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Abstract

In order to provide safety against high sea water levels, in many low-lying countries on the one
hand dunes are maintained at a certain safety level and dikes have been built, while on the other hand
large control structures have been installed that can be adjusted dynamically also after they have been
constructed. Currently, these control structures are often operated purely locally, without coordination
of actions being taken at different structures. Automatically coordinating these actions is hard, since
open water systems are complex, hybrid dynamical systems, in the sense that continuous dynamics (e.g.,
the evolution of the water levels) appear mixed with discrete events (e.g., the opening or closing of
barriers). In low-lands, this complexity is increased further due to bi-directional water flows resulting
from backwater effects and interconnectivity of flows in different parts of river deltas. In this paper,
we propose a model predictive control (MPC) approach that is aimed at automatically coordinating the
actions of control structures. Hereby, the hybrid dynamical nature of the water system is explicitly taken
into account. In order to relief the computational complexity involved in solving the MPC problem, we
propose TIO-MPC, where TIO stands for time-instant optimization. Using this approach the original
MPC optimization problem that uses both continuous and integer variables is transformed into a problem
involving only continuous variables. Simulation studies of current and future situations are used to
illustrate the behavior of the proposed scheme.

1 Introduction

Floods are one of the most common type of natural disasters that Europe has to face. In the period between
1998 and 2004 there were more than 100 major floods in Europe. As a result, 700 people died, 250 000
people lost their home, and an economic loss of 25 Billion euros was incurred. More recently, in 2010,
several major floods (e.g., in Pakistan, China, Brazil, and East/Central Europe) showed again the impor-
tance of good flood prevention. Moreover, due to the changing climate flood prevention is expected to
become even more important as sea levels will rise, precipitation will intensify and river flows will fluctu-
ate more (Intergovernmental Panel on Climate Change, 2007; Deltacommissie, 2008). These changes will
in particular affect low-lands and river deltas, such as those found in The Netherlands.

One of the areas where increased problems are expected is the highly populated Rhine-Meuse delta
in The Netherlands, including the large cities of Rotterdam and Dordrecht, and the largest port of Europe
(see Figure 1) (Deltacommissie, 2008). The Rhine-Meuse delta considered consists of a large number of
rivers and sea outlets. The boundary in the East consists of the rivers Lek, Waal, and Meuse. The boundary
in the West consists of the connections of the Nieuwe Waterweg and the Hartelkanaal and one outlet, the
Haringvliet, to the North Sea.
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Figure 1: The Rhine-Meuse delta and its division into 4 reservoirs. Reservoirs 1, 2 and 4 are located in the
province Zuid-Holland; reservoir 3 is located in the province Zeeland.

To protect this area against floods, dunes, dikes and storm surge barriers have been constructed. There
are currently four main barriers (see Figure 2): the Maeslant barrier, the Hartel barrier, the Hollandsche
IJssel barrier, and the Haringvliet sluices. The first three barriers are designed to be either completely open
or to be completely closed. In the open state the rivers in which these barriers are built can flow freely and
ships can pass without any disturbance. In the closed state river flows and navigation are blocked. The
last barrier consists of 17 gates that can move independently between a maximum and a minimum height.
There, ships can pass via a lock.

Whereas the dunes and dikes cannot be changed from minute to minute after they have been con-
structed, this is possible for the storm surge barriers (see Figure 2). Each barrier therefore has a local
control system that determines when the barrier should be closed or opened. Locally these rules may work
well; however, since they do not take into account actions taken by other control structures, no guarantees
can be given in the event of large disturbances. Therefore, the Delta commission, established by the Dutch
government in September 2007 strongly advises to investigate ways in which in the future the adequate
operation of the water system can be ensured. One of these plans, recommendation 10 of the Delta com-
mission, is called “Afsluitbaar Open Rijnmond” (Deltacommissie, 2008). The idea of this plan is to build
extra barriers that can block the river flows of the Lek, the Rhine, and the Meuse. Together with the exist-
ing barriers at the sea side of the Rhine-Meuse delta, the complete Rotterdam/Dordrecht area can then be
isolated from all disturbances. By closing the new barriers the water of the rivers is directed to the south,
towards the Haringvliet. Another plan, recommendation 8 of the Delta commission, is to use water bodies
in Zeeland (the Grevelingen, the Volkerak, and possibly the Oosterschelde) as temporary water storage
bodies for water in critical situations (Deltacommissie, 2008). The two plans merged together are depicted
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Figure 2: Storm surge barriers in the Rhine-Meuse delta (van Overloop, 2009).



in Figure 3. Moreover, the Delta commission advises to make the water system more flexible and to operate
it more dynamically. In this article we investigate how coordination of the actions of the existing and the
new structures as well as the use of the temporary storage could be realized.

The control goal in the Rhine-Meuse delta can be formulated as balancing the trade-off between keeping
water levels low and minimizing the cost associated with using the storm surge barriers. The storm surge
barriers and the water system of the Rhine-Meuse delta can be considered as hybrid dynamical systems, i.e.,
systems in which continuous dynamics and discrete events interact. In this case, some of the barriers are
designed to move at once into a fully opened or fully closed state and dikes can overtop (discrete events),
while at the same time some other barriers are operated with continuous actions and the water system itself
involves continuous evolution of water flows and levels (continuous dynamics).

The decision whether or not to close the barriers depends on water levels, water flows, and weather
conditions in the near future. Currently, local rule-based control is used for controlling this system, al-
though several more advanced methods have been proposed in the literature for control related systems.
Several previously published works focus on the use of different types of optimization problem solvers for
determining which action to take. E.g., genetic or evolutionary search methods are used in (Nixon et al.,
2001) and (Farmani et al., 2006); (Reed et al., 2001) and (Farmani et al., 2006) discuss multi-objective
optimization approaches. Other works consider the problem of deciding which action to take from a sys-
tems and control perspective. In (Malaterre et al., 1998) an overview of methods founded in control theory
is given, including feedback control, feedforward control, and combinations of feedback and feedforward
control.

We propose to use model predictive control (MPC), an optimization-based control technique originally
proposed in the process industry (Camacho and Bordons, 2004), that combines feedback and feedforward
control, and that is now gaining increasing attention also in other fields, including the field of open water
systems. MPC is designed for handling multi-variable systems, constraints, and multiple objectives, and
therefore seems promising for coordinating actions also in water systems. Recently, in (van Overloop et al.,
2008) MPC is proposed for the control of a drainage canal system; (Barjas Blanco et al., 2008) propose
MPC for control of a part of the river Demer in Belgium; (Wahlin and Clemmens, 2006) discusses the
use of an MPC controller a network of branching canals; (Ruiz and Ramirez, 1998) consider an MPC
scheme for control of irrigation canals; (Gémez et al., 2002) propose a decentralized scheme for control of
such system; (Negenborn et al., 2009) propose a distributed MPC control scheme; (Begovich et al., 2007)
discuss the actual application of MPC for a physical actual prototype of an irrigation canal; and (Malaterre
and Rodellar, 1997) focus on how design and evaluation aspects of an MPC controller for a 2-pool system.

