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Optimal Dynamic Route Guidance: A Model Predictive Approach Using

the Macroscopic Fundamental Diagram

Mohammad Hajiahmadi, Victor L. Knoop, Bart De Schutter, and Hans Hellendoorn

Abstract— Since centralized control of urban networks with
detailed modeling approaches is computationally complex and
inefficient, hierarchical decentralized methods based on aggre-
gate models are of great importance. In this paper, we use
an aggregate modeling approach based on the macroscopic
fundamental diagram (MFD), in order to find dynamic op-
timal routing strategies. An urban area can be divided into
homogeneous regions each modeled by a (set of) macroscopic
fundamental diagrams. Thus, the problem of route guidance
can be solved in a regional fashion by using model predictive
control and the novel high-level MFD-based model used for
prediction of traffic states in the urban network. The optimal
routing advices obtained from the high-level controller can be
used as references (to track) for lower-level local controllers
installed at the borders of the regions. Hence, the complexity
of solving the routing problem will be decreased significantly.
The performance of the proposed approach is evaluated using
a multi-origin multi-destination grid network. Further, the
obtained results show significant performance of the optimal
dynamic route guidance over other static routing methods.

I. INTRODUCTION

The Macroscopic Fundamental Diagram (MFD) (or net-

work fundamental diagram) has been first introduced in [1]

and it has been investigated recently in [2]–[4]. Basically, the

MFD relates the accumulations, i.e. the number of vehicles,

in a network to the so-called production, defined as the

average flow in the network. For a network in which the

congestion is homogeneously distributed, a low-scatter and

well-defined MFD can be extracted [5]. The literature has

studied the properties of the MFD [6], and the ways to split

a network into homogeneous subnetworks [7].

The MFD has provided the possibility for macroscopic

modeling and control of large networks. This is not possible

with sufficiently detailed modeling of individual elements

of a large-scale network, since centralized control based on

such a detailed model is not computationally efficient. There-

fore, modeling and control using the MFD have attracted

attention of researchers in recent years. Among them is the

perimeter control, i.e. limiting the inflow of a network to

ensure a high production [2], [8]–[10]. Further, the MFD

can be used to design advanced control schemes in order to

decrease delays and to increase accessibility in large urban

networks. Nevertheless, it should be noted that changes in the
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network topology, the signal timing plans of the signalized

intersections, and the infrastructure characteristics affect the

shape of the MFD. In [11] this issue has been addressed and

the authors have introduced another level of control inside

urban networks with taking into account the variability of

the MFD.

As mentioned before, the MFD can be exploited for high-

level and aggregated traffic state modeling. Moreover, with

MFD-based modeling, the number of parameters that need to

be calibrated is significantly lower. Also, the computational

complexity is much lower in the high-level modeling using

the MFD. Therefore, in this paper we aim at using the MFD-

based modeling approach for solving another challenging

problem in the traffic networks, viz., dynamic route guidance.

Dynamic route assignment has been an interesting topic

for researchers [12]–[16]. The main concept of dynamic

routing is to guide the traffic toward alternative routes in the

network in order to reduce the imbalance in the distribution

of traffic flows, to improve the overall travel time and/or

to minimize other traffic objectives such as emissions or

total fuel consumption. In this paper, we address the route

guidance problem using a high-level scheme. The aim is to

use the aggregate modeling approach based on the MFD for

describing the flow of vehicles traveling in a multi-region

urban network. The high-level MFD-based traffic flow model

is then utilized in an optimal dynamic route guidance frame-

work. The framework is developed based on the theory of

model predictive control (MPC) [17], [18] and its main goal

is to determine optimal references for guiding the traffic of

vehicles between urban regions in order to achieve minimum

delays in reaching the destinations. Basically, the proposed

route guidance scheme consists of two levels. At the higher

level, a central controller uses the MFD-based traffic flow

model in order to find optimal splitting rates for traffic flows

heading specific destinations. A major advantage of this

approach is that the necessity of having pre-defined routes in

the network and searching for the optimal ones is relaxed by

finding the destination-dependent splitting fractions towards

the neighboring regions of a region. Hence, we lifted from

the link-level splitting rates to region-level splitting of traffic

flows. Another main advantage of this scheme is that the

computational complexity is much less than the usual route

assignment problems that deal with a huge collection of roads

and intersections.

