig. 4. PWA approximation of flow equation (1) by hybrid identification
using the Hybrid Identification Toolbox [27]

identification or a piecewise-constant approach. However, the

improvement in approximation accuracy may not justify the

increase in computational complexity that this causes.

• vm,i(k)[vm,i−1(k) − vm,i(k)]. Here, the first velocity

variable vm,i−1(k) is substituted by a constant value.

Note that the absolute approximation error caused by this

method is relatively seen decreased due to the multipli-

cation of the replaced velocity by the relatively small

term Ts/Lm (2.78 ·10−3 h/km: refer to Table I for typical

values of the parameters used).

•
ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ
. As in the previous item, the density

term in the denominator is kept constant at a historically-

based value, according measurements, or it is determined

based on a sequence of predictions using the computed

control variables. Note that the multiplication factor

ηTs/τLm in the numerator is rather large (33.33 km/h),

as is the addition of κ = 40 veh/km/lane to the approxi-

mated variable in the denominator. Both aspects cause a

reduction to the effect of the error of the approximated

denominator w.r.t. the speed variable vm,i(k).
• Subtraction of the term (7). Final adaptations are made to

this speed-drop term by substituting the density variable

in the denominator by a constant value, combined with

the substitution of q0 ·vm,1 as in the PWA approximation

of the flow equation (1).

3) Flow equation (1): The bivariate equation modeling

traffic outflow can be approximated by PWA identification,

reduction to separable quadratic terms, and by a piecewise-

constant approach for one of the variables. When adopting

the latter method we choose to substitute the velocity variable

vm,i(k), having the smallest domain, by the mean value of

each subdomain, transforming (1) into:

qm,i(k)=λmρm,i(k)
vj + vj+1

2
for vm,i(k)∈ [vj , vj+1]. (25)

Here, the intervals [vj , vj+1] can be chosen individually by

taking into consideration the shape of the function or deter-

mined in a more sophisticated way by using optimization.

In the approximation of (1) it is further important to take

into account the shape of the fundamental diagram shown in

Fig. 2(a) and (b). To be more precise, in order to increase

0
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Fig. 5. Domain and proposed regions of the PWA approximation of NOx

the accuracy of the approximation while keeping the set of

auxiliary variables small one can put additional weight on data

points where a small error is important. Looking at the shape

of the fundamental diagram, it can be inferred that a situation

of close-to maximum density and speed simultaneously is

not likely to occur in real life. Therefore, the focus should

be on a good match in the area around the function values

as determined by the fundamental diagram. The final PWA

approximation by PWA identification can be seen in Fig. 4.

Here it should be noted that in both approximation meth-

ods, the relative approximation error of the flow variable

qm,i(k) is of the same order as the approximation error in

ρm,i(k)vm,i(k) (PWA identification) or in vm,i(k) (piecewise-

constant approach). To further put the error in perspective, it

should be noted that the flow variable occurs in the density

function (2), where the difference qm,i−1(k)−qm,i(k) between

consecutive segments is multiplied by the relatively small

constant Ts/λmLm (1.39 · 10−3 h/km for λm = 2). Hence,

approximation errors of (1) are relatively seen reduced when

considering the complete METANET model. On the other

hand, it should not be forgotten that errors are re-used in

different segments of the model and that by the iterative nature

of MPC, errors re-appear also in variables for later time steps

of the prediction horizon.

Finally, note that the on-ramp flow equation (6) is already

PWA, which means that together with the originally linear

equations (2), (5), (12), and (13) we now have a system of

only linear and PWA model equations. However, since the

term Jγ,TEFC(k) from (16) causes the optimization objective

to become a nonlinear nonconvex function, a final PWA

approximation should be made.

4) Total emission and fuel consumption (16): In order to

arrive at a PWA expression for (16), the exponential term

exp
(

v̆⊤ℓ (k)Pγ ăℓ(k)
)

is replaced by a PWA approximation

using PWA identification for each of the emission and fuel

consumption elements. In Fig. 5(a) a filled contour plot of

this term for NOx as it was plotted in Fig. 1(c) is provided,

together with a division of the domain into regions, each of

which is associated with an affine expression that we obtained

by hybrid identification as explained in Section IV-A2. Further,

to reduce the number of additional variables and therefore the

computational complexity, in the original VT-macro model it is

suggested to substitute the variable nℓ(k) by a constant value

[11]. Hence, nℓ(k) can again be taken as a constant equal to

the currently measured or predicted values, as explained for

the approximation of (3).
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Now, in order to obtain a directly implementable optimiza-

tion problem, some further adaptations using auxiliary binary

variables are needed as will be explained next.

