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Optimal Hybrid Macroscopic Traffic Control for Urban Regions:

Perimeter and Switching Signal Plans Controllers

Mohammad Hajiahmadi∗, Jack Haddad, Bart De Schutter, and Nikolas Geroliminis

Abstract— The dynamics of a heterogeneous large-scale ur-
ban network is modeled as R homogeneous regions with the
macroscopic fundamental diagrams (MFDs) representations.
The MFD provides for homogeneous network regions a uni-
modal, low-scatter relationship between network vehicle density
and network space-mean flow. In this paper, the optimal hybrid
control problem for an R-region MFD network is formulated
as a mixed integer nonlinear optimization problem, where two
types of controllers are introduced: (i) perimeter controllers,
and (ii) switching signal timing plans controllers. The perimeter
controllers are located on the border between the regions, as
they manipulate the transfer flows between them, while the
switching controllers control the dynamics of the urban regions,
as they define the shape of the MFDs, and as a result affect
the internal flows within each region. Moreover, to decrease
the computational complexity due to the nonlinear and non-
convex nature of the formulated optimization problem, we re-
write the problem as a mixed integer linear problem utilizing
a piecewise affine approximation technique. The performance
of the two problems is evaluated and compared for different
traffic scenarios for a two-region urban case study.

I. INTRODUCTION

Large-scale urban networks need efficient traffic manage-

ment and control schemes. Modeling a large urban network

would be a complex task if one wants to study and model the

traffic flow dynamics of each element (i.e. each link and each

intersection). Hence, instead of adopting a macro-modeling

approach, researchers investigate the possibilities of deriving

an aggregate model for the whole traffic network.

Macroscopic fundamental diagrams (MFDs) have been ob-

served for homogeneous urban network regions from empirical

and simulation data [1]. The MFD captures (at a network level)

the traffic flow characteristics of an urban region. It relates

the number of vehicles (accumulation) in the region and its

production, defined as the trip completion flow of vehicles.

Homogeneous networks with small variance of link densities

have a well-defined MFD (as illustrated in Fig. 1), i.e. low

scatter of flows for the same densities (or accumulations), [2].

Note that the network topology, the signal timing plans of the

signalized intersections, and the infrastructure characteristics

affect the shape of the MFD, see e.g. [3]. Moreover, heteroge-

neous networks might not have a well-defined MFD, mainly

in the decreasing part of the MFD, and the scatter becomes

higher as accumulation increases. As a solution, these networks
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Fig. 1. A well-defined macroscopic fundamental diagram.

might be partitioned into more homogeneous regions with

small variances of link densities MFD [4]. Other investigations

of the MFD using empirical or simulated data can be found

in [5]–[7], while routing strategies based on the MFD can be

found in [8].

The MFD can be utilized to establish elegant schemes to

decrease delays and increase accessibility in large urban net-

works. Meanwhile, the idea of focusing the control efforts only

on the urban region borders has attracted many researchers, e.g.

the perimeter control as in [9]–[11]. The perimeter controllers

manipulate the percentage of flows between two regions to

maximize the total number of trips completed.

In this paper, we introduce a new type of controller be-

sides the perimeter controllers, that can control the traffic

flow dynamics of each urban region by switching between the

signal timing plans. Changing timing plans for the signalized

intersections within each region might alter the shape of the

MFD, which will affect the network flow dynamics. Therefore,

instead of assuming one MFD for each region, we introduce

a set of MFDs (library), where each MFD corresponds to a

certain timing plan for intersections inside the region.

Switching between timing plans together with perimeter

control could fulfill the traffic objectives for a vast variety of

demands and traffic conditions. However, combining these two

control entities is a complex task and not straightforward, as a

mixture of discrete and continuous control inputs is introduced

in the total nonlinear hybrid model of the network. The model

predictive control (MPC) [12] is used to solve the associated

optimal control problem. Since we deal with a hybrid system,

the resulting optimization problem is a nonlinear mixed inte-

ger problem. Solving nonlinear and nonconvex optimization

problems can be time consuming and finding a global optimum

solution is not guaranteed. As a solution, one can try to ap-

proximate and transform the model into a mixed linear form

and formulate the optimization problem as a mixed integer

linear programming (MILP) problem. The computation time

will decrease significantly and one global optimum will exist.