The obtained optimal splitting rates will be communicated

to the lower level controllers that are installed at the borders

of urban regions. These local controllers have the task to

realize the reference splitting rates by manipulating the



signaled intersections and/or by adopting the dynamic route

guidance information panels.

The rest of the paper is organized as follows. In Section II,

the high-level modeling of multi-region urban networks is

presented based on the concept of MFD and macroscopic

traffic flow modeling. Next, in Section III, a multi-level

scheme for optimal dynamic route guidance is introduced and

the optimization problem for the high-level is formulated.

Section IV presents the set-up of a case study in order

to illustrate the proposed route guidance approach and to

evaluate and compare the performance of the proposed

scheme with other simple routing methods. The paper ends

with conclusions and ideas for future research.

II. MULTI-REGION MACROSCOPIC MODELING

The modeling method starts by splitting the network

into several regions, which are as homogeneous as possible

in the sense of congestion distribution. For heterogeneous

networks, it might be possible to partition them into more

homogeneous regions such that each region has a well-

defined MFD, see [7]. The dynamics of traffic are modeled

in these regions, using the extracted MFD for each region

(as depicted in Fig. 1).

In each region i ∈ R, with R the set of all regions, the

accumulation is defined as the weighted density of all links

in region i and is formulated as follows:

ni(k) =

∑

λ∈Λi

(

κλ · Lλ · ρλ(k)
)

∑

λ∈Λi

(

κλ · Lλ

) , (1)

where Λi contains all links in region i and κλ, Lλ, and ρλ
are the number of lanes, the length, and the density of link

λ, respectively.

The set of neighboring regions of region i is defined as

Ji. The flow from region i to region j ∈ Ji is determined

by the minimum of three elements:

1) The capacity of the boundary between region i and

region j, Ci,j .

2) The demand from region i to region j, Di,j .

3) The supply in region j, Sj .

The demand from region i to region j is determined based

on the MFD, a function we indicate as Pi(ni). In fact, we

can construct a demand and supply scheme similar to the cell

transmission model [19]. The supply can be determined in

the same way as in the cell transmission model; the supply

is equal to the critical production Pj,crit for accumulations

lower than the critical accumulation ncrit and is equal to the

MFD for higher accumulations:

Sj(k) =

{

Pj,crit if nj(k) ≤ nj,crit

Pj(nj(k)) if nj(k) > nj,crit
(2)

Contrary to the cell transmission model, the demand in a

region decreases with the accumulation exceeding the critical

accumulation. This is because there might be internal traffic

jams in the region, limiting the potential outflow. This fact

is shown graphically in Fig. 2.

Fig. 1. Schematic multi-region urban network.

The part of accumulations in each region i heading to-

wards destination d ∈ D is known and is denoted by ni,d.

Moreover, the routing from region i to a destination d is

coded by the next neighboring region j in the so called

destination-specific splitting rates αi,j,d. Therefore, the total

demand from region i towards region j is formulated as:

Di,j(k) =
∑

d∈D

(

αi,j,d(k) ·
ni,d(k)

ni(k)
· Pi

(

ni(k)
)

)

, (3)

where D is the set of all destinations. This demand is limited

by the capacity of the boundary of regions i and j, giving

the effective demand D̃i,j as:

D̃i,j(k) = min{Di,j(k), Ci,j} (4)

The fraction of traffic allowed over the boundary between

i and j is indicated by
D̃i,j(k)
Di,j(k)

. As an intermediate step, we

now have the demand from region i to destination d via

region j:

D̃i,j,d(k) = αi,j,d(k) ·
ni,d(k)

ni(k)
· Pi

(

ni(k)
)

·
D̃i,j(k)

Di,j(k)
(5)

The total demand towards region j is determined by adding

up all effective demands towards region j

Dj(k) =
∑

i∈Jj

D̃i,j(k) (6)

This value is compared with the supply in region j. If the

supply is larger, the flow is unrestricted. However, if the

supply is lower, the fraction of the flow that can travel into

region j is determined as:

ψj(k) = min

{

Sj(k)

Dj(k)
, 1

}

(7)

If the supply restricts the flow, the actual flow to cell j is

proportional to the demands towards the cell. Now, the flow

is set as the minimum of demand and supply. This flow is

assumed to be constant between two consecutive time steps.