Although MPC for control of water systems have been proposed before, the existing applications op
MPC for open water systems, however, do not consider the hybrid dynamical nature that can be present
explicitly. Here, we propose to use an MPC technique that does explicitly take into account the hybrid
dynamical nature of the system, a so-called hybrid MPC technique. We propose in particular the technique
TIO-MPC, where TIO stands for time-instant optimization. Contrarily to other MPC techniques for control
of hybrid dynamical systems (such as the well-known MPC technique based on the mixed-logical dynamic
modeling framework (Bemporad and Morari, 1999; Morari and Baric, 2006)), TIO-MPC optimizes time
instants. The MPC optimization problem originally involving both discrete and continuous variables is
thereby transformed into an optimization problem with only continuous variables. This has as advantage
that computational time requirements are reduced, as mixed-integer nonlinear optimization problems gen-
erally are more complex to solve (Koppe, 2012). Before, such a technique has been used for traffic control
(De Schutter and De Moor, 1998); here we investigate its use for water control.

The contributions of this article are the following:

e A generic description of TIO-MPC, an MPC approach that uses the technique of time instant opti-
mization for control of hybrid dynamical systems, is proposed.

e A hybrid dynamical model that can be used for simulating and predicting the dynamics in the Rhine-
Meuse delta for the current situation and a possible future situation based on recommendations of
the Delta commission (Deltacommissie, 2008) is proposed.

e The behavior of the use of TIO-MPC is illustrated when controlling the Rhine-Meuse delta water
system in the current and possible future situation.
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Figure 3: A future situation of the Rhine-Meuse delta water system. The Volkerak sluices and the temporary
reservoir, as well as he Spui, Drecht, Merwede, and Lexmond barriers provide new control options.

This article extends the previously published conference article (van Ekeren et al., 2011) by providing
more background and context on the control problem and the current control approaches available in the
considered area, as well as more details of the control approach used. In addition, the hybrid dynamical
model is presented for both the current and a possible future situation, and more simulation scenarios are
provided to illustrate the behavior of the proposed scheme.

This article is organized as follows. First, the dynamics in the Rhine-Meuse area are formalized in a
hybrid dynamical model and a discussion of the currently used local control systems is given. Then, the
details of MPC using time-instant optimization are discussed and a TIO-MPC controller is designed for the
area under study. The behavior of the proposed approach is subsequently illustrated in simulation studies
representing current and future situations. Conclusions and directions for future research end this article.

2 Rhine-Meuse delta
2.1 Model of the dynamics

We first describe the model of the dynamics for the current situation in the Rhine-Meuse delta. This model
builds upon the model proposed in (Roeleveld, 2007), by including a more detailed representation of the
Maeslant barrier, the Hartel barrier, and the Haringvliet sluices. We then describe an extension of this
dynamical model to represent a possible future setup of the Rhine-Meuse delta.

Later on the dynamical model will be used both for representing reality (i.e., as a simulation model)
as well as inside the proposed MPC controller (i.e., as a model for making predictions). There this model
will be evaluated many times during the process of action determination. It is therefore necessary that
the dynamical model is as fast and compact as possible. The model used is of the diffusive wave type
and hence does not describe the full dynamic Saint-Venant equations. This reduces the accuracy of the
model and inherently the calculated control actions. The same can be said about the large time step or
even the assumption of 1-dimensional flow and perfect mixing of fresh and saline water. It is important to
realize, though, that the model requires sufficient accuracy while still being fast enough to be used in the
real-time optimization inside the MPC controller. Moreover, the MPC controller features a strong feedback
functionality where, at each control time step, the states in the internal are taken as the actual states. This
feedback reduces the uncertainty in the internal model. In (Roeleveld, 2007) the trade-off between model
reduction and computational time has been extensively studied, resulting in the lumped hydraulic model
that still captures the main dynamics relevant for control as described below.

2.1.1 Dynamical model of the current situation

The study area is represented by 4 large reservoirs that are interconnected by rivers, see Figures 1 and 4.
The states x1, x2, x3, and x4 represent the water levels in reservoirs 1, 2, 3, and 4, respectively. The change
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Figure 4: Structure of the Rhine-Meuse delta model.

in each of these water levels is determined using a discretized mass balance equation as follows:

x1(k+1) = x (k) + W[qu(xl (k),x2(k))

+611d(k) — qow (X1 (k) At (k) ttmp (k) ) — gk (x1 (k) , 2nn (k) i (K) )] )]
(k4 1) = x2(k) (=12 (1 (k),x2(k)) +q23 (x2.(k), x3 (k) + qas (x2(k), x4 ()] (@)
x3(k+1) = x3(k) [~ 23 (x2 (k) x3(k))

+q34 (XS (k) x4(k)) +q3a(k) — gns (x3 (k) hins (k) , uns (k)] 3)
xp(k+1) = x4 (k) + 5[—@4 (x2(k),x4(k)) — g34 (x3(k), x4 (k) ) + q2a (k)] )

As4

where k is a discrete time step; 75 (s) is the sample time; Ag; ( . ),Asz, Ag, and Ay (m?) are the surface areas
of reservoir 1, 2, 3, and 4, respectively; x (k), x2(k), x3(k), and x4(k) (m) are the water levels of reservoir
1,2, 3, and 4, respectively; q14(k), q2a(k), and g3q(k) (m?/s) are disturbance inflows from the rivers Lek,
Waal, and Meuse, respectively; qnw( . ) qhk( . ), and qhs( . ) (m3 /s) are disturbance inflows from the sea,
controlled by the Maeslant barrier, the Hartel barrier, and the Haringvliet sluices, respectively; qlz( . ),
q23 ( . ), q24( . ) q34( ) (m? /s) are the flows between the reservoirs, described by ¢; j( ) = fchézy( . )
where fchey is the formula of Chézy (Brouwer, 2001):

Rij (xi(k),x;(K)) |xj — xi|
lij

fChéZy (x;(k),xj(k)) :Ac,ij (x;(k),xj(k))Cijsign(xj —x;)\/ s (5)

where ¢; j( ) is the flow between reservoirs i and j; A ; j( ) (m?) is the (smallest) water cross section of
the transport region of flow g;;(-); Ci; (m'/2/s) is the Chézy roughness coefficient of flow ¢; () Rii ()
(m) is the hydraulic radius of flow g;; ( . ); l;j (m) is the length of the river between reservoir i and reservoir
Jj. Note that in (5) the sign function is used to indicate the direction of the flow.

The water cross sectional area Ac; j( ) and the hydraulic radius R; j( ) are variables that depend on
the water level in the river that connects reservoir i with reservoir j. This river water level is approximated
by (xi +x;)/2, the average of the water levels of reservoirs i and j. The water cross sectional area and the
hydraulic radius depend also on the physical structure of the river cross section. The river cross sections
are approximated with straight lines. As a result, Ac;;(-) and R;j(-) are nonlinear functions of x;(k) and
xj(k). For more details, see (Roeleveld, 2007).