The rest of the paper is organized as follows. In Section II,

an MFD-based model of an R-region urban network is derived,

while in Section III the optimal hybrid control problem is

formulated. A mixed linear dynamic model based on piecewise

affine (PWA) approximation of the original model is proposed

in Section IV. Performance of the two models is tested for two

case study examples with different scenarios in Section V. The

paper concludes with a discussion about the results and ideas

for further research.

II. MFD-BASED MODELING OF URBAN REGIONS

Let us assume that a heterogeneous network can be parti-

tioned into R homogeneous urban regions, each having a well-

defined MFD (later we assume that each homogeneous region

can have a set of different MFDs corresponding to the activated

signal timing plans), see Fig. 2. In this paper, the time step and

the sample time of the model are denoted by k (−) and T (s),
respectively, where t = k · T and k = 0, 1, 2, . . . ,K − 1.

Let qij(k) (veh/s) be the traffic flow demand generated in

region i with direct destination to region j at time step k, i =
1, 2, . . . , R, and j ∈ Si, where Si is the set of regions that are

directly reachable from region i. Corresponding to the traffic

demands, accumulation states are defined to model the dynamic

equations: nij(k) (veh), where nij(k) is the total number of

vehicles in region i with direct destination to region j at time

step k. Let us denote ni(k) (veh) as the accumulation or

the total number of vehicles in region i at time step k, i.e.

ni(k) = nii(k) +
∑

j∈Si
nij(k).

The MFD is defined by Gi(·) (veh/s) which is the trip

completion flow for region i at ni(k). The trip completion

flow for region i is the sum of transfer flows, i.e. trips from

i with destination j, j ∈ Si, plus the internal flow, i.e.

trips from i with destination i. The transfer flow from i with

destination to j, denoted by Mij(k) (veh/s), is calculated cor-

responding to the ratio between accumulations, i.e. Mij(k) =
nij(k)/ni(k) ·Gi(ni(k)), j ∈ Si, while Mii(k) is the internal

flow from i with destination to i and calculated by Mii(k) =
nii(k)/ni(k) ·Gi(ni(k)). These relationships assume that trip

length for all trips within a region (internal or external) are

similar, i.e. the distance traveled per vehicle inside a region

is independent of the origin and destination of the trip. For a

description of different cases the reader can refer to [13], which

will not alter the methodology. We use a third-order function of

ni(k) to describe the MFD, e.g. Gi(ni(k)) = ai · n
3
i (k) + bi ·

n2
i (k) + ci · ni(k), where ai, bi, ci are estimated parameters.

The mass conservation equations (without integrating control

measures) of the R-region MFDs system are as follows:

nii(k + 1) = nii(k) + T ·
(

qii(k) +
∑

j∈Si

Mji(k)−Mii(k)
)

(1)

nij(k + 1) = nij(k) + T ·
(

qij(k)−Mij(k)
)

(2)

for i = 1, 2, . . . , R and ∀j ∈ Si. These equations are a

generalized (R regions instead of two) and discretized form of

the continuous-time equations presented in [9]. Note that route

choice modeling in not integrated in the dynamic equations.

Region i

uji(k)

uij(k)

δi,fi(k)

1 2

Region j

δj,fj (k)

1 2

Fig. 2. Hybrid R-region MFDs system with perimeter and switching timing
plans control inputs uij(k) and δi,fi (k) for region i, respectively, and
uji(k) and δj,fj (k) for region j, respectively.

III. OPTIMAL HYBRID CONTROL FOR AN R-REGION

MFDS SYSTEM

In the previous section, the MFD-based model (1)-(2) of

urban regions was introduced without any control. In the fol-

lowing, two type of controllers are introduced in Section III-

A and integrated into the dynamic equations (1) and (2) in

Section III-B, while in Section III-C the optimal hybrid control

problem for the R-region MFDs system is formulated.

A. Hybrid Control: Perimeter and Switching Controllers

Two types of controllers are introduced in the hybrid control

problem: (i) perimeter controllers, and (ii) switching signal

timing plans controllers. The perimeter controllers are located

on the border between the regions, as they manipulate the

transfer flows between them, while the switching controllers

control the dynamics of the urban regions, as they define the

shape of the MFDs, and as a result affect the internal flows

within each region.