V. THE PWA-MPC PROBLEM

We now have gathered all ingredients for an implementation

of model predictive traffic control using the integrated PWA

METANET and VT-macro prediction models. As will be

elaborated upon in this section, a full description of the PWA

traffic system still leads to an intractable problem formulation

when written as a mixed-integer linear program (MILP).

Therefore we propose a mixed-logical dynamic formulation

instead, which can as well be solved as an MILP when

incorporated with MPC, yet in a more efficient manner.

A. Using a Full PWA Model

In order to be able to apply MPC to the PWA model, a

logical next step would be to combine the individual linear

and PWA model equations of METANET and VT-macro and

to rewrite them into one coherent PWA description of the

entire traffic network. A discrete-time PWA dynamical system

in state space notation can be described as follows:

x(k + 1) = Aix(k) +Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi (26)
[

xT(k) uT(k)
]T

∈ Ωi, i ∈ I,

where x(k) ∈ R
nx , u(k) ∈ R

nu , and y ∈ R
ny denote

respectively the state, input, and output vector, and where

Ωi,∪i∈IΩi = R
nx+nu is a convex polyhedron, int(Ωi) ∩

int(Ωj) = ∅, ∀i 6= j ∈ I. For each region Ωi, Ai ∈
R

nx×nx , Bi ∈ R
nx×nu , Ci ∈ R

ny×nx , Di ∈ R
ny×nu , and

fi ∈ R
nx , gi ∈ R

ny represent constant system matrices.

Furthermore, recall that the state variables refer to the mean

velocities vm,i(k), densities ρm,i(k), and flows qm,i(k) of

vehicles, together with the flows qo(k) and queue lengths

wo(k) at the origins, and the (spatial)-temporal components of

the space-mean accelerations aℓ(k) and numbers of vehicles

nℓ(k). The input variables refer to the variable speed limits

vctrl,m,i(k) and ramp metering rates ro(kc).
To obtain the above PWA system description, the indi-

vidual PWA model equations should be combined for each

link, segment, node, and origin of the given traffic network,

yielding a cross-product of the PWA regions and therefore

an exponential growth of the model. Due to the large total

number of regions this results in, the composition of the full

PWA traffic model is already inefficient. Moreover, when using

MPC as explained in Section III, this PWA model has to be

evaluated over several future time steps, which causes this

PWA-MPC approach for the METANET model (where an

MILP is used for optimization [32]) to be computationally

intractable already for a small network of only a few segments.

B. A tractable approach using an MLD model

In order to do be able to efficiently solve the MPC problem

based on a PWA system description with a large number of

regions, we do not compose the fully integrated PWA model,

yet we propose to make a conversion of the individual model

equations to the following equivalent MLD description:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) + f

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) + g (27)

E1x(k) + E2u(k) + E3δ(k) + E4z(k) ≤ h,

where δ(k) ∈ {0, 1}nb denotes a vector of binary variables and

z(k) ∈ R
nz represents the auxiliary variables resulting from

the procedure discussed next [32]. Similarly, the constraints

defined through system matrices E and constant vector h arise

along with the composition of the MLD model. As in the PWA

system (26) x(k) ∈ R
nx , u(k) ∈ R

nu , and y(k) ∈ R
ny denote

respectively the state, input, and output vector.

In the MLD representation one model applies in which the

binary and auxiliary variables that are needed to define the

regions are directly included in the model through additional

constraints. As compared to the full PWA system description,

in this MLD representation one large but tractable model

applies, composed simply by stacking the individual linear

and PWA model equations plus the auxiliary equations that

define the PWA regions for the individual equations, resulting

in a model size that grows linearly.

In order to arrive at a directly solvable optimization prob-

lem, an iteration of the MPC method based on the MLD

model can be written as an MILP where some of the decision

variables belong to an integer domain (in this case solely

binary) and some to a real domain. The following statements

summarize the conversion (adapted from [30], [32]):

f(x) ≤ c ⇔ δ = 1 is equivalent to:
{

f(x) ≤ c+ (M − c)(1− δ)

f(x) ≥ c(1− δ) + ǫ+ (m− ǫ)δ,
(28)

δ=δ1δ2 ⇔











−δ1 + δ ≤ 0

−δ2 + δ ≤ 0

δ1 + δ2 − δ ≤ 1,

(29)

z = δf(x) ⇔



















z ≤ Mδ

z ≥ mδ

z ≤ f(x)−m(1− δ)

z ≥ f(x)−M(1− δ).

(30)

Here, binary dummy variables (denoted by δ ∈ {0, 1}) are

introduced to indicate whether a certain region applies that is

associated with one of the affine pieces of the PWA function.