Now, for all regions j ∈ Ji that have a demand D̃i,j(k) >
0, the minimum of the outflow fractions calculated in (7) is

determined:

φi(k) = min
j∈Ji

{ψj(k)} (8)

Since traffic cannot go independently to any destination

(congestion and blocking back will occur within region i),
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Fig. 2. The factors determining the flow, (a) Macroscopic Fundamental Diagram, (b) demand, and (c) supply.

for all the demands from region i to every neighboring region

j, the same fraction (8) will be applied. Hence, the outflow

from region i to region j ∈ Ji is formulated as:

qi,j(k) = φi(k) · D̃i,j(k) (9)

The flow can be separated per destination. So, similar to

reducing the overall flow (9), we can modulate the flow per

destination (5) as:

qi,j,d(k) = φi(k) · D̃i,j,d(k) (10)

Therefore, the accumulation in any region i towards destina-

tion d can now be updated as follows:

ni,d(k+1) = ni,d(k)+

Ts
∑

λ∈Λi

κλLλ

(

∑

j∈Ji

qj,i,d(k)−
∑

j∈Ji

qi,j,d(k)
)

, (11)

with Ts the sample time. Hence the total accumulation in

region i will be:

ni(k + 1) =
∑

d∈D

ni,d(k + 1) (12)

In the next section, we use the presented model for predic-

tion of accumulations in the network in order to determine

optimal routes.

III. HIGH-LEVEL OPTIMAL ROUTE GUIDANCE

In this section, we develop a route guidance scheme

based on the high-level MFD-based model derived in the

previous section. In the proposed framework, we solve the

dynamic routing problem on a macroscopic level. This means

that instead of taking into account individual roads and

intersections, we deal with regional destinations and the way

that traffic flow should be split towards the neighboring

regions in order to avoid congestion in the intermediate

regions, to decrease the overall travel time and consequently,

to improve the arrival rates at the destinations. We assume

a two-level structure as depicted in Fig. 3. At the top level,

the optimal route guidance problem is solved based on the

aggregate model presented in the previous section. At the

lower level, the optimal variables (the splitting rates) that

are obtained from the high-level optimization problem are

taken as references, i.e. local controllers in the lower level

aim at realizing the optimal splitting rates for (destination

dependent) flows of vehicles that want to travel across

the regions. In the following, we elaborate on the type of

optimization problem that has to be solved in the highest

level in order to achieve the aforementioned goals.

A. Objective function

In order to formulate the routing problem, an objective

needs to be defined. The major aim in an urban network

could be maximizing the arrival rate, i.e. the number of

vehicles that complete their trips and reach their destinations,

or similarly minimizing the total travel delays. Over the

(discrete) simulation interval [0, · · · ,K − 1], the total delay

criterion JTD (veh·s) is formulated as:

JTD = Ts ·
∑

i∈R

K−1
∑

k=0

(

(

∑

λ∈Λi

κλLλ

)

· ni(k)

)

. (13)

Moreover, one can introduce a penalty term on the differ-

ences between average speeds of all regions as follows:

Jv(K − 1) =
∑

i,j∈R

(

V̄i(K − 1)− V̄j(K − 1)
)2
, (14)

with V̄i(K−1) the average speed in region i determined from

the MFD of that region at the end of simulation period (note

that one can calculate the differences between speeds of all

regions for all time steps, but it may increase the computation

time of the corresponding optimization problem. Therefore,

we try to normalize the speeds only at the end of the time

horizon). Basically, with the values of the accumulations

in each region, one can estimate an average speed for that

region. Assuming an exponential function for the MFD, the

average speed can be determined as follows:

V̄i(k) = Vfree,i · exp
(

−
1

2

(ni(k)

ncrit,i

)2)

, (15)

with Vfree,i the free-flow speed and ncrit,i the critical accu-

mulation corresponding to the maximum production. Essen-

tially when there is no congestion, the average speeds in the

regions are high. But in case of congestion in a region, the

average speed will decrease and consequently, the travel time

for vehicles inside that region will increase. By minimizing

(13), the overall travel delay in the network will decrease, but

it might be possible that the traffic is not distributed evenly

and in some regions the average speed will be high while in

others we observe low speeds. The objective function (14)
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Fig. 3. High-level optimal dynamic route guidance.

tries to avoid the congestion to build up in some regions until

those regions are blocked while other regions receive very

little flow. On the other hand, minimizing only (13) might

lead to keeping the flows in some regions and this will again

reduce the speed in those regions. Therefore, minimizing the

objective (14) will help to normalize the average speed and

travel times of all regions.

