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Towards a Robust Multi-level Control Approach

for Baggage Handling Systems

Yashar Zeinaly, Bart De Schutter, Senior Memeber, IEEE, and Hans Hellendoorn

Abstract— This paper revisits the routing problem in baggage
handling systems. We propose a two-level control approach
based on a model predictive controller at the top level and
a constrained feedback controller at the bottom level that
minimizes the L2 gain of the closed-loop system. The model
predictive control problem is recast as a linear programming
problem and the constrained feedback controller design prob-
lem is formulated as minimization of a linear objective function
subject to linear matrix inequalities. The effectiveness of the
proposed method is illustrated by a case study.

I. INTRODUCTION

There has been a growing interest, in the last decade,

in automated modern baggage handling systems for large

airports. Such baggage handling systems have enabled big

airports to achieve high throughput of passengers and cargo.

The efficiency and reliability of baggage handling systems

have improved over time by implementing more advanced

control strategies. However, in order to meet the increasing

demand for air travel and cargo shipment, we need more

intelligent and reliable control methods than the currently

available state-of-the-art methods. Modern baggage handling

systems are composed of the following main components: i)

loading stations, where the baggage demand originates. The

pieces of baggage arrive at the loading stations either from a

check-in desk or from a transfer flight, ii) unloading stations

that are the final destination of the luggage and from where

the pieces of baggage are boarded on to the planes, iii) a

network of tracks that connect loading stations to unloading

stations through junctions, iv) high-speed destination coded

vehicles (DCV) that transport the pieces of baggage on the

network form the loading stations to the unloading stations,

v) switch controllers at the junctions that determine the route

of DCVs. A complete description of the baggage handling

system, the state-of-the-art control approaches, and the high-

level control problems can be found in [1] and [2]. In this

paper, building on the work of [3], we develop a new ap-

proach for dynamic routing of DCVs within the network such

that the pieces of baggage arrive at their destination within

a given time window with minimum energy consumption.

We also improve the robustness of our approach against

variations in the baggage demand.

The proposed control structure is composed of a controller

based on model predictive control (MPC) at the top level
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and a controller based on L2 gain optimization at the bottom

level. The MPC controller computes the nominal control in-

put based on nominal prediction of the baggage demand such

that the pieces of baggage arrive at their destination within a

specified time window with minimal energy consumption.

The L2 based controller then minimizes the deviation of

system trajectories from the nominal behavior due to unpre-

dicted variations in the nominal predicted baggage demand.

Fig. 1 depicts a schematic overview of the proposed two-

level control approach.
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Fig. 1. Schematic overview of the proposed two-level control approach,
where u∗ and y∗ are the nominal input generated by the MPC controller
and the resulting output trajectory, respectively, d̂ is the predicted baggage
demand, and d̃ is the unpredicted deviation of baggage demand around d̂

The rest of the paper is organized as follows. In Section II,

we present the dynamical model of the baggage handling

system used for our control purposes. Section III and Sec-

tion IV describe the MPC approach and the L2 optimization

control approach, respectively. In Section V, we explain how

to combine these two controller approaches into a two-level

control structure. In Section VI, we present a case study

illustrating the performance of our proposed control scheme

and finally Section VII concludes the paper.

II. DYNAMICAL MODEL

The baggage handling system network can be seen as a

directed graph G = (V,A), where V = O∪ I∪D is the set of

nodes composed of origin nodes O (i.e., loading stations),

intermediate nodes I (i.e., junctions), and destination nodes



D (i.e., unloading stations), and A is the set of arcs composed

of links (i.e., tracks) connecting the nodes. The queue lengths

are associated with the nodes and the control variables are

defined at each node as the flows of DCVs from that node

to its neighbor nodes. In a similar manner to the model in

[4], the flows are indexed by their destination, enabling us

to distinguish between baggage with different destinations.

This is important as the baggage must end up in the right

destination. Accordingly, at each node v∈V there is a partial

queue of DCVs associated with each destination d ∈ D. The

following assumptions are made in the derivation of the

model:

A1 Each node in the network belongs to at least one

directed path from an origin node (i.e., a loading station)

to a destination node (i.e., an unloading station).

A2 A DCV is present at the loading station whenever a

piece of baggage arrives.

A3 The movement of pieces of baggage on the network is

approximated by a continuous flow of baggage.