The constants m,M denote respectively a lower and upper

bound of a function f(x) over a set of variables x that is

bounded in case of an affine function, where we can assume

that x(k), u(k), and y(k) are bounded. Finally, c denotes an

arbitrary constant and the small constant ǫ denotes the machine

precision (used to turn a strict inequality into a non-strict

inequality that fits the MILP framework).

To briefly illustrate the transformation of a PWA model

equation into an MLD model equation using the above state-

ments, we take an expression of the form (4) or (6), i.e.:

f = min(f1, f2) that can be replaced by f = f1δ+ f2(1− δ)
where δ = 1 iff f1 ≤ f2 and δ = 0 otherwise, according

to the constraints (28). The latter expression of f should
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again be written f = z1 + f2 − z2 with auxiliary variables

zi = fiδ, i = 1, 2, according to the constraints (30). If in

addition a third term f3 arises in the PWA equation, such that

f = f1δ1 + f2δ2 + f3(1− δ1)(1− δ2), where

δ1 = 1 ⇔ f1 ≤ f2 and f1 ≤ f3
δ2 = 1 ⇔ f2 ≤ f1 and f2 ≤ f3,

(31)

this gives rise to a multiplication of binary variables, δ1δ2, for

which the constraints in (29) are needed.

Finally, as pointed at in Section III, it is needed to transform

the norm ||s||1, s ∈ R
n in a similar manner. Here, an optimiza-

tion objective mins∈Rn ||s||1 =
∑n

i=1 |si| can be substituted

by the following linear expressions, as can be easily verified:

min
s,z∈Rn

n
∑

i=1

zi subject to − z ≤ s ≤ z. (32)

Likewise, an ∞-norm can be transformed into a linear

problem, and alternatively a 2-norm in the penalty term (20)

can be substituted by a quadratic objective.

All in all, we now end up with an MILP or MIQP formula-

tion, which belongs to the class of NP-hard problems, i.e.,

it is generally accepted that no polynomial time algorithm

exists that solves the problem to optimality [14]. However,

for relatively small problem instances efficient solvers are

available that are based on e.g., column generation tech-

niques, branch and bound, or cutting plane methods [33],

[34]. Concerning the implications of this MILP conversion

for the ease of computation of the final MPC problem, it

thus remains of interest to keep the number of regions and

therefore the number of additional binary variables small.

However, a division using fewer regions may further increase

the approximation error. Therefore, an appropriate balance

between computational speed and approximation accuracy

has to be found, which has already been considered in the

approximation of the individual model equations in Section

IV-B and which will be evaluated next.

VI. CASE STUDY

In this section, a benchmark study from the literature [17] is

adopted in order to facilitate the comparison of results. Here,

simulation results from the original nonlinear METANET

model with emissions are compared with the MLD-MPC

approach based on the PWA models. Both computation time

and performance w.r.t. the optimization objective are analyzed.

In addition, a more diverse demand profile is considered in

order to evaluate the performance of the MLD-MPC approach

when experiencing larger variations in the traffic states.

A. Set-up

The freeway setting used in the simulations is depicted

in Fig. 6: 6 segments are considered of which segments 3

and 4 are subject to variable speed limits and a metered on-

ramp is placed between segments 4 and 5. Additionally, an

upper bound is added constraining the queue length wo2(k)
to 100 veh. The demand profile is depicted in Fig. 7, where

the mainstream origin and on-ramp have a capacity of 4000

and 2000 veh/h respectively. Parameter values can be found in

Table I. Further, the temporal aspect of the vehicular emissions

and fuel consumption is considered (see Section II-B). Finally,

conform the analysis in [17], a prediction and control horizon

of respectively Np = 7, Nc = 5 is found to lead to the

best results for demand profile 1. We simulate the freeway

dynamics for a simulation horizon corresponding to 2.5 h with

the controller sampling time Tc = 1min.

B. Results

Table II shows the TTS, total emission values, and mean

CPU times obtained for three scenarios, i.e., minimizing (S1)

TTS only (c1 = 1, c2 = c3 = 0) (S2) TTS and HC emissions

(c1 = 1, c2 = 0.25, c3 = 0) (S3) TTS and NOx emissions as

well as fuel consumption (FC) (c1 = 1, c2 = 0.4, c3 = 0).

These scenarios were chosen to evaluate our approach for

different problem sizes. Additionally, the standard deviation

(σ) and the minimum and maximum CPU times are provided.

The values obtained in the uncontrolled case are used to

normalize the performance criteria. Further, the percentage

difference is given between the objective function values

obtained under nonlinear control or while using MLD-MPC.