The total objective function can be defined as a weighted

sum of the criteria (13) and (14):

Jtotal =
JTD

JTD,nom
+ ω ·

Jv(K − 1)

Jv,nom
, (16)

where JTD,nom and Jv,nom denotes the nominal values of the

objective functions that can be obtained using (uncontrolled)

simulation. Moreover, the weight ω enables us to devote

more weight to either one of the objectives. Also note that

one can prioritize access to some regions or it might be

the case that reducing the accumulations of certain regions

is more important and therefore additional weights can be

assigned to the accumulations of those regions in (13).

B. Model predictive control for high-level route guidance

Model Predictive Control (MPC) [17], [18] is an advanced

control method originally developed for industrial processes

and now for broader applications such as traffic networks.

In the traffic control framework, the main idea is to use a

prediction model of the network (e.g. the aggregate model

derived in Section II) and an objective function assessing the

desired performance of the urban traffic network, in order to

find the optimal inputs through an optimization algorithm. In

our case, the optimization variables are the optimal splitting

rates for flows of vehicles heading multiple destinations. The

overall optimization variables include splitting rates of all

destination-dependent flows in all regions of the network.

The optimization algorithm assumes a prediction horizon Np

for evolution of the network variables and minimizes the

objective function over the horizon. The obtained optimal

variables constitute a sequence of optimal splitting rates for

the whole prediction horizon. In the MPC context, only the

first sample of the obtained values is used and the prediction

horizon is shifted one step forward, and the prediction and

optimization procedure over the shifted horizon are repeated

using new observations from the network. Moreover, to re-

duce the number of optimization variables, usually a control

horizon Nc < Np is introduced and from the control step

kc + Nc − 1 onward, the control inputs (splitting rates) are

taken to be constant.

Furthermore, the optimal routes or the corresponding

splitting rates are communicated to the lower level local con-

trollers as references to track. Basically, the local controllers

try to achieve the optimal splitting rates by manipulating

the timing plans of the signalized intersections placed at

the borders of regions. Communication and coordination

between the local controllers placed on different borders of

a region is crucial. Note that control is carried out only at

the borders and thus the MFDs of regions are expected to

be unchanged. Nevertheless, we can take advantage of the

approach proposed in [11] in order to extend the control to

inside regions and hence to distribute the congestion in a

more uniform way. This can be done by defining several

timing plans for intersections inside each region and hence

having a set of MFDs obtained for that region. By proper

switching between the pre-defined timing plans, we will be

able to normalize the congestion inside regions in addition

to the determination of splitting rates for flows traveling to

neighboring regions.

In order to formulate the problem of finding optimal

splitting rates in the MPC framework, we define kc and Tc as

the control time step and the control sample time. Here we

assume that the control sample time is an integer multiple

of the simulation sample time, i.e. Tc =M ·Ts. If we define

JMPC
TD as

JMPC
TD = Ts ·

R
∑

i=1

M ·(kc+Np)−1
∑

k=M ·kc

(

(

∑

λ∈Λi

κλLλ

)

·ni(k)

)

, (17)

the overall optimization problem will be formulated as fol-

lows:

min Jtotal(kc) =

min
α̃i,j,d(kc)

JMPC
TD

JMPC
TD,nom

+ ω ·
Jv(M · (kc +Np)− 1)

Jv,nom
(18)

subject to:

model equations (11), (12),

0 ≤ αi,j,d(k) ≤ 1, (19)
∑

j∈Ji

αi,j,d(k) ≤ 1, ∀i ∈ R, ∀d ∈ D, (20)

αi,j,d(k) = αc
i,j,d(kc),

if k ∈ {M · kc, . . . ,M · (kc + 1)− 1}, (21)

for all i ∈ R, j ∈ Ji, and d ∈ D. The optimization variables

defined over the prediction horizon Np are α̃i,j,d(kc) =
[αc

i,j,d(kc), . . . , α
c
i,j,d(kc+Np−1)]T, where αc

i,j,d(kc+l) for

l = 0, . . . , Np − 1, is the splitting rate corresponding to the

fraction of the flow towards destination d that travels from

region i to region j at control time step kc+ l. Furthermore,

by defining the inequality (20), we let a fraction of vehicles



travel inside of regions until they get the opportunity to

pass the borders. This will help to prevent the congestion

from accumulating in the successor regions. Note that the

optimization algorithm will determine whether the sum of

the splitting rates for the flows heading towards a certain

destination should be equal to one or otherwise less than

one.