A4 At each node v, with exception of destination nodes,

the DCVs stack up in vertical queues according to their

destination. The queue lengths at destination nodes are

considered to be zero. This is because we assume either

destination nodes have unlimited capacity or there is

no restriction on the outflow of destination nodes so

the baggage are immediately taken to the planes upon

arrival.

A5 The DCV travel time on each link is an integer multiple

of the sampling time Ts.

Assumption A1 guarantees that there are no redundant

nodes in the network. By Assumption A2, the pieces of bag-

gage are immediately dispatched from the loading stations as

they arrive. Therefore, we do not need to distinguish between

baggage flows and DCV flows within the system. Otherwise,

we would need to take into account the movement of empty

DCVs from the unloading stations to the loading stations.

Assumption A3 is necessary for tractability of the control

problem. Although the number of DCVs is an integer in

reality, for a fairly large number of DCVs, the movement of

DCVs can be approximated by continuous flows. This is not

very restrictive as the computed flows can then be realized as

well as possible by a lower-level control loop that determines

the optimal switching pattern for the switch controllers at the

junctions. The actual time required to travel from a node to

another one depends on the length of the DCV queue at the

end of the link connecting these nodes. However, if the queue

lengths are sufficiently small compared to the length of the

links, the variation in the travel time is negligible. This is

equivalent to having vertical queues at each node as stated

in assumption A4. Assumption A5 allows us to arrive at a

linear discrete-time model of the system.

We also make use of the following notation:

• The set of sending nodes of a node v ∈ V defined as

V send
v = {w ∈ V | (w,v) ∈ A}, is the set of nodes that

can send flow to node v .

• The set of receiving nodes of a node v ∈ V defined as

V recv
v = {w ∈ V | (v,w) ∈ A}, is the set of nodes that

can receive flow from node v.

• The set of all nodes that are on some directed path to

a destination node d ∈ D is Vd .

• For each destination node d ∈ D and for each origin

node v∈O∩Vd , Qv,d(k) is the baggage inflow (demand)

at v with destination d during the time interval [kTs,(k+
1)Ts).

For each destination d ∈ D and each v ∈ Vd and each w ∈
V recv

v ∩Vd , we define the control variable qv,w,d(k) that is the

partial flow of DCVs with destination node d from node v to

node w during the time interval [kTs,(k+1)Ts). Accordingly,

xv,d(k) denotes the vertical queue length at node v associated

with destination d. The set of feasible trajectories of the

system is described by the following linear constraints in

discrete time:

xv,d(k+1) = xv,d(k)+Ts(F
in
v,d(k)−Fout

v,d (k)) (1a)

xv,d(k)≥ 0 (1b)

qv,w,d(k)≥ 0 (1c)

where F in
v,d(k) is the total inflow of DCVs to node v, associ-

ated with destination d, given by

F in
v,d(k) =























Qv,d(k)+ ∑
w∈V send

v

qw,v,d(k− kw,v) if v ∈Vd ∩O

∑
w∈V send

v

qw,v,d(k− kw,v) if v ∈Vd ∩ (D∪ I)

0 otherwise

(2)

with kw,vTs being the travel time1 on the link (w,v), and

Fout
v,d (k) is the total outflow of DCVs from node v with

destination d, given by

Fout
v,d (k) =















F in
v,d(k) if v ∈Vd ∩D

∑
w∈V recv

v

qv,w,d(k) if v ∈Vd ∩ (O∪ I)

0 otherwise

(3)

Equation (1a) describes the evolution of the queue lengths

and (1b) constrains queue lengths to non-negative values.

Likewise, (1c) guarantees non-negativity of the control vari-

ables (flows).

Let x(k) be the state vector that includes all queue lengths

xv,d(k) and delayed samples of qv,w,d(k) with delay≥ 1. Let

u(k) and d(k) be the control input vector that includes all

control variables qv,w,d(k), and the demand vector composed

of all individual demands Qv,d(k), respectively. Then (1) can

be expressed by a constrained discrete-time linear system as

x(k+1) = Ax(k)+B1d(k)+B2u(k) (4a)

x(k)≥ 0 (4b)

u(k)≥ 0 (4c)

with properly defined matrices A, B1, and B2.