The flows qnw( . ) and qhk( . ) are determined using (5) as follows:

Gow (x1 (k) Byn (k) sty (k) ) = vty (k) fenezy (x1 (k) e (k) ) (6)



Maeslant
Lexmond

barrier bari
arrier
<q
§ R T
a1l ,
Hartel 1 |
barrier G |
| Merwede #
barrier
Xz <_(724_[)_ X4 «Qo—
A
g2
l:]IIIS;Jui/Drechl
barrier
Haringvliet
sluices
g
<_qhs_D_ X3 < s
Volkerak
sluices
gss
A4
Xs

Figure 5: Structure of the Rhine-Meuse delta model for the future setup.

ik (x1 (k) hiyn (k) unp (k) ) = un (k) fenezy (x1 (), nen (k) @)

where Apyn (k) (m) is the water level of the North Sea at Hoek van Holland, and uy,, (k) represents the state
of the Maeslant barrier, defined as:

/0 if the barrier is closed at time step k
b (k) = { 1 otherwise. ®)

The state of the Hartel barrier represented by uy, (k) and the state of the Hollandsche IJssel barrier up;jp (k)
are defined similarly.

The flow th( . ) through the Haringvliet sluices depends on the water level of the North Sea near these
sluices /s (k), the water level x3 (k) in reservoir 3, and the opening height of the gates of the sluices upg (k).
The flow is determined by using the equations for free and submerged orifice flow and the equations for
free and submerged weir flow, as given in (Roeleveld, 2007).

The effect of the Hollandsche IJssel barrier is modeled via the surface area of reservoir 1 as follows:

A1 (unijo (k) = Agt normat — Ast nij (1 — tnijo (k) » ©

where Ag normal 18 the surface area of reservoir 1 (m?) when the Hollandsche Issel barrier is open (uny (k) =
1) and where Agj pjj is the reduction in surface area caused by closure of the Hollandsche 1Jssel barrier
(unp (k) = 0).

2.1.2 Dynamical model of a future situation

In the considered future situation five new barriers are present: the Lexmond barrier, the Merwede barrier,
the Drecht barrier, the Spui barrier, and the Volkerak sluices. All these barriers are modeled as barriers that
can be in two discrete modes: fully open or fully closed. The dynamical model presented above for the
current setup is extended to create a model for this future setup. A schematic view of this extended model
is shown in Figure 5. The two water storage bodies in Zeeland are modeled by adding an extra reservoir,
reservoir 5. By opening the Volkerak sluices, this additional reservoir is filled with water from reservoir 3.
The dynamical model for the future setup therefore has one extra mass balance equation:

ws(k+ 1) = g3 (xs(/c>,xs(/<>,uvs(/<>)Aif5 1 xs(k), (10)



where ¢35 ( . ) is the flow through the Volkerak sluices in m? /s, Ass is the surface area of reservoir 5 in m,
and uys(k) is the state of the Volkerak sluices. The flow ¢35(-) through the Volkerak sluices is determined
in a similar way as the way in which the flow gus(-) is determined. To take into account the addition of the
Volkerak sluices, the mass balance (3) of reservoir 3 is changed into:

x3(k+1) = [—q23 (x2(k),x3(k), usan (k) + g34 (x3(k), x4 (k) ) + q3a (k)

— YGhs ()C} (k)7hhs (k)a uhs(k)) — {35 (X3 (k),XS (k)vuw(k))]ALg3 +Xx3 (k)7 (1)
N
where uggp (k) is the state of the Drecht barrier and the Spui barrier (these barriers are restricted to open/close
simultaneously).
The Lexmond barrier is modeled as a barrier that can direct the disturbance inflow g4(k) to reservoir
4 instead of to reservoir 1. Therefore, the mass balances (1) and (4) of the dynamical model of the current
setup are replaced by:

x1(k+1) = [gi2 (x1 (k),x2(k)) + g1a(k)u (k) = gnw (x1 (), e (k) , tmp (k) (12)
Ts

—CIhk(Xl (@ﬁhvh(@ﬂhb(@)]m +x1 (k) (13)

x4 (k+1) = [—q24 (x2(k), x4 (k) tmwp (k) ) — g3a (x3(k), x4 (k) + g1a(k)up (k) +612<1(7<)]ALS4 +x4(k), (14)

where upwp (k) is the state of the Merwede barrier and uy, (k) is the state of the Lexmond barrier, which is
similarly defined as upp (k) in (8).

The Spui barrier and the Drecht barrier can together block the flow from reservoir 2 to reservoir 3.
The Merwede barrier can block the flow from reservoir 2 to reservoir 4. These flows g23(+) and gp4(+) are
influenced by the state of these barriers as follows:

@23 (x2(k),x3(k), ttsan (k) ) = ttsan (k) fonezy (x2(k),x3(k)) (15)

@24 (x2.(k), x4 (k) ttmwn (k) ) = ttmwn (k) fenezy (x2(k) x4 (k). (16)

Constructing the Volkerak sluices and the temporary reservoir in Zeeland require relatively little ad-
justment of the existing infrastructure. Constructing the other components requires significantly more

investments. Therefore, in the simulation section below we will focus on the current situation extended
with the Volkerak sluices and the temporary reservoir.

2.2 Currently used control systems

The control systems currently used for the barriers consist of simple if-then-else rules. The goal of the
local controllers is to achieve the following objectives (van Overloop, 2009):

1. To prevent the water level at Rotterdam to rise above 3.87 mNAP (m Normaal Amsterdams Peil, i.e.,
m above the Dutch mean sea level) and at Dordrecht to rise above 3.25 mNAP.

2. To prevent water levels in the Hollandsche 1Jssel to rise above 2.25 mNAP, while preventing saline
water to flow into this river.

3. To maintain a minimum water level of 0.00 mNAP at Moerdijk (in the Hollandsche Diep).
4. To maintain a minimum discharge, averaged over a tide, through the Nieuwe Waterweg of 1500 m? /s.
5. To prevent water flowing directly from the North Sea into the Haringvliet.

When the water levels at Rotterdam and Dordrecht stay below their critical value (i.e., the dike height), the
whole area is safe, since the most critical (i.e., lowest) dikes are located at these locations (Roeleveld, 2007).
Currently, the Maeslant barrier and the Hartel barrier are used mostly for objective 1; the Hollandsche 1Jssel
barrier for objective 2; and the Haringvliet sluices for objectives 1 and 3-5.



2.2.1 Maeslant barrier

The Maeslant barrier (Figure 2a) is a storm surge barrier that can completely block the Nieuwe Waterweg.
The Nieuwe Waterweg is a connection between the North Sea and the port of Rotterdam. It acts as a
highway for large ocean vessels. Closing the Nieuwe Waterweg can lead to large economic losses (in the
order of a million euros per day). The Maeslant barrier consists of two large gates (about 240 m each) that
are usually located in two dry docks, one on each side of the river. The control system of the Maeslant
barrier determines when the gates are floated out off the dry docks and are sunken down to close the Nieuwe
Waterweg.

The control system of the Maeslant barrier currently consists of one simple rule subject to some con-
straints (van Overloop, 2009). Every 10 minutes the control system makes a prediction of the water levels
over the coming 24 hours based on actual weather forecasts (Rijkswaterstaat, 2009). The closing rule of the
Maeslant barrier based on these predictions is as follows: If a water level of 3.00 mNAP or 2.90 mNAP is
predicted for respectively Rotterdam or Dordrecht (usually caused by a storm at sea), the closing procedure
of the Maeslant barrier is started. The closing procedure starts by filling the dry docks of the gates with
water. The gates are then floated out of the dry docks directly after the filling of the dry docks in situations
when the discharge of the river Rhine measured at Lobith! is higher than 6000 m? /s and the water level at
the structure exceeds 2.00 mNAP. Otherwise, the gates are floated out of the dry docks when the direction
of the flow at the structure changes from downstream into upstream.