The signal timing plans affect the shape of the MFD, see

[3]. In this paper, it is assumed that each urban region has a

predefined library of signal fixed-timing plans for the signal-

ized intersections inside the region, e.g. fixed-timing plans for

the morning and evening peak hours and a typical uncongested

hour, where each plan in the library has different green, red,

cycle, and offset settings for the intersections. It is also assumed

that for each activated signal plan, the region will have similar

shape of MFD, i.e. a non-symmetric unimodal curve skewed to

the right, but with different values of the maximum output, and

critical and jam accumulations, see e.g. three different MFDs

for regions i and j in Fig. 2. Therefore, the timing plan library

employs a number of MFDs for the region. The switching

controller activates one MFD from the library by switching

from one signal plan to another.

The optimal perimeter and switching plans decisions are

obtained by minimizing the total delay in the R urban regions.

The total delay (veh · s) in the urban regions is defined as

follows:

J = T ·
K−1
∑

k=1

R
∑

i=1

ni(k) (3)

B. Hybrid R-Region MFDs System

Let us denote the perimeter control inputs by uij(k) (−),
i = 1, 2, . . . , R, j ∈ Si, and the switching timing plans control

inputs by δi,fi(k) ∈ {0, 1}, where fi ∈ Fi and Fi is the set
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Fig. 3. Optimal hybrid perimeter and switching plans control for urban
regions.

of MFDs in the library for region i. The control inputs uij(k),
δi,fi(k), and uji(k), δj,fj (k) are associated with regions i and

j, respectively.

The perimeter controllers uij(k) and uji(k) are introduced

on the border between the regions i and j as shown in Fig. 2.

The transfer flow Mij(k), i = 1, 2, . . . , R, j ∈ Si, is

controlled such that only a fraction of the flow actually transfers

from region i to region j, i.e. uij(k) · Mij(k), where 0 ≤
uij(k) ≤ 1. Hence, the MFD-based model (1) and (2) is

altered by replacing Mij(k) and Mji(k) by uij(k) · Mij(k)
and uji(k) ·Mji(k), respectively. It is also assumed that these

controllers will not change the shape of the MFDs.

The switching controllers can manipulate indirectly the in-

ternal flows by switching the MFDs. Let us now assume that

each region i has a predefined MFD library (or set of MFDs

denoted by Fi) that corresponds to a signal timing plans library

for the signalized intersections. The switching control signal

δi,fi(k) activates the fi-th MFD in the set Fi, i.e. Gi,fi(·),
if δi,fi(k) = 1 and δi,ri(k) = 0, ∀ri 6= fi ∈ Fi (only

one δi,fi(k) = 1 at any time step, i.e.
∑

fi∈Fi
δi,fi(k) = 1).

Therefore, the R-region MFDs system (1) and (2) is modified

to integrate the switching controllers, as the term Gi(ni(k)) is

changed to
∑

fi∈Fi

δi,fi(k) ·Gi,fi(ni(k)).

C. Optimal Control Problem Formulation

After introducing and integrating the controllers into the hy-

brid R-region MFDs system, we formulate the optimal hybrid

control problem. The scheme of the optimal control problem is

presented in Fig. 3. The aim is to minimize the total delay (3) by

manipulating the perimeter controller and switching between

the library timing plans.

In reality, homogeneous regions have an MFD with low scat-

ter particularly in the congested regime as shown schematically

in Fig. 2. Therefore, errors are expected between the hybrid

R-region MFD model (assuming well-defined MFDs) and the

real network. Therefore, a closed-loop optimal control scheme

is needed in order to take into account the errors between the

plant and the model and also the disturbances, e.g. variations

in the expected demands. Among these schemes is the model

predictive control (MPC) framework, which has been widely

used for different traffic control purposes [14]–[17]. The MPC

determines the optimal control inputs in a receding horizon

manner, meaning that at each time step an objective function

is optimized over a prediction horizon of Np and a sequence

of optimal control inputs are derived. Then the first sample of

the control inputs is applied to the system and the procedure is

carried out again with a shifted horizon.