1Assuming a constant speed for DCVs vDCV, kw,v is given by kw,v =
sw,v

TsvDCV
, where sw,v is the length of link (w,v).



III. MPC PROBLEM FORMULATION

The model presented in Section II is used as internal

prediction model for the MPC approach. At time step k,

given the current state of the system and an estimate of

future baggage demand, this model is used to compute the

trajectories of the system based on which a constrained

optimal control problem is solved over a horizon yielding an

optimal control sequence. The first element out of the optimal

control sequence is then applied to the system according to

the receding horizon policy and this process is then repeated

at the next time step k+1 with new measurements [5].

The objective function must reflect the following perfor-

mance criteria: i) the pieces of baggage assigned to a certain

destination (unloading station) must reach the destination

within a given time window, ii) the energy consumption of

the system should be minimized. The time window represents

the time duration in which the end point is ready to receive

the luggage. It is undesirable to have the luggage arrive

at the destination out of this time window. Indeed, if the

pieces of luggage arrive too late, they will miss the flight.

Too early arrival of the luggage at the destination point also

might inflict a high storage cost on the operator. The energy

consumption is associated with manipulating the actuators in

the system and wear and tear inflicted on the actuators. There

are two contributors to the energy consumption in the system:

i) movements of DCVs in the system, which is related to the

magnitude of DCV flows, and ii) variation in the DCV flows.

This is particularly important when the DCV flows obtained

here will be realized using switch controllers at each junction

of the network. The variation in the flow then translates to

switching frequency.

In order to achieve the aforementioned control objectives,

we consider a cost function that is a weighted combination

of four penalty terms that penalize the DCV queue lengths,

DCV flows (control variables), and the variation of DCV

flows. The cost associated with the DCV is defined as: The

constrained linear model given in Section II cannot be used

to determine the time instant at which a certain flow of

baggage reaches to its destination explicitly. However, we

can consider a cost function to indirectly penalize baggage

arrival time deviation from a given time window. The cost

function is composed of three penalty terms. The first penalty

term penalizes the queue lengths being defined as

Jtw
d (k) = ∑

v∈Vd

Ctw
v,d(k)xv,d(k) (5)

where Ctw
v,d(k) as illustrated in Fig. 2 is given as

Ctw
v,d(k) =











0 if k+ kv,d ≤ k
open
d

ctw(k− k
open
d + kv,d) if k

open
d < k+ kv,d ≤ kclose

d

ctw(kclose
d − k

open
d ) if k+ kv,d > kclose

d

(6)

where k
open
d and kclose

d are, respectively, the opening and the

closing time steps of destination d and kv,dTs is the expected

travel time from node v to destination d under the current

nominal operating conditions2. Note that since Ctw
v,d(k)= 0 for

k ≤ k
open
d −kv,d , the queue lengths associated with destination

d are not penalized before the destination is open, taking into

account the DCVs travel time from v to d. During the time

window of destination d, the weight associated with DCV

queues increases linearly in time, hence, forcing the DCVs

to move towards d. The penalty term associated with the

DCV flows is defined as:

Jflow
d (k) = ∑

v∈Vd

∑
w∈V recv

v ∩Vd

Cflow
v,d (k)qv,w,d(k) (7)

with Cflow
v,d (k) as depicted in Fig. 3 being

Cflow
v,d (k)=











−cflow
1 (k− k

open
d + kv,d) if k+ kv,d ≤ k

open
d

0 if k
open
d < k+ kv,d ≤ kclose

d

cflow
2 (k− kclose

d + kv,d) if k+ kv,d > kclose
d

(8)

Note that Cflow
v,d (k) is chosen in such a way that DCV flows

to destination d are allowed during the time window of d.

Higher values Cflow
v,d (k) outside of the time window prevent

early or late DCV flows to the destination d. Moreover,

in order to allow late DCVs to reach the destination, the

slope of the third part of Cflow
v,d (k) is smaller than the slope

of the first part. Now we will introduce the terms in the

cost function that reflect the energy consumption in the

network. We penalize all flows in the network in order to

avoid indefinite circulation of DCVs throughout the network.