The two gates are sunken when the water level at the seaside is 0.05 m higher than the water level on
the river side. During the sinking of the gates the flow potential under these gates is monitored. The flow
potential is used as an indication of the rate of erosion at the floor structure. If the underside of the gates is
5 m above the floor and if the flow potential is too high the sinking down is stopped.

With the gates sunken to the bottom, the Nieuwe Water has been closed. In the gates there are ballast
tanks. The amount of water in these tanks is controlled in order to float up the gates as soon as the water
level at the riverside equals or surpasses the water level at the seaside. It takes 60 minutes to lift the gates
up. After this procedure, the gates float on the river and do not close the Nieuwe Waterweg anymore. If the
predictions of the water levels at Rotterdam and Dordrecht are not critical, the gates are floated back into
their dry docks.

The implementation of the control system of the Maeslant barrier that is used in this article for simu-
lations is a simplified version of the control system used in reality. The model of the Rhine-Meuse delta
that is used models the Maeslant barrier (and the same holds for the Hartel barrier and the Hollandsche
[Jssel barrier) as if it can be either open of closed. Thus, the closing/opening procedures are neglected.
This means that the constraints on the closing/opening procedures is not be considered. It is assumed that
the closing procedure is started early enough to let the physical closing coincide with the start of the closed
state of the barrier in the model. The implemented control system of the Maeslant barrier is therefore as
follows: If a water level of 3.00m or 2.90 mNAP is predicted for respectively Rotterdam or Dordrecht in
the coming 24 hours, the Maeslant barrier is closed as soon as the water level at the seaside (i.e., the water
level at Hoek van Holland) is 0.05 m higher than the water level on the river side (i.e., the water level at
Rotterdam). The Maeslant barrier is opened again as soon as the water level at the riverside equals or
surpasses the water level at the seaside.

2.2.2 Hartel barrier

The Hartel barrier (Figure 2b) is situated in the Hartelkanaal, parallel to the Nieuwe Waterweg. In com-
parison with the Nieuwe Waterweg this is a small canal. Unlike in the Nieuwe Waterweg, no navigation
of large ocean vessels is possible in the Hartelkanaal. The Hartel barrier consists of two gates that are
normally lifted high above the water.

The control system of the Hartel barrier consists of the same closing rule and similar constraints as for
the Maeslant barrier (van Overloop, 2009). However, the closing procedure is different. When a critical
water level is predicted, the gates are lowered until the undersides of the gates are at 3.50 mNAP. This takes

ILobith is a measurement location in The Netherlands close to the border with Germany. Depending on the flow, it takes up to 48
hours for the water at Lobith to reach the Rhine-Meuse delta. Therefore, it is a (rough) measure of the amount of river water that will
flow into the Rhine-Meuse delta in the near future.
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about 10 minutes. The start of lowering the gates to close the Hartelkanaal depends on the same constraints
as for the closing of the Maeslant barrier, i.e., when the discharge at Lobith is high and the water level at
the structure is higher than 2.00 mNAP.

With both gates lowered the Hartelkanaal is completely closed. During the closure the water levels on
both sides of the barrier are monitored. When the water level at the riverside equals or surpasses the water
level at the seaside the gates are lifted one after another. When a water level of 3.00 mNAP at Rotterdam
or of 2.90 mNAP at Dordrecht is predicted to appear in the coming 24 hours the gates stay in this lifted,
not blocking, position. When the water level at the structure stays constant or increases continuously for
half an hour, or increases at least 10 cm continuously, the gates will close the Hartelkanaal again. When
the predicted water levels are lower the gates are lifted up until the storm surge barrier has completely been
opened.

As already explained above, the Hartel barrier is modeled as if it can be either fully open or fully
closed. Therefore, constraints and procedures concerning the opening and the closing procedures of the
Hartel barrier are neglected. The implementation of the control system of the Hartel barrier for simulations
is the same as the implementation used for the Maeslant barrier, as presented above.

2.2.3 Haringyvliet sluices

The Haringvliet sluices (Figure 2c) are located in the former estuary of the Haringvliet (van Overloop,
2009). The seventeen sluices of each 56.5 m wide determine how much water is exchanged between the
North Sea and the Haringvliet. Each sluice consists of two gates which make it possible to block water from
the seaside as well as from the riverside. The gates can be lifted partially, which makes different discharges
through the sluices possible. The Haringvliet sluices have three purposes: closing off the Haringvliet for
flood prevention, keeping the water in the Haringvliet fresh by blocking the water of the North Sea, and
holding the water level at Moerdijk above 0.00 mNAP.

A control program called LPH’84 determines the height of the sluice gates based on the measured
discharge of the river Rhine at Lobith (van Overloop, 2009). The operation of this control program is
depicted in Figure 6. The vertical axis in Figure 6 shows the area of the surface gate opening as a function
of the river discharge. This area can be translated straightforwardly into gate heights by using the width
of the gates. The sluices are only opened when the water pressure at the riverside is larger than the water
pressure at the seaside. When the discharge sluices are open and the water pressure at the seaside becomes
larger than the water pressure at the riverside, the gates are closed. As a consequence, the sluices are closed
almost every high tide. Opening or closing the gates takes about 20 minutes.

The implementation of the control system of the Haringvliet sluices for simulations is a translation of
the description presented in this section.
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Figure 7: General MPC control scheme (Negenborn, 2007).

2.2.4 Hollandsche 1]Jssel barrier

The Hollandsche 1Jssel barrier (Figure 2d) consists of two large gates in series. The gates can close off
the mouth of the river Hollandsche IJssel. This protects the low-level area behind the barrier against high
water levels in the river Nieuwe Maas.

The two large gates of the barrier close the Hollandsche IJssel when a water level of 2.25 mNAP is
measured at the Nieuwe Maas. The procedure for lowering the gates starts directly when this critical
water level is measured. The gates are lifted when the water pressure at the side of the Hollandsche IJssel
becomes larger than the water pressure at the side of the Nieuwe Maas.

The implementation of the control system of the Hollandsche 1Jssel barrier for simulations is a transla-
tion of the description above.

3 Time-instant optimization MPC

The currently used control systems described in the previous section are operating independently of one an-
other. There is no coordination among the control systems at the different structures. Hence, the evolution
of the water levels when different control actions determined by the current control systems are applied in
the same period is not taken into account. This may lead to low performance of the local control systems
in extreme conditions. The control system proposed here could improve this performance employing as
control strategy model predictive control.

3.1 Model predictive control

Using an MPC approach the control goal to be achieved is described mathematically. The computational
power we have nowadays is then used to find optimal control actions with respect to this control goal.
However, these control actions are only optimal with respect to the available information given to the opti-
mizer. This information is in practice never completely correct (e.g., due to modeling errors and predictions
errors) and only valid over a finite time window (prediction horizon). Therefore, at every control step this
optimization is repeated to obtain control actions that are as close to optimal as possible to a control system
that works over an infinite time window. This is briefly how an MPC controller works.