As can be seen from Table II, for scenario S1 one run

of MLD-MPC optimization took on average over the 150

simulation time steps 6 s., as compared to approximately 47 s,

which is the time required for 10 iterations of the nonlinear

solver1. Further, it should be noted that whereas the MILP

is solved to optimality at once, nonlinear MPC requires an

a-priori unknown number of iterations before convergence is

reached. Therefore, 10 iterations should be seen as a lower

bound: in scenario S2 and S3 at least 15 runs were required

to obtain good results, where the number of required runs is

based on the variance in the solution returned by consecutive

optimization runs for different random, initial starting points

[17]. A certain number of runs may also be required in order

to obtain a feasible solution in case of constraints. Finally,

it can be seen that the computational advantage of applying

MLD-MPC is of similar order for all three cases.

As for the deviations of the objective function values

when comparing MLD-MPC to nonlinear MPC, the absolute

emission values can be said to differ relatively little. On the

other hand, the values of the TTS have a deviation of roughly

10% when compared to nonlinear MPC. This reduction in

accuracy results from the trade-off with the improvements in

computational efficiency. Further, as expected, the TTS values

increase in both the nonlinear and MLD-MPC approaches

1The CPU times were obtained adopting the Tomlab CPLEX and fmincon
environment within 32-bit Matlab 7.9.0 (R2009b) on a Linux PC with a 3GHz
Intel Core Duo processor and 3.7Gb RAM.
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TABLE II
COMPARISON OF THE DIFFERENT SCENARIOS FOR DEMAND PROFILE 1

(S1) TTS TTS (veh·h) TNOx (kg) TCO (kg) THC (kg) TFC (l) CPU (s) [σ, min, max]

Uncontrolled 1.463·103 6.683 59.49 4.103 4.654·103 –

Nonlinear MPC 1.268·103 6.988 60.45 3.916 4.348·103 46.71 (10 runs) [25.0, 9.56,131]

MLD-MPC (% diff.) 1.392·103 (9.8%) 6.814 (-2.5%) 59.92 (-0.9%) 4.122 (5.3%) 4.526·103 (4.1%) 5.829 (-87.5%) [16.2, 0.2137, 186]

(S2) TTS + HC TTS (veh·h) THC (kg) CPU (s) [σ, min, max]

Uncontrolled 1.463·103 4.103 –

Nonlinear MPC 1.287·103 3.857 62.05 (15 runs) [29.7, 30.3, 302]

MLD-MPC (% diff.) 1.403·103 (9.1%) 4.045 (4.9%) 14.5 (-76.7%) [29,1.7,231]

(S3) TTS + TNOx + TFC TTS (veh·h) TNOx (kg) TFC (l) CPU (s) [σ, min, max]

Uncontrolled 1.463·103 6.683 4.539·103 –

Nonlinear MPC 1.380·103 6.959 4.353·103 80.44 (15 runs) [56.5, 24.2, 248]

MLD-MPC (% diff.) 1.441·103 (4.4%) 6.805 (-2.2%) 4.498·103 (3.3%) 29.34 (-63%) [29.7,0.221,183]
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Fig. 7. On-ramp and mainstream demand profiles

when emission control is applied, where the largest increase

is in the most comprehensive scenario S3. For this scenario

it should be noted that the total NOx emissions were not

reduced w.r.t. the uncontrolled case for both the MLD and

nonlinear MPC approach. However, this value as well as the

value for TFC did get reduced in comparison to the values that

were obtained under the TTS minimization objective of S1. In

order to further decrease the value, the weights for the NOx

reduction in the optimization objective could be adjusted. Here

it should be kept into account that due to the multi-objective

nature of the optimization problem at hand, the minimization

of some terms may have opposing effects on the minimization

of other elements in the objective function. In particular, it

should be noted that in scenario S2 and S3, the approximated

emissions are directly incorporated in the objective functions

in case of MLD-MPC.