We directly formulate the problem in the form of the model

predictive control. Let kc (−) and Tc (s) be the control time

step counter and its length. It is assumed that the controller

time step length is an integer multiple of the model time step

length, i.e. Tc = M ·T . Then, the overall optimization problem

is formulated as follows:

J(kc) = min
ũij(kc),δ̃i,fi (kc)

T ·

M ·(kc+Np)−1
∑

k=M ·kc

R
∑

i=1

ni(k) (4)

subject to:

nii(k + 1) = nii(k)+

T ·
(

qii(k) +
∑

j∈Si

uji(k) ·Mji(k)−Mii(k)
)

(5)

nij(k + 1) = nij(k) + T ·
(

qij(k)− uij(k) ·Mij(k)
)

(6)

Mii(k) =
nii(k)

ni(k)
·

[

∑

fi∈Fi

δi,fi(k) ·Gi,fi(ni(k))

]

(7)

Mij(k) =
nij(k)

ni(k)
·

[

∑

fi∈Fi

δi,fi(k) ·Gi,fi(ni(k))

]

(8)

ni(k) = nii(k) +
∑

j∈Si

nij(k) (9)

0 ≤ ni(k) ≤ ni,jam (10)

uij,min ≤ uij(k) ≤ uij,max (11)

uij(k) = uc
ij(kc) if k ∈ {M · kc, . . . ,M · (kc + 1)− 1}

(12)

δi,fi(k) = δci,fi(kc) if k ∈ {M · kc, ...,M · (kc + 1)− 1}
(13)

δi,fi(k) ∈ {0, 1}, ∀fi ∈ Fi (14)

for i = 1, 2, . . . , R and ∀j ∈ Si, where ni,jam (veh) is

the jam accumulation for region i, and uij,min and uij,max

(−) are respectively the lower and upper bounds for the

perimeter controllers for regions i and j. The optimiza-

tion variables defined over the prediction horizon Np are

ũij(kc) = [uc
ij(kc), . . . , u

c
ij(kc + Np − 1)] and δ̃i,fi(kc) =

[δci,fi(kc), . . . , δ
c
i,fi

(kc + Np − 1)], where uc
ij(kc + l) and

δci,fi(kc+l) for l = 0, . . . , Np−1 are the perimeter and switch-

ing control inputs at every control time step kc, respectively.

The problem (4)–(14) is a mixed integer nonlinear opti-

mization problem (MINLP) and can be solved using mixed

integer nonlinear optimization algorithms [18]. However, due

to the fact that here we deal with both real and binary decision

variables and also since the model equations have nonlinear

terms, the optimization problem could have multiple (local)

optimal points. Moreover, as will be demonstrated in Section V,

the optimization algorithm takes considerable time, specially

due to the fact that the algorithm should be executed for several

random initial points in order to prevent reaching local optima

only. Thus, in the next section we simplify and reformulate the

problem in order to eventually establish a mixed integer linear

optimization problem.

IV. APPROXIMATION OF THE R-REGION MFDS SYSTEM

In this section, we aim at recasting the problem into a mixed

integer linear optimization problem. The nonlinear model in



the MPC framework (4)–(14) is replaced by an approximated

model following a piecewise affine (PWA) approximation. The

idea of PWA approximation of MFDs was presented in a

hierarchical control framework for intelligent vehicle highway

systems in [19]. The nonlinearity in the dynamic equations is

present in: (i) the internal and transfer trip completion flows,

see Mii(k) in (7) and Mij(k) in (8), respectively, and (ii) the

product between the perimeter controllers and the transfer trip

completion flows, see (5) and (6). In the following, we address

these nonlinearities and obtain the PWA approximations.

A. PWA Approximation of the Trip Completion Flows

The nonlinearity in the internal trip completion flows Mii(k)
is approximated as follows (a similar procedure is applied to the

transfer trip completion flows Mij(k)). Substituting the third-

order function Gi,fi(ni(k)) = ai,fi · n
3
i (k) + bi,fi · n

2
i (k) +

ci,fi ·ni(k) into (7), one can re-write the internal flows Mii(k)
for i = 1, 2, . . . , R as follows:

Mii(k) = nii(k) ·

[

∑

fi∈Fi

δi,fi(k) ·
(

ai,fi · n
2
i (k)+

bi,fi · ni(k) + ci,fi
)

]

.

(15)

The function Pi,fi(ni(k)) = ai,fi · n
2
i (k) + bi,fi · ni(k) +

ci,fi (inside the parentheses in (15)) defined on the interval

[ni,min, ni,max] can be approximated by a continuous PWA

function P̂i,fi(ni(k)) with two intervals as follows:

P̂i,fi(ni(k)) =






























γi,fi +
ni(k)− ni,min

αi,fi − ni,min
· (ξi,fi − γi,fi)

for ni,min ≤ ni(k) < αi,fi ,

ξi,fi +
ni(k)− αi,fi

ni,max − αi,fi

· (ǫi,fi − ξi,fi)

for αi,fi ≤ ni(k) < ni,max.