Hence, we consider the following penalty term:

Je(k) = ∑
d∈D

∑
v∈Vd

∑
w∈V recv

v ∩Vd

qv,w,d(k) (9)

In addition, we use the following penalty term to penalize

the total variation of the control signal (i.e., flows), which

reflects the wear and tear of the DCVs:

Jsw(k) = ∑
d∈D

∑
l∈Vd

∑
w∈V recv

v ∩Vd

|qv,w,d(k)−qv,w,d(k−1)| (10)

The total cost at time step k is therefore given as

J(k)= ∑
d∈D

Jtw
d (k)+α1 ∑

d∈D

Jflow
d (k)+α2Je(k)+α3Jsw(k) (11)

where αi > 0 is a weight factor indicating the relative

importance of the associated term in the objective function.

The MPC performance index over the prediction horizon of

Np step is thus given as

J(k,Np) =
k+Np−1

∑
i=k

J(i) (12)

Now we would like to highlight the following remarks:

R1 The plots of Fig. 2 and Fig. 3 show respectively

coefficients of the penalty terms (5) and (7), not the

penalty terms themselves. In fact, at the given time

step k and for a prediction horizon Np the values

of these coefficients are known for k, . . . ,k + Np − 1.

Therefore, these coefficients have fixed values and hence

2These can be obtained based on historical data for periods with similar
conditions as the current one.



the associated penalty terms (5) and (7) are linear in the

control variable.

R2 By introducing some dummy variables according to

standard techniques in optimization [6], terms of the

form (10) can be recast as a linear programming prob-

lem with linear constraints.

Consider u(k), x(k), and d(k) as introduced in Section II.

At every time step k we solve the following optimization

problem:

min
u(k)

F(k)u(k)

subject to: Aineq(k)u(k)≤ bineq(k)

Aeq(k)u(k) = beq(k) (13)

where the vector F(k) is defined based on the MPC objective

function (11), and the vector u(k) includes the control inputs

u(k), . . . ,u(k+Np − 1) and the dummy variables mentioned

in Remark R2. Moreover, Aineq(k), and Aeq(k) are determined

based on the constraints, and bineq(k), and beq(k) are constant

vectors that depend on the current state x(k) and the demand

values d(k), . . . ,d(k+Np −1).
The optimization problem given by (13) is an LP problem,

that can be solved efficiently with currently available solvers,

e.g., MATLAB linprog.

k
k

open
d

− kv,d kclose
d − kv,d

Ctw
v,d

Fig. 2. The coefficient for the queue length penalty term.

k
k

open
d

− kv,d kclose
d − kv,d

Cflow
v,d

Fig. 3. The coefficient for the flow penalty term.

IV. FEEDBACK CONTROL PROBLEM FORMULATION

A. Problem Setup

Consider a discrete-time linear system

x(k+1) = Ax(k)+B1d(k)+B2u(k) (14a)

z(k) =C1x(k)+D1d(k)+D2u(k) (14b)

with full state feedback

u(k) = Kx(k) (15)

where the system matrices, x ∈ R
n, d ∈ R

nd , and u ∈ R
m

are those of (4a) and z ∈R
nz is the controlled output vector.

Assume that (A,B2) is stabilizable and K is a stabilizing

feedback gain. The L2 gain of the closed-loop system is

bounded by γ > 0 (i.e., sup
z6=0

‖z‖2

‖d‖2
≤ γ) if and only if there

exists a P > 0 such that [7], [8]

[

A TPA −P+ 1
γ C TC A TPB+ 1

γ C TD

BTPA + 1
γ DTC BTPB+ 1

γ DTD − γI

]

≤ 0

(16)

where
[

A B

C D

]

=

[

A+B2K B1

C1 +D2K D1

]

(17)

or equivalently









−Q A Q B 0

QA T −Q 0 QC T

BT 0 −γI DT

0 C Q D −γI









≤ 0 (18)

with Q = P−1 > 0.

Consider the problem of determining a feedback gain K

that minimizes the L2 gain of the closed-loop system. It is

well-known [8] that with the transformation Y = KQ, the

matrix inequality of (18) can be written as









−Q AQ+B2Y B1 0

QAT +Y TBT
2 −Q 0 QCT

1 +Y TDT
2

BT
1 0 −γI DT

1

0 C1Q+D2Y D1 −γI









≤ 0

(19)

with Q > 0.