The general MPC scheme is depicted in Figure 7. The MPC controller has three types of inputs. The
first one is the input of the operator. His task is to formulate the control goal in an objective function and to
specify the operational constraints. The second input consists of the measurable or predictable disturbances.
The MPC controller anticipates these a priori known disturbances. The last input is the current state of the
system. The output of the MPC controller consists of the optimized control actions that are sent to the real
system. Actions are implemented for the upcoming time step. The real system then transitions to a new
state, and the MPC controller then determines new actions to be taken at the next time step.

10
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Figure 8: MLD-MPC versus TIO-MPC.

As addressed in the Introduction, no publications exist on so-called hybrid MPC techniques for the
field of large open water systems, i.e., MPC for systems comprising both discrete events and continuous
dynamics. Hybrid MPC is a technique that is in particular interesting for this field, because of the several
hybrid dynamical aspects that are present in this field. With hybrid dynamical aspects in water systems
we refer in this paper to the combination of the continuous dynamics of the water with discrete events.
Examples of discrete events in water systems are: storm surge barriers that can be opened or closed, pumps
that can switched to only work at maximum capacity or not at all, and different modes in which a water
system will all of a sudden have different dynamics (e.g., depending on the weather conditions). Examples
of continuous dynamics of water systems are the continuously changing water levels and water flows.
Hybrid MPC explicitly deals with the combination of these continuous dynamics and discrete events.

One common way uses binary variables, that indicate at each time step whether a discrete event takes
place (such as switching from open to closed or vice versa). Using these binary variables, the MPC opti-
mization problem typically becomes a mixed-integer nonlinear optimization problem, generally requiring
a significant computational load to solve (K&ppe, 2012), in particular as the number of binary variables can
be large. Below we discuss how the discrete events can be dealt with in an alternative way: by using as
decision variables real-valued time instants at which events take place, rather than binary variables that at
each time step indicate the taking place of an event.

3.1.1 The principle of time instant optimization

Figure 8 is used to explain the principle of TIO-MPC. Figure 8a shows how a binary input (e.g., the
state of the Maeslant barrier) would be modeled in the commonly used mixed-logical dynamic (MLD)
modeling framework for hybrid dynamical systems. In the MPC optimization problem formulation there
would be a binary variable to model the state of the barrier as a function of time for each control step.
Hence, when the prediction horizon is 16 hours and the control step is 1 hour, there are 16 / 1 = 16 binary
variables for that specific binary input signal. With a high enough number of binary inputs and complexity
of the model, an optimization problem that cannot be solved in a reasonable time (within the control step
length) will result. Therefore, the technique illustrated in Figure 8b is proposed. Instead of having a binary
variable that indicates for each control step whether or not there are time instants that indicate at what
time step an event takes place. Hence, the link between the binary variables and the continuous variables
is that a time instant #; indicates the moment at which the value of a binary input changes its value. The
time instants are continuous optimization variables, rather than binary variables as used in the MLD-MPC
formulation. Moreover, the amount of optimization variables could be lower with this technique. However,
if the number of time instants is lower than the number of control steps in the prediction horizon, the
optimization problem has fewer degrees of freedom. For example, the event represented by the MLD-MPC
binary variable of Figure 8a can happen 16 times, whereas the event represented by the TIO-MPC time

11
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Figure 9: A possible prediction model structure for TIO-MPC.

instants of Figure 8b can take place at most 2 times.

Prediction model TIO-MPC requires a model that maps the time instants, possibly additional “regular”
inputs (i.e., inputs that consist of a sequence of input variables, one variable for each (control) time step)
and the actual state of the system to the future state/output variables of the system. The time instants can
normally not directly be applied to the actuators of the system. Therefore, a convertor is needed to translate
the determined time instants into input sequences that are appropriate for the actuators.

The TIO prediction model can be formulated as:

(k) = f (t(k), 6:(k), x(k)) (17)
with:
(k)= x"(k+1) x"(k+2) - xT(k+N) |"
a(k)=[ uf(k) uwT(k+1) - wk+N-1)]"
tk)=[ nx nx - tox ]T,

where X(k) and @,(k) contain all the state variables and all the regular input variables over the prediction
horizon N, respectively. The vector £(k) consists of all the (continuous) time instants relative to k7 to be
optimized over the prediction horizon.

In general, there is no restriction on the prediction model structure as long as it relates the time instants
and regular inputs to the state variables. One possible structure which is used for the case study below
is given in Figure 9. The time instants f(k) are translated into regular input sequences similar to i, (k)
using a converter. These input sequences are used to calculate the state evolution X(k) with a discrete-time
state-space model.

Optimization problem The optimization problem to be solved at every time step of the TIO-MPC con-
trol system has some specific properties:

* Nonlinear optimization. The model (17) is always a nonlinear model. This is a consequence of using
time instants as input variables. The relations between the time instants and the future state values are
nonlinear. These relations make it impossible to use fast linear or convex optimization algorithms.

 Constraint optimization. The optimization problem is always constrained, because the time instants
have a predefined order (e.g., 11 (k) < 12(k)).

* Derivative-free optimization. In general, it is not possible to derive analytical expressions for the
derivatives of the problem with respect to the time instants. Optimization algorithms like sequen-
tial quadratic programming (SQP) that use numerical approximations of derivatives by performing
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several function evaluations are in practice not so efficient, due to the underlying model structure
(Figure 9) of the TIO-MPC optimization problem. The discrete-time state-space model inside the
model of (17) rounds the time instants to the closest discrete time step. This causes the objective
function to be non-smooth. As a result, derivative-based methods cannot be employed.

Because of these three properties we propose to use derivative-free or direct-search methods, such as
pattern search (Lewis et al., 2000), which do not require any knowledge about the problem structure. By
performing several function evaluations with different values for the optimization variables, such algo-
rithms aim at finding an optimal solution.

A schematic representation of the TIO-MPC optimization is given in Figure 10. The optimization
problem consists of the nonlinear model (17) and the objective function of the control system. Together
they form the function J {€(k), @i, (k) } to be minimized.

It is not guaranteed that the optimum found by a direct-search optimization algorithm is the global
optimum. Frequently, such an algorithm converges to a local optimum. We therefore employ a multi-start
approach. As an example of a direct-search method we will now discuss multi-start pattern search. This
method is later on also used in the simulation experiments.

Multi-start pattern search Basic, single-start pattern search searches at every iteration for an improved
solution of the optimization problem. The search is done by exploring points (alternative solutions) around
the current solution. These points, which are called mesh points, are created by adding a set of scaled
vectors to the current point. The scaling is called the mesh size and the set of vectors is called the pattern.
The pattern vectors could be random vectors, but are usually fixed-direction vectors. A possible set of
pattern vectors for an optimization problem with two variables is:

[ro] [o ] [-r o]t [o —1]

and is called the maximal basis. At every iteration, the function values of the mesh points are calculated
one by one. Depending on the settings, all the mesh points are explored at every iteration, or an iteration
finishes after an improved mesh point has been found. In the last case, the algorithm switches directly to
this improved mesh point. At every iteration of the pattern search algorithm there are two possibilities:

1. The search fails in finding an improvement of the current solution, i.e., the mesh points have all a
higher cost function value. The current solution stays the same in the next iteration and a new search
is performed. The mesh size for this new search is decreased by multiplying it with a contraction
factor (a factor between 0 and 1). This results in mesh points closer to the current point.