(16)

where the parameters γi,fi , αi,fi , ξi,fi , and ǫi,fi can be esti-

mated using different methods, e.g. a nonlinear least-squares

method [20].

However, the multiplication of nii(k) with the other vari-

ables in the square brackets in (15), results in multiple products

of variables. In principle, each product needs to be approxi-

mated by a PWA function (holds also for nij(k)). This makes

the approximation a tedious task as more parameters have to

be introduced (see e.g. [21]). Hence, in order to simplify the

approximation, we estimate the variables nii(k) and nij(k) as

follows: we first simulate the R-region MFDs system according

to the model presented in (5)–(6) over a prediction horizon

with control inputs and initial accumulations obtained from

the previous time step, and subsequently the variables nii(k)
and nij(k) in Mii(k) and Mij(k) are replaced with the values

obtained from the simulation. Hence, we no longer deal with

multiplication of variables but only with multiplication with

time-varying but known parameters.

B. PWA Approximation of the Product between the Perimeter

Controllers and the Transfer Flows

The transfer flows are multiplied with the perimeter con-

troller inputs in (5) and (6). These products are not replaced

with values obtained from simulation. Instead, one can assume

that the control inputs uij(k) are quantized as follows [22]:

uij(k) = uij,0 ·
(

r
∑

l=0

2l · ωij,l(k)
)

(17)

where ωij,l(k) ∈ {0, 1} and uij,0 are constant. The set of

possible input values is finite and its cardinality is 2r+1, while

the difference between two consecutive values is determined

by uij,0. Having a sum of weighted binary variables for each

perimeter control input, the problem with multiplication of

control inputs with transfer flow functions will be simplified,

since multiplication with binaries can be easily handled with

the techniques presented in the next section.

C. From PWA to MILP

Since direct integration of the approximated model in the

MPC framework is computationally inefficient even for small-

sized problems, we make a conversion of the derived model. To

this aim, we introduce the following transformation rules from

[22]. Consider an affine function f(·) over a bounded set X of

the input variable x, with upper and lower bounds M and m
over X . Having a binary decision variable δ ∈ {0, 1}, it can be

proved that the following statements hold:

• [f(x) ≤ 0] ⇔ [δ = 1], iff

{

f(x) ≤ M · (1− δ)

f(x) ≥ ǫ+ (m− ǫ) · δ

• δ = δ1 · δ2, iff











−δ1 + δ ≤ 0

−δ2 + δ ≤ 0

δ1 + δ2 − δ ≤ 1

• z = δ · f(x), iff











z ≤ M · δ, z ≥ m · δ

z ≤ f(x)−m · (1− δ)

z ≥ f(x)−M · (1− δ)

with ǫ is a small tolerance used to change a strict inequality

into a non-strict inequality. Using the above mentioned rules,

the approximated model can be transformed into a system of

linear inequalities and equations with real and binary variables.

Furthermore, integrating this model into the MPC framework

with the linear objective function (4), one can formulate a

mixed integer linear optimization problem (MILP) that can be

solved using efficient solvers [23].

V. CASE STUDY EXAMPLES

In this section, the performance of the proposed hybrid

control schemes is evaluated for an urban network that is

partitioned into two regions, i.e. R = 2, the periphery (region

1) and the city center (region 2). In Example 1, we investigate

the performance of the perimeter and switching timing plans

control and we show that additional improvements are obtained

if both control inputs are considered in the optimization. In Ex-

ample 2, the performance of the proposed linear approximation

is compared with the original nonlinear approach.

A. Example 1

For each region, a set of MFDs is defined. As depicted in

Fig. 4(b), the set consists of MFD1,3 adopted from [1] and 4

other MFDs obtained based on deviation from the critical accu-

mulation and the maximum trip completion flow of MFD1,3.
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Fig. 4. Example 1: Performance overview of the nonlinear hybrid scheme
for a two-region urban network.

The percentages of the deviations are ±10% and ±5% for

the critical accumulation and maximum trip completion flow,

respectively. Moreover, we assumed that the sizes of the two

regions are different, hence the MFDs of the periphery are

multiplied by a coefficient as shown in Fig. 4(a) and (b).