Note that for the closed-loop system given by (14) and

(15), (16) implies

xT(k+1)Px(k+1)− xT(k)Px(k)+
1

γ
zT(k)z(k)≤ γdT(k)d(k)

(20)

Now we define the ellipsoid εγ := {x|xT P
γ x ≤ 1}. Assuming

x(0) = 0, (20) yields

xT(T )Px(T )≤ γ
T−1

∑
k=0

dT(k)d(k)< γ
∞

∑
k=0

dT(k)d(k) (21)

for any T ∈ N. Assuming3 ‖d‖2
2 = 1, we get

xT(T )
P

γ
x(T )< 1 (22)

which shows that x(T ) ∈ εγ . Since (21) holds for all T , εγ

contains the set of states that are reachable by a unit energy

input signal d when the L2 gain of the closed-loop system

is bounded by γ .

3It is always possible to scale d such that ‖d‖2
2 = 1.



B. Hard State Constraints

Now we consider the problem of searching for the feed-

back gain K that minimizes the L2 gain of the closed-loop

system subject to polytopic state constraints of the form

aT
i x(k)≤ 1, i = 1, . . . ,r. (23)

To include the state constraints of (23), consider the polytope

P = {x ∈ R
n|aT

i x ≤ 1, i = 1, . . . ,r} (24)

associated with (23). We assume that P has the origin in

its interior. To guaranty that (23) holds for all k > 0 with

x(0) = 0, we must have εγ ⊆ P or equivalently [8]

aT
i γQai ≤ 1, i = 1, . . . ,r (25)

Therefore, the following optimization problem needs to be

solved:

min
Q,Y,γ

γ

subject to: (19), (25), Q > 0 (26)

This problem is not jointly convex in γ and Q and Y .

Moreover, it can be shown in a straightforward manner

that the constraints of (18) and (25) do not satisfy the

monotonicity property G(Q,Y,γ1) > G(Q,Y,γ2) if γ1 > γ2,

where G < 0 represents constraints (19) and (25) combined.

Therefore, this problem cannot even be recast as a gener-

alized eigenvalue problem, which is a class of quasiconvex

optimization problems [8].

Now we will replace constraint (25) by a more conserva-

tive one that is convex in the optimization variables, in the

following manner. Note that

γQ =
1

4
(γI +Q)T(γI +Q)− 1

4
(γI −Q)T(γI −Q) (27)

Obviously, γQ <
1
4
(γI +Q)T(γI +Q). Hence,

1

4
aT

i (γI +Q)T(γI +Q)ai ≤ 1 =⇒ aT
i γQai < 1 (28)

or equivalently expressed using the Schur complement
[

I (γI +Q)ai

aT
i (γI +Q) 4

]

> 0 (29)

Clearly, this introduces conservatism as the feasibility set

of (29) is a subset of the feasibility set of (25). This

conservatism can be reduced if one can find a lower bound

for (γI −Q)T(γI−Q)≥ 0 such that (γI −Q)T(γI−Q)≥ α2I

or equivalently ‖γI−Q‖≥α (in matrix norm sense) for some

α > 0. Then, instead of (29), one obtains
[

I (γI +Q)ai

aT
i (γI +Q) 4+aT

i α2ai

]

> 0 (30)

Therefore we consider (26) with (25) replaced by (29) or by

(30). This is an eigenvalue problem [8], which is a convex

optimization problem that can be solved with currently

available LMI optimization toolboxes, e.g., MATLAB LMI

toolbox, YALMIP [9], and CVX [10], [11].

C. Soft State Constraints

In the view of the proposed two-level control scheme, it

makes more sense to replace the hard constraints of (25)

by soft constraints due to the following observations: i)

the constraints are mainly handled at the top level by the

MPC controller, ii) if the constraints are too restrictive the

conservative version of the original constraints as expressed

by (29) may become infeasible, which is not desirable. As

an alternative to the approach presented in Section IV-B, one

can replace hard constraints by soft ones by considering a

multi-objective optimization approach that penalizes the L2

gain of the closed-loop system and, indirectly, the constraint

violation at the same time. More precisely, we define the

following optimization problem with the objective function

that penalizes γ , and the volume of the ellipsoid εγ , which

is proportional to
√

det γQ :

min
Q,Y,γ

cγ γ + log
(

det(γQ)
)

subject to: Q > 0 and (19) (31)

where cγ > 0 is a weight factor. The magnitude of cγ

determines the trade-off between the L2 gain and the volume

of the ellipsoid that represents the set of reachable states. By

minimizing the volume of εγ , we confine the set of reachable

state from the origin. This indirectly minimizes constraint

violation since the origin lies in the interior of polytope

P . However, this objective function is not convex in the

optimization variables γ and Q. To mitigate this problem,

instead of penalizing the volume of εγ , we penalize an upper

bound on the length of semi-major axis of εγ , which is
√

λmax(γQ), where λmax(γQ) is the largest eigenvalue of

γQ. It is clear from (27), that λmax

(

1
4
(γI +Q)T(γI + Q)