2. The search finds an improvement of the current solution, i.e., one of the mesh points has a lower cost
function value than the current point. The current point (solution) is replaced by this mesh point.
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Figure 11: A schematic view of a river and its surrounding area.

A new search is performed around this new current solution. The mesh size of this new search is
increased by multiplying it with an expansion factor (i.e., a factor larger than 1).

The solution at iteration i will always be at least equal or better than the one at previous iteration i — 1.
Therefore, the cost function value of the optimization problem will decrease until it converges close to
a local (possibly global) optimum. The algorithm stops when the stopping criterion is satisfied (e.g., a
minimum mesh size, a maximum number of function evaluations, a minimum change in function value
between two successive iterations, a maximum number of iterations, or a time limit).

Pattern search in its basic single-start version does not guarantee finding a globally optimal solution.
Large-scale nonlinear problems can have a large number of local optima. Therefore, we propose multi-start
pattern search as the TIO-MPC optimization method. The pattern search algorithm is then started several
times from different initial points. These points can be generated randomly, but good initial guesses based
on expert knowledge can make the convergence of the algorithm considerably faster. The probability of
finding the global optimum increases when the number of starting points increases. However, there is a
finite amount of time to perform the optimizations, because the TIO-MPC controller has to apply the control
actions after the control time is over. The multi-start optimizations can be performed in series (one after
another), but also in parallel by using several processors. Either way, the pattern search optimizations are
restarted several times until the maximum optimization time is reached and possibly with several processors
in parallel. The best of the local optima is selected and applied to the system.

3.1.2 TIO-MPC design for the Rhine-Meuse Delta

To design a TIO-MPC controller for the Rhine-Meuse delta we have to define the objective function,
the prediction model, the constraints, and the solution method. We explicitly provide the design of the
controller for the current situation. The design of the controller for the future situation considered later on
in the simulation studies is straightforward (involving primarily the replacement of the prediction model
and the adequate redefinition of the vectors and matrices.)

Objective function Input effort and costs on (too) high water levels are considered as control objectives.
We adopt the commonly used weighted-sum strategy to obtain an objective function that merges these
objectives into one combined objective. For time step k the objective function is defined as:

J(k) = Jx, (X1 (k)) +Jx, (R2(k)) + Jimb (Qmb (k) + I (b (K)) + Jns (Tns () ), (18)
where
(k) =[ xitk+1) xi(k+2) - x(k+N) ]
k) =[ xk+1) xk+2) - xk+N) ]
fnp (k) = [ b (k) tmp(k+1) - gy (k+N—1) |"
o (k) = [ (k) unp(k+1) - upp(k+N—1) ]
(k) = [ uns(k)  uns(k+1) - ups(k+N—1) |7,

with N the length of the prediction horizon in discrete time steps. The first part of the objective function
consisting of the terms Jy, (-) and Jx, (-) describes the damage and flood risk of high water levels. This part
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of the objective function is illustrated for Jy, (-) in Figure 11. When the maximum of water level x; stays
below a reference level rq; there will be no damage at all. In this situation the river is in its summer bed.
Exceeding reference level rj; can lead to some damage (e.g., damaged houses, cattle, and fields on the
floodplains) and flood risk (e.g., risk of collapsing dikes), depending on the water level. Therefore, a water
level exceeding reference level r; is penalized with a quadratically increasing cost. The quadratically
increasing cost form is chosen to represent that when there is a relatively higher water level and the water
level gets a bit higher, the costs are much larger, than when there is a relatively lower water level and the
water level gets a bit higher. The dike height r|; is the most important reference level. Exceeding reference
level r will suddenly lead to huge (economic and social) costs caused by flooding of the crowded area
of Rotterdam. Therefore, exceeding level r|, is penalized with a constant cost value, as well as with a
quadratically increasing cost. In case it is impossible to prevent that the water level exceeds the dike
height, this quadratic cost ensures that the controller still minimizes the magnitude of the flood. The cost
function that we propose is now defined on the cumulative exceedance of the critical water level by x| as
follows:

Jy, (X1(k)) = ar1ecum, 11 (k) + Cti2ecum,12(k) + o13é13(k),

where

|
M=

ecum,11(k) (max (x1 (k+ ) — ”1170)>2
J=1
N
ecum,12(k) = Y (max(x; (k+ j) — r12,0))*
j=1
5 [ 1 if max(X(k)) > ri2
ai3(k) = { 0 otherwise,

where ecym 11 (k) and eqym, 12 (k) are the cumulative exceedance for reference levels ry; and ry, respectively.
The parameters o1, ¢tj2, and o3 are cost weights. The cost function Jy, (X2 (k)) is defined in a similar way.

The second part of the objective function (18) consisting of Jyp (b (k)), Jhb (Thp (k)), and Jus (Tps (k))
describes the cost of closing and moving the storm surge barriers. Closure of the Maeslant barrier or the
Hartel barrier blocks the navigation in the corresponding canals. Secondly, movement of a barrier also
costs money due to wear and tear and energy costs. The cost function of the Maeslant barrier is therefore
defined as

N N
Jinb (b (k) = Gtmp1 Y [1— ttmp (k4 j — 1)] + Oz Y |tmp (k+j — 1) —ump (k+j—2)[,  (19)
= =

with oy the cost of closing the Maeslant barrier for one time step, and Oy, the cost of changing the state
of the Maeslant barrier. The cost function of the Hartel barrier Jy, (lin, (k)) is defined similarly. The cost
function for the Haringvliet sluices Jys(iihy (k)) is also defined similarly, except for that only costs on the
movements are considered (i.e., a term similar to the second term in (19)).

The Hollandsche IJssel barrier and its local control system are included in the TIO-MPC prediction
model. Thus, the control actions for this barrier are not optimized. The control objective of keeping the
water level in the Hollandsche [Jssel below 2.25 mNAP results into trivial control actions: Closing the
Hollandsche IJssel barrier when the water level x (k) at Rotterdam exceeds 2.25 mNAP. This is also the
local control rule of the current control system of the Hollandsche IJssel barrier.

Prediction model The complete nonlinear reservoir model is used as a prediction model for the TIO-
MPC approach. The gate positions of the Haringvliet sluices are regular inputs of the TIO-MPC prediction
model. The nonlinear relation between the sluice gates, the water levels, and the flow through these sluices
fits inside the nonlinear optimization problem.

The TIO-MPC prediction model has both time instants and regular inputs. The state (open or closed)
changes of the Maeslant barrier and the state changes of the Hartel barrier are both modeled with four time
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Figure 12: Illustration of typical TIO-MPC inputs.

instants. These time instants represent the moments at which the state of the barriers change. The positions
of the gates of the Haringvliet sluices are modeled with one regular input. The result is the following
TIO-MPC prediction model:

K(k) = f (B(k), 8ns (k), x(k) ), (20)
with:
(k)= [ x"(k+1) xT(k+2) - xT(k+N) ]
Uing (k) = [ uns(k) uns(k+1) -+ ups(k+N—1) ]T

7 T
t(k) = [ll,mb,k D mbk 13mbk 4 mbk [1hbk 2hbk I3 hbk f4,hb,k]

9

where upg(k) is the gate position (m) of the Haringvliet sluices at time step k. The time instants 7{ mp .
12.mb k> 13,mb k> and 74 mp ¢ () are the moments at which the Maeslant barrier changes its state. Similarly,
the time instants #{ pp k, £ 1 k» 13,hb k> and 4 pp & (s) are the moments at which the Hartel barrier changes its
state. The inputs of the TIO-MPC model are illustrated in Figure 12.