The demand profiles for trips inside each region and between

them are illustrated in Fig. 4(d). There is a high demand for

trips inside the periphery. Further, both regions are initially

congested. The hybrid controller finds the optimal perimeter

control inputs along with the optimal timing plan, as shown in

Fig. 4(e) and (f), for each region using mixed integer nonlinear

optimization over the prediction horizon Np = 20 and the

control horizon Nc = 2. Note that the current choice for these

parameters are based on the tuning procedure in [9]. Moreover,

the network (reality) is assumed to include errors in the MFDs

according to the error formulation in [9]. In the absence of

control or having only the perimeter control, region(s) will end

up in a gridlock situation. But with optimal switching between

timing plans and assisting with perimeter control, both regions

will escape from high congestion and they will be eventually

uncongested, as in Fig. 4(c).

B. Example 2

In this example, we provide a scenario to evaluate the per-

formance of the proposed approximated model and the original

MINLP formulation in the MPC framework. Moreover, in

order to have a better picture, the results are also compared

with a greedy perimeter controller, i.e. a simple state-feedback

controller. The control laws of the greedy controller are as

follows: if both regions are uncongested, the perimeter control

inputs are maximized and if both regions are congested, the

perimeter control inputs ui,j and uj,i are respectively set to the

maximum and minimum values, if region j is more congested

than region i and vice versa.

In example 2, each region has a set of 3 MFDs (the same

MFD1,2, MFD1,3, and MFD1,4 in Fig. 4(b)). The demand

profile simulates a peak morning hour with high demand q12(k)
for trips from region 1 (the periphery) to region 2 (the city cen-

ter), as shown in Fig. 5(d). The evolution of accumulations over

time corresponding to MINLP and PWA-MILP approaches

are depicted in Fig. 5(a) and (b), respectively. These figures

demonstrate the effectiveness of the control measures as they

show that the control inputs prevent the two regions from

moving towards gridlock, which is the case in the absence of

any control. However, the nonlinear optimization results in a

better performance, in particular for accumulations of region 2.

The performance of the PWA-MILP can be further improved

by approximation of the polynomials with a larger number of

affine functions. Nevertheless, the performance of the PWA-

MILP is already much better compared to the greedy controller.

With the greedy controller, the accumulations of both regions

will exceed 7000 vehicles at the end of the simulation time.

The optimal perimeter control inputs for the nonlinear opti-

mization and PWA-MILP are shown in Fig. 5(c). The perimeter

inputs u12(k) of the MINLP algorithm are close to the maxi-

mum to allow more vehicles to leave region 1 while u21(k)
varies more over time. Moreover, the optimal switching timing

plans for the nonlinear and PWA-MILP problems are illustrated

in Fig. 5(e) for region 1 and (g) for region 2 and Fig. 5(f) for

region 1 and (h) for region 2, respectively.

The average computation time for the current scenario is

13.05 (s) for one run of the MILP algorithm, while it is

51.52 (s) for one run of the MINLP 1. Note that the MINLP has

been executed 10 times in each control time step for different

random initial points in order to prevent reaching local optimal

solution. Therefore, the actual computation time of the MINLP

is multiple of the aforementioned number.

VI. CONCLUSIONS

The optimal hybrid perimeter and switching timing plans

control for large scale urban networks has been formulated

utilizing MFD-based modeling. The optimal solutions were

obtained in a model predictive control scheme for two different

open-loop optimization problems; mixed integer nonlinear and

linear programming. The mixed integer linear programming

(MILP) problem was obtained after approximation of the non-

linear model by piecewise affine functions. The obtained results

showed the importance of the approximation approach regard-

ing the computational complexity for real-time implementation

1These CPU times were obtained adopting the functions minlpBB and
CPLEX inside the Tomlab toolbox of Matlab 7.12.0 (R2011a), on a 64-bit
Windows PC with a 2.8GHz Intel Core i7 processor and 8Gb RAM.
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Fig. 5. Example 2: Comparison of PWA-MILP and MINLP for a two-region urban network.

in large-scale networks with large number of regions, as the

original nonlinear problem might not be tractable.

The switching timing plans controllers can enhance the

network performance when they collaborate with the perimeter

controllers, as they can utilize more efficiently the network

capacity to decrease the total delay in the network. However,

we need to identify the traffic situations in which the hybrid

control performs much better than perimeter control only. Fur-

thermore, investigation of other approximation methods that

might improve the computation time of the MILP problem is

included in the future research.
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