The optimization problem (18)–(21) is a nonlinear op-

timization problem that can be solved using either global

optimization algorithms or multi-start local optimization

methods.

In the next section, the proposed optimal route guidance

approach is implemented on an urban network case study.

IV. CASE STUDY

This section describes modeling and optimal routing of

an urban network case study. The aim is to show the per-

formance of the proposed high-level modeling and optimal

dynamic route guidance approach. In the first part, the set-

up of the case study is described and in the second part, the

obtained results together with the discussions are presented.

A. Set-up

In order to implement the model presented in Section II,

we consider a grid network. The network is a 4x4 regional

network, with regions of 5x5 km, as shown in Fig. 4.

The regions are homogeneous, with a critical accumulation

ncrit=25 veh/km and 10 km of road length in the region.

The free flow speed is assumed to be Vfree=100 km/h. The

capacity of the borders is set to 2000 veh/h/km. For each

region, an MFD is assumed and it is approximated with an

exponential function as follows;

Pi = ni · Vfree · exp
(

−
1

2

( ni

ncrit

)2)

(22)

For each region i, the neighboring regions are defined as

the ones that are in the horizontal or vertical directions with

respect to the location of the region i. For instance, for region

7 the set of neighboring regions is {3, 6, 8, 11}. As illustrated

in Fig. 4, the origins are indicated by blue squares and the

destination are marked as red circles. The demand (veh/h)

for each origin-destination pair is selected as in Table I.

TABLE I

ORIGIN-DESTINATION DEMANDS (VEH/H)

Region 2 Region 8 Region 9 Region 14

Region 1 1000 1800 1750 3000
Region 4 1900 1400 1000 1400
Region 11 1700 1200 1300 1300
Region 16 2000 1000 1000 1800

The demand values are multiplied by time-varying factors

in order to consider the uncertainty in the demand profiles

and also to make it more realistic. At each time step, the

demand values in Table I are multiplied by a uniformly

distributed random number with mean value 1 and variance

0.1.

The optimal route assignment is carried out first by a static

shortest-path algorithm and next by the model predictive

1

2
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4

5

6
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Fig. 4. Layout of the 4x4 urban network.

scheme described in Section III. The shortest-path algorithm

determines the shortest routes (in time) based on the average

speeds of all regions. Traffic will avoid the regions with

low speed. First the costs of traveling between neighboring

regions are obtained based on the current state of the

network. Next the shortest path between each pair of regions

is calculated using the Floyd-Warshall algorithm [20].

For the MPC scheme, we choose the prediction and

control horizons Np = 6 and Nc = 2, respectively. Using

simulations for different horizons, these values have proved

to be sufficient for our case (in general, the prediction interval

should be long enough to include important dynamics of the

system under control) while the computation time of the op-

timization algorithm is acceptable. It has been observed that

with increasing prediction and/or control horizons, there are

small improvements in the results while the computational

complexity will grow exponentially.

The simulation sample time is chosen as Ts = 10 s. The

control sample time (for both static and dynamic schemes)

is selected to be Tc = 60 s. Between the two consecutive

control calls, the control inputs (optimal splitting rates) are

assumed to be constant. As mentioned in Section III, instead

of searching for optimal routes from a set of pre-defined

routes, we find the splitting rates towards the neighboring

regions.

Furthermore, in order to take into account the uncertainty

in modeling, the updated accumulations in the network

model (simulation model) are corrupted with additive white

Gaussian noises that have zero mean value and 2% of the

measured accumulations as variance. Note that the prediction

model in the MPC framework is assumed to be free of noise,

but it is supplied with actual accumulations as initial values

for the prediction model.