Further, also under the more diverse, second demand profile

depicted in Fig. 7, a reduction in computational speed can

be observed, while the improvement in TTS is very close to

the reduction in TTS while adopting nonlinear MPC. Here,

we only applied ramp metering for both the MLD-MPC and

nonlinear MPC approach. When taking into account the behav-

ior of the traffic network while using the PWA approximated

model, as depicted in Fig. 9, it can be said that the behavior of

the traffic flow, density and speed over the simulation horizon

is similar with the nonlinear case in Fig. 8. The uncontrolled

behavior is plotted in Fig. 10, where two large peeks in the

queue length at origin 1 can be observed. In the controlled

case, these peeks are reduced to a smaller peek of around 100

vehicles around 45 minutes time, and a larger peek around 2

hours. The queue at origin 2 is at its upper bound in both cases,

while in the MLD-MPC case, more fluctuations in the queue

lengths can be observed. Overall, there is more fluctuation in

TABLE III
COMPARISON OF TTS AND CPU TIME AND THEIR RELATIVE

DIFFERENCES – DEMAND PROFILE 2

(1) TTS TTS (veh·h) CPU (s) [σ, min, max]

Uncontrolled 1.716·103 –

Nonlinear MPC 1.641·103 8.98 (25 runs) [6.1, 3.4, 43]

MLD-MPC (% diff.) 1.657·103(1.0%) 1.92 (-78.6%) [2.8, 0.15, 14]

the different variables for MLD-MPC, which is smoothened in

the nonlinear MPC case. This difference could be explained by

the use of smooth versus nonsmooth, PWA model equations.

Recall that this paper presents a proof-of-concept. To show

the performance of the presented method in real-life traffic

scenarios, it should be applied to diverse case studies based

on real-life situations in which varying demand profiles could

be investigated. There, in order to yield the best overall accu-

racy, one should consider fine-tuning the individual function

approximations as well as calibrating the model parameters in

the MLD-MPC approach for these real-life scenarios. These

will be topics for future research. Finally, it is important to note

that instead of taking the optimal decision variables resulting

from MLD-MPC as a final control input, these results could

also be used as a starting point for nonlinear optimization,

which would still yield a faster solution given the gains in

computation times while using MLD-MPC.

C. Computational Efficiency

Concerning the computational efficiency of the MLD

method it should be noted that the specific problem struc-

ture could be exploited to speed-up the optimization, i.e.,

computational advantages could result from tuning the solver

to the particular problem like by changing the structure of

the constraint matrices [35]. An overview of computational

efficiency in the solving of MILPs when using different solvers

can be found in [36]. Also, as an alternative to nonlinear

control, the feasible-direction method proposed in [3] could be

used to compare the computational requirements. In particular,

results of the designated Advanced Motorway Optimal Control

(AMOC) toolbox for the feasible-direction implementation of

ramp metering can be found in [37], while integrated ramp

metering and speed control is considered in [18], where the
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Fig. 8. Simulation results for demand profile 2 - nonlinear MPC
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Fig. 9. Simulation results for demand profile 2 - MLD-MPC

method is found to be fast enough for real-life implementation.

Here, it should be noted that the constraints on state variables

as considered in our case study for the maximum queue length

can result in an increase in the required computational time

when implemented as a hard constraint; in [18], this constraint

is incorporated in the penalty function as a soft constraint. The

latter approach however does not in general yield the same

traffic behavior; in instances where a rather large penalty is

required to keep the queue length below the limit, the effect

on the control variables will be substantial. Hence, it would be

fruitful to perform an analysis on the impact of optimal control

actions on the traffic behavior as well as on computational

efficiency of both methods under the same conditions.

VII. CONCLUSIONS AND FURTHER RESEARCH

A piecewise-affine (PWA) approximation of the nonlinear

traffic flow model METANET integrated with the VT-macro

model for vehicular emissions and fuel consumption has been

proposed in order to deal with the computational complexity of

the original nonlinear nonconvex model-based traffic control

approach, which is currently hindered from application in real-

life traffic networks due to the required computation time. Sev-

eral methods to approximate the nonlinear functions appearing

in the models have been discussed and the transformation to

a ready-to-implement mixed-integer linear optimization pro-

gramming (MILP) problem has been provided. This method

has been tested in a case study with hard state constraints

comparing the performance of the mixed-logical dynamic

(MLD)-MPC method with the original nonlinear-programming
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Fig. 10. Uncontrolled behavior under demand profile 2

MPC application w.r.t. the trade-off between computational

speed and accuracy, The simulation results when considering

two hypothetical demand profiles, showed that MLD-MPC can

indeed be applied at an improved computational efficiency at

the cost of some deterioration of the control performance.

As further steps to bring the MLD-MPC approach to be

applicable in real life, more elaborate case studies could

be performed in order to investigate in detail the trade-off

between approximation accuracy (i.e., the number of affine

pieces or regions) and computational efficiency, in a setting

that more closely resembles real-life traffic conditions. Here,

an extensive analysis of the effect of the MLD-MPC method

on the traffic behavior could be studied under different traffic

scenarios. Finally, the MLD-MPC approach could also be ap-

plied to different traffic models like higher-order macroscopic

models, the discretized Payne model and the cell and link

transmission models.
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