The time instants are possibly beyond the length of the prediction horizon, which enables that no
discrete state changes take place over the prediction horizon. The discrete-time nonlinear reservoir model
of the Rhine-Meuse delta requires regular input sequences for the state of the Maeslant barrier and the
Hartel barrier. Therefore, a transformation is needed from the time instants into regular input sequences.
This transformation is made as follows:

fnp (k) = [ b (k) tmp(k+1) - wmp(k+N—1) ]",

—

with

ump(k—1) if j < round(r; mp )
or round(# mp ) < j < round(#3 mp x)
or j > round(4 mb k)

I —ump(k—1) otherwise,

umb(k+]) =

for j =0,..,N — 1, where @i, (k) is the regular input sequence created from the time instants.

Optimization The TIO-MPC optimization problem consists of the model and the objective function that
are discussed in the previous paragraphs. The model (20) relates the inputs of the water system to the
evolution of the states (water levels) over the prediction horizon. The objective function (18) is a function
of the inputs and the state evolution. These two relations together form a function that relates the inputs
(degrees of freedom) to the value of the objective function:

J(H(k), tipg (k) = fopt (1(k), Tins (K)). Q1)
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In fact, the actual state x(k) of the system and the predicted disturbances q1q(k+ j), gaa(k+ j), gza(k+ j),
hiyh (k4 ), and hns(k+ j), for j=0,...,N — 1, are also inputs of this function. However, since these inputs
are constant in the optimization problem, they are left out of (21). Function fopt( ) is the function to be
minimized by the optimization algorithm, subject to the following constraints:

0 <11 mp(k) (22)
1, mb (k) — I'min < 5] ,mb (k) (23)
t2,mb (k) I'min < 13, ,mb (k) (24)
t3,mb (k) Imin < t4 mb (k) (25)
4.mb (k) < fmax (26)
0 <t (k) 27)
11,16 (k) — tmin < 22, hb (k) (28)
12 hb (k) — Imin < 13, ,hb (k) (29)
130 (k) — tmin < tanb(k) (30)
t4.1b (k) < fmax 3D
Ups min < Uns(k+ J) < fins max (K + J) (32)
for j=0,...,N—1, with:
fing max (k+ ) = { Z::Z?: iﬁ;ﬁigé) > his(k+ j) (33)

where i, (8) is the minimum time between two state changes, fiax (s) is the maximum value of 74 1, (k) and
14 hp (k) and is larger than the prediction horizon, ung min and uns max (M) are respectively the minimum and
maximum gate positions of the Haringvliet sluices, and /4 is the water level at sea side of the Haringvliet
sluices. The relation in (33) is the constraint of a one-directional flow through the Haringvliet sluices. The
constraints (22)—(30) are constraints for the Maeslant barrier and the Hartel barrier and describe the order
of the time instants.

As mentioned, the cost function is minimized subject to the constraints using the nonlinear derivative-
free optimization algorithm pattern search. The pattern search algorithm is started i times from i different
initial points (i.e., multi-start optimization) until the end of the control step length.

Three different approaches can be used for determining appropriate initial points used for the multi-start
pattern search optimization:

1. Initial solutions based on expert knowledge. The initial time instants of the Maeslant barrier and Har-
tel barrier are determined in the way shown in Figure 13. The time instants of the two highest peaks
of hpyp (predicted sea water level at Hoek van Holland) in the prediction horizon are determined. The
initial time instants are based on these two peak times. For example, when the barriers are initially
open, there are four obvious possibilities for each barrier: closing at peak 1, closing at peak 2, closing
at peak 1 and peak 2, or staying open”. These initial solutions are logical, because the barriers are
designed to block peak water levels. When the state of a barrier is not initially open, four different
logical possibilities are determined. Combining these different possibilities of two barriers leads to
4% = 16 initial solutions based on expert knowledge. The Haringvliet sluices are maximally open
at every initial solution based on expert knowledge. This is normally optimal in critical conditions,
because the maximum amount of water is discharged out of the Rhine-Meuse delta.

2. Initial solutions that are generated randomly. The inclusion of a set of random initial solutions
prevents the pattern search algorithm from converging to possibly suboptimal solutions based on
expert knowledge only.

2 Another logical possibility is to close before peak 1 and to open again after peak 2. However, in the case this possibility is
optimal, it is likely that the pattern search algorithm converges to this solution when it is started from the first two mentioned logical
possibilities.

17



Lelose

Water level —

State barrier
o
jr
o ol

J

o
~
A
N
—+
. @
IS

time —

Figure 13: This figure shows how the four initial points are determined based on expert knowledge, for a

barrier that is initially open.

3. An initial solution that is based on the solution of the previous TIO-MPC optimization. The op-
timization problem of control step k is usually comparable to the optimization problem at control
step k — 1. Therefore, an initial solution based on the previous TIO-MPC optimization is usually

relatively close to an optimum.
The TIO-MPC procedure at a time step is now as follows:

1. A large set’ of initial solutions is created.

2. The cost function values fopt( ) of the initial solutions of step 1 are calculated.

3. The initial solutions are ranked based on the cost function values calculated in the previous step.
An initial solution with a lower cost function value is expected to be more promising than an initial

solution with a higher cost function value.

4. A pattern search optimization is started with the most promising initial solution based on the ranking
calculated in step 3. After convergence of the pattern search optimization, a new optimization is
started with the next most promising initial solution. This procedure is repeated until time runs out.

5. The best solution calculated in Step 4 is selected as the output of the multi-start pattern search opti-

mization.

4 Results and discussion

In order to illustrate the behavior of the proposed control approach, we consider simulation studies of
the current and future situation of the Rhine-Meuse delta. The nonlinear reservoir models proposed in
this paper are used both for simulation as well as for predictions inside the MPC controller. Simulations
are performed using the software package Matlab. Control actions are computed using the pattern search

3The initial solution set has to be larger than the number of pattern search optimizations that can be performed in the control step
length. This ensures that the multi-start pattern search optimization algorithm uses the complete control step length to search for good

control actions.
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function as implemented in Mathwork’s Genetic Algorithms and Direct Search Toolbox for Matlab (Math-
Works, 2007) in combination with multi-start. At each time step, the pattern search function solves the
optimization problem (21)—(33).

The simulation time step is 2 minutes. The control time steps are set to 10 and 30 minutes, respectively
for the current control systems and the MPC control system (10 minutes is the control step length used in
the current control systems; 30 minutes is the control step length for the MPC control system, providing
a trade-off between fast control, but of lower quality on the one hand versus slower control, but higher
quality on the other). A prediction horizon of 24 hours is considered, being equal to the current practice
(van Overloop, 2009). It is assumed that the controllers have perfect predictions of the boundary conditions
(the three river inflows and the two sea water levels) over the prediction horizon. The total simulation time
span is 48 hours.