The nonlinear optimization inside the MPC scheme is

solved using the snopt algorithm integrated in the Tomlab

toolbox of MATLAB. This optimization algorithm tries to

find the (global) optimal value for the objective function

(16) subject to the linear constraints on the splitting rates. In

order to escape from the local optima, we use a multi-start

technique with random initialization.

B. Results

Results for simulation of the urban network for a period

of 3000 s are depicted in Fig. 5. In the first column, the time

evolution of the fixed-routing case is presented. By fixed-

routing we mean that the routes are determined using the

shortest-path algorithm and are fixed during the simulation



period. As time progresses, congestion builds up in the

regions that are located in the center. This is due to the fact

that the center regions are the intermediate regions for many

routes between the introduced origin and destination regions,

and if no routing policy is considered, the accumulation

would grow especially in these regions till it reaches the

critical point. From then, the inflow to these regions is

constrained and instead the congestion forms upstream of

these regions. The total delay in the network for the whole

simulation interval is 3315 ·104±4.32% (veh·s) (for 5 times

running with the same initial conditions).

In column (b) of Fig. 5, results of utilizing the shortest-

path algorithm are presented (every 6 simulation time steps,

the shortest-path algorithm recalculate the shortest routes).

As can be observed, the congestion level is less than for

the fixed routing case. However, the route advices in this

approach are determined based on the current situation of

network. Therefore, this approach is unable to take into

account the future impacts of the trip demands on the

accumulation and hence it cannot prevent the congestion

from occurring in the intermediate regions. Nevertheless, by

rerouting the traffic, the level of congestion reduces a bit (as

can be observed from columns (a) and (b) of Fig. 5) as a

result of preventing the traffic from entering the congested

regions. The overall delay in the network for the whole

simulation period is 2431 · 104 ± 8.45% (veh·s) (again for 5

times running with the same initial conditions).

The best performance is achieved by the MPC scheme as

shown in the third column of Fig. 5. The total delay in the

network for the whole simulation interval is 1820 · 104 ±
9.87% (veh·s). The achieved number is again the average

over 5 simulations of the whole system.

The congestion level is significantly reduced in the des-

tination and intermediate regions. The total delay obtained

using MPC is much lower than the two other approaches

meaning that the arrival rates are high in the proposed

framework.

Note that another major advantage of using the proposed

high-level routing scheme is that the computation time is rea-

sonable compared to other routing methods in the literature

which are based on detailed modeling.

V. CONCLUSIONS AND FUTURE RESEARCH

A high-level scheme for optimal dynamic route guidance

in urban traffic networks using the macroscopic fundamental

diagram (MFD) has been presented. On the high level, the

dynamics of the urban regions and the flows of vehicles

traveling towards multiple destinations in the network were

described using an aggregate traffic flow model developed

based on the MFD. The presented model enables us to

efficiently model and control urban networks that can be

partitioned into a number of homogeneous regions. Next,

the route guidance problem was solved on the high level

and as finding the optimal splitting rates towards neighboring

regions.

Taking into account that the modeling approach does not

depend on the shape of the regions, we have developed

the model for a grid network and solved an optimization

problem inside the MPC framework in order to find the

optimal splitting rates. The obtained results showed signif-

icant performance of the proposed scheme over an existing

shortest-path method.

Note that the optimal splitting rates are realized using local

controllers installed at the borders of regions and therefore

the MFDs will not be altered. However, as an extension to

the current work and to improve the route guidance, we

aim at utilizing the idea of having multiple timing plans

inside regions (and consequently defining multiple MFDs for

each region) to provide the opportunity for having control

inside the urban regions. Further, since the routing problem

is solved on a high level, the computational complexity of

the proposed scheme is expected to be low compared to

other existing approaches that are based on detailed mod-

eling. This should be investigated using extensive numerical

experiments. Also, in order to reduce the computation time

even more, we aim at approximating and reformulating the

model in order to achieve mixed integer linear optimization

problems.

Furthermore, more extensive tests and validation of the

model along with the performance evaluation of the proposed

multi-level route guidance scheme using real networks’ lay-

outs and empirical data are included in the future research.
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Fig. 5. Results for 4× 4 network, (a) Uncontrolled (fixed routes), (b) Shortest-path algorithm, (c) Optimal dynamic routing using MPC
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