)

constitutes an upper bound on λmax(γQ). Then we get

min
Q,Y,γ

cγ γ +λmax

(1

4
(γI +Q)T(γI +Q)

)

subject to: Q > 0 and (19) (32)

or equivalently

min
Q,Y,γ ,λ

cγ γ +λ

subject to: (19), Q > 0,

[

λ I γI +Q

γI +Q 4I

]

> 0 (33)

This is an eigenvalue problem [8] that can be solved effi-

ciently with currently available LMI solvers such as MAT-

LAB LMI toolbox. Note that, by inspecting (27), the upper

bound on λmax(γQ) can be made tighter if one can find an

α > 0 such that (γI −Q)T(γI−Q)≥ α2I or equivalently, in

matrix norm4 sense, ‖γI −Q‖ ≥ α . Then the last constraint

in (33) will be replaced by

[

(λ + α2

4
)I γI +Q

γI +Q 4I

]

> 0 (34)

4For matrix norm, we use the definition ‖A‖= σmax(A), where σmax(A)
is the largest singular value of matrix A.



As an example, consider a discrete-time linear system given

by

A =









0.1514 0.4377 0.7293 0.1839

0.3958 0.3999 0.7521 0.9368

0.9720 0.7636 0.8323 0.6137

0.7718 0.8639 0.4821 0.6050









, C1 = I

B1 =









0

0

−0.5881

0.2487









,B2 =









0.6954

−0.2837

−0.9723

0.6086









, D1 = 0, D2 = 0

For cγ taking values in the interval [0.1,100], Fig. 4 illustrates

the trade-off between minimizing the L2 gain and the length

of the semi-major axis of εγ .

10 10.05 10.1 10.15 10.2 10.25 10.3 10.35
80

82

84
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92

γ

λ
m
ax
(γ
Q
)

Fig. 4. Trade-off curve between the optimal γ and the length of the semi-
major axis of εγ .

V. INTEGRATION OF MPC AND FEEDBACK

CONTROLLERS

In this section, we briefly explain how the two control

schemes presented in Sections III and IV can be combined.

The baggage demand at each origin node is composed of a

base demand d∗, which is assumed to be predictable over

the prediction horizon Np, and a small additive perturbation

d̃ around the base demand that cannot be predicted. Based on

a future prediction of d∗, the MPC controller computes the

optimal DCV flows u∗ and system trajectories z∗ subject to

flow and queue length constraints such that the DCVs arrive

at their destinations with minimal energy consumption and

with minimal deviation from the time windows. To minimize

the adverse effect of d̃ on optimal system trajectories com-

puted by the MPC controller, a feedback gain K minimizing
‖z̃‖2

‖d̃‖2
= ‖z−z∗‖2

‖d−d∗‖2
based on the measurement y(k)− y∗(k) is

implemented along the MPC controller in the configuration

depicted in Fig. 1. Therefore, the control law applied to the

system at time step k is u(k) = u∗(k)+K
(

y(k)− y∗(k)
)

=
u∗(k)+Kỹ(k).

When we impose constraints on the controlled output

z(k) = z∗(k)+ z̃(k), the constraints on z̃(k) depend on value

of z∗(k). As a result, one needs to update the feedback gain

K whenever the value of z∗(k) changes. This can be avoided

if soft constraints as in Section IV-C are used. Moreover,

the MPC control law u∗ does not have to be updated at

every time instant kTs. Particularly, if the base demand d∗ is

varying slowly with time, one can use a controller sampling

time mTs, with m > 1 being an integer number.