Several scenarios have been investigated in order to investigate the behavior of the proposed control sys-
tem (van Ekeren, 2010). These scenarios have been created using historical measurement data of November
7-9, 2007 provided by the Dutch national water body, Rijkswaterstaat (Rijkswaterstaat, 2010). This pe-
riod also includes the period in which the Maeslant barrier was closed due to storm conditions at sea. We
consider the following two scenarios:

 Scenario 1 involves conditions due to a storm surge at sea and a sea level rise of 0.65 m. The flow of
the river Rhine at Lobith (which gives an indication of the amount of water flowing into the Rhine
Meuse delta) is 1 600 m? /s. This results in a maximum sea water level of 3.81 mNAP with relatively
low discharges of the three rivers.

e Scenario 2 involves a very extreme scenario; extremely high water level peaks of 4.96, 4.23, and
4.56 mNAP at Hoek van Holland are considered. The scenario has been created by combining his-
torical data sets (of periods in February 1989 and November 2009) and adding effects due to a sea
water level rise of 1.8m.

4.1 Scenario 1

Figure 14 shows the results of the simulation using the current local control systems of the Rhine-Meuse
delta. As can be observed, the Maeslant barrier and Hartel barrier are both closed for 20 hours. These
long closures in combination with the relatively low inflows of the rivers Lek, Waal, and Meuse keep the
water levels at Rotterdam (y;) and Dordrecht (y;) very low. The area is therefore well protected against
floods. However, the long closure is highly undesirable, since ocean vessels are blocked for more than 24
hours (4 hours before closure of the Maeslant barrier no navigation is allowed anymore). The discharge
volume through the Haringvliet sluices is quite low (a discharge volume of 15 x 10®m? over the time span
of 48 hours), since it is related to the relatively low flow of the river Rhine at Lobith. The performance
(computed as the evaluation of the cost function over the complete simulation) is 2.42 x 10°.

Figure 15 shows the results of the simulation when using the TIO-MPC approach. We observe that
instead of closing both the Maeslant and the Hartel barrier for a long period, the TIO-MPC approach only
closes the Maeslant barrier for two short periods (3 hours in total). The maximum water levels at Rotterdam
and Dordrecht are just above the first reference levels 11 and ry, respectively. This illustrates the trade-off
that the controller makes between exceeding the first reference levels (where damage starts) and input effort
(cost on closing the barriers) that the TIO-MPC controller considers. The Haringvliet sluices are maximally
open when possible (i.e., when constraint y3 > ypy, 1S not violated), resulting in a large discharge volume
of 705 x 10°m? over the time span of 48 hours. The performance is 4.40 x 10°.

4.2 Scenario 2

The simulation results for Scenario 2 with the current control systems are shown in Figure 16. The sim-
ulation results for the TIO-MPC approach are shown in Figure 17. The simulation results for the current
control systems show comparable results (i.e., state changes of the barriers occur mostly at approximately
the same time instants). It is observed that the TIO-MPC approach as well as the current control system
cannot prevent that Rotterdam and Dordrecht are flooded. As can be seen in Figure 17, the peak water lev-
els at Rotterdam and Dordrecht do not occur at the first and highest sea water level peak. After the second
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Figure 14: Simulation results of the current control systems for Scenario 1.
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Figure 15: Simulation results of the TIO-MPC approach for Scenario 1. The dotted horizontal lines repre-
sent respectively from bottom to top the reference levels 11, 11, 22, and rq2.
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Figure 16: Simulation results for the current control systems handling Scenario 2.
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Figure 17: Simulation results of the TIO-MPC approach for Scenario 2.
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sea water level peak, the water levels y; and y, do not have enough time to decrease. Therefore, the high
discharges of the rivers Rhine, Waal, and Meuse result in extremely high water levels in the neighborhood
of sea water level peak 3. Hence, in this case the control approaches are not able to prevent the flooding.
The performance when using the current control systems is 1.57 x 10'0. The performance when using the
TIO-MPC approach is 1.53 x 1010,

Since with the current infrastructure, the controllers are not capable of preventing flooding, it is interest-
ing to explore whether this will be possible in the case that additional infrastructure is built, in accordance
with the plans of the Dutch government. Therefore, we next illustrate the behavior that emerges when two
possible future situations are considered that include possibilities for additional storage. First, an extension
of the current system in which a small additional reservoir is present, and the Volkerak sluices are con-
structed to control this reservoir; and second, an extension in which the current system is extended with a
large additional reservoir, again with the Volkerak sluices present for controlling this reservoir.

The simulation results of the TIO-MPC approach when using a future setup with a small additional
reservoir are shown in Figure 18. The water levels y; and y, are kept respectively 69 cm and 78 cm lower
than the TIO-MPC approach of the current Rhine-Meuse delta setup. However, the water level at Dordrecht
still becomes 9 cm higher than the dike height. Moreover, the critical water level rs; of Zeeland is exceeded
with 50 cm. As can be seen in Figure 19, the TIO-MPC approach with a large reservoir has a significantly
better performance. The peak water levels at Rotterdam, Dordrecht, and Zeeland are respectively 111 cm,
61 cm, and 59 cm lower than the critical levels ry2 , 27, and rsy. The performance of TIO-MPC with a
small reservoir is 3.34 x 108, The performance of TIO-MPC with a large reservoir is 1.98 x 107.

5 Conclusions

In this paper we have proposed a model predictive control (MPC) approach for water systems represented
as hybrid systems (i.e., combing both continuous dynamics and discrete events). The approach proposed
is based on so-called time-instant optimization (TIO). The idea of TIO-MPC is that the moments at which
events should take place are determined, rather than that for each time step it is determined whether an
event should take place or not (as is typically the case in more conventional predictive control approaches
for hybrid dynamical systems). When considering hybrid MPC problems, this approach can be promising
in terms of reduced computational requirements. This is achieved by transforming the originally mixed-
integer MPC optimization problem into an optimization problem with only real-valued variables. Using
simulation studies based on the Rhine-Meuse delta in The Netherlands the behavior of the approach has
been illustrated, in particular when a trade-off has to be made between input effort and damage costs.
Current and future situations have been investigated.

Future research will be carried out on the application side and on the control and optimization theoretic
side. Future research focuses on evaluating the performance of the proposed control scheme when there is
a mismatch between the model used by the controller to make predictions and the dynamics of the water
systems to be controlled (e.g., when the dynamics of the water system to be controlled are represented
by a Sobek model). Moreover, future research will address the computational performance analysis of
the proposed approach for future Rhine-Meuse delta setups and coordination among MPC controllers that
control different, but interconnected, parts of large-scale water systems. From the control and optimization
point of view, an extensive assessment and further comparison with alternative mixed-integer optimization
methods from literature (such as (Bick and Schiitz, 1995; Li et al., 2006)) will be made. Moreover, a
comparison will be made between the currently used approach of integrating the multiple objectives in one
objective function on the one hand and alternatives, such as epsilon constraint (Haimes, 1973) and goal
attainment (Gembicki and Haimes, 1975), on the other.
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