VI. CASE STUDY
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Fig. 5. A layout of baggage handling system with one loading station and
one unloading station. The length of each link in the network is 40 m.
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Fig. 6. Base baggage demand,the perturbations on the base demand, and
the actual demand at the loading station.
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Fig. 7. Optimal flows of DCVs at the unloading station. One can observe
that most of the DCVs arrive at the unloading station within the specified
time window.

In this section we present a case study to illustrate the

performance of our proposed control approach for the bag-

gage handling system. For the sake of simplicity, we consider

a simple baggage handling system, the layout of which is

depicted in Fig. 5. Here, the focus is to illustrate the effect

of the feedback controller on suppressing the adverse effects

of an unpredicted baggage demand on the behavior of the

system. First, assuming that the demand is fully known, the

optimal flows and optimal system trajectories are computed.

Next, we consider some unpredictable random perturbations

on the base demand and evaluate how closely our proposed

two-level control approach can follow the optimal trajectory.



0 20 40 60 80 100
0

20

40

60

80

100

k

x
1
(k

)

 

 

mpc only
two−level
optimal

Fig. 8. Queue lengths at node 1. One can observe that for the two-level
control approach, the queue length at node 1 is only slightly affected by the
disturbance.

TABLE I

CONTROLLER DESIGN AND SIMULATION PARAMETERS

MPC Parameters

Np time window umax[DCV/s] (α1,α2,α3) (cflow
1 ,cflow

2 ,ctw)
12 [40,70] 4 (1,125,1) (100,0.2,1)

Feedback Controller Parameters

cγ γ∗min γmin λ ∗
max λmax

40 1.4420 1.5222 2.0001 3.8091

Closed-loop Simulation Parameters

Ts[s] Nsim x0(initial condition) demand perturbation vDCV[m/s]

1.41 100 10 d̃ ∈ U (0,1),‖d‖2
2 = 4.02 1.41

For the two-level control approach, we have computed the

feedback gain K based the approach of Section IV-C using

the MATLAB LMI toolbox. Table I lists the parameters used

for the controller design and the closed-loop simulation.

In Table I, λ ∗
max and γ∗min denote, respectively, the actual

values of λmax(γQ) and γ achieved by the closed-loop system

whereas λ ∗
max and γ∗min denote those values obtained by

solving (33).

For the base demand d∗(k) depicted in Fig. 6, the optimal

flows to the destination (node 5) are illustrated in Fig. 7

and the resulting optimal queue length at the origin node

(node 1) is depicted in Fig. 8. It is clear from Fig. 7 that

the optimal flows arrive at the destination within the desired

time window. The perturbation on the base demand d̃(k) ∈
U (0,1) is depicted in Fig. 6. It is obvious from Fig. 8 that in

the presence of unpredictable demand perturbations, the two-

level controller follows the optimal trajectory very closely

whereas the MPC based approach deviates from the optimal

trajectory.

VII. CONCLUSIONS AND FUTURE WORK

The routing problem in baggage handling systems was

revisited. A new flow-based model was derived for our

control purposes, which are delivering the pieces of baggage

at the unloading stations within a pre-specified time window,

and minimizing the energy consumption. We proposed a

multi-level control approach with an MPC controller at

the top level and a constrained feedback controller at the

bottom level that minimizes the L2 gain of the closed-loop

system. The idea was that based on some prior knowledge

on the baggage demand, the MPC controller computes the

optimal control inputs and system trajectories such that the

pieces of baggage arrive at their destination within a desired

time window and with minimal energy consumption. The

feedback controller then would guarantee minimal deviation

from this optimal trajectory in face of unknown perturbations

on the baggage demand.

We showed that the MPC problem can be formulated as a

linear programming problem. We proposed two methods to

include state constraints in design procedure of the feedback

controller that can be recast as LMI constraints. Using

a simple case study, we showed the effectiveness of the

proposed two-level control approach.

This approach should be extendable to large-scale system.

However, for large-scale systems, the conservatism intro-

duced by (28) may render the LMIs in (33) infeasible. Hence,

one may need to find a tighter lower bound α in (34).

For future work, the scalability of the proposed two-level

approach to large network layouts will be investigated. In

addition, we will compare the performance of the two-level

control approach with the MPC-based approach for larger

network layouts and more elaborate scenarios. As a second

extension to the current work, we will include non-polytopic

state constraints as well as control signal constraints in the

design procedure of the feedback controller.
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