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A Modeling Framework for Model Predictive Scheduling

Using Switching Max-Plus Linear Models

Ton J.J. van den Boom1, Gabriel Delgado Lopes1, and Bart De Schutter1

Abstract— In this paper we discuss a modeling framework
for model predictive scheduling of a class of semi-cyclic discrete
event systems that can be described by switching max-plus
linear models. We study the structure of the system matrices
and derive how routing, ordering, and synchronization can be
manipulated by a set of control variables. In addition, we show
that this leads to a system matrix that is linear in the control
variables. We define the model predictive scheduling design
problem to optimize the schedule, and we show that the problem
can be recast as a mixed integer linear programming (MILP)
problem.

I. INTRODUCTION

Global competition in industry has compelled engineers to

improve the quality of production systems and to reduce the

costs. The operation of these systems requires a supervisory

controller that schedules the jobs in order to optimize certain

criteria, e.g., high productivity or first-product-out time. The

main goal of this paper is to derive a design procedure for

optimal scheduling of discrete event systems with a semi-

cyclic behavior. A cyclic behavior is specified by a cycle

periodically repeated set of operations behind the other. In

the case of semi-cyclic behavior the set of operations may

vary over a limited set of possible sequences of operations.

The scheduling of semi-cyclic discrete event systems is

crucial in many applications, such as railroad and urban

traffic networks [13], [28]; production systems [23], [31];

paper handling in printers [2]; legged locomotion [17], [20];

queuing systems and array processors [14]; and genomics

[27].

Scheduling is the process of deciding how to allocate a set

of jobs to limited resources over time in such a way that one

or more objectives are optimized. We can use a model of

the system to predict the future behavior while searching for

an optimal schedule for the future. If the model is perfect,

the optimal schedule can be executed without feedback and

the system will behave as predicted. However, in the case

of disturbances or model uncertainty the schedule has to be

adapted on-line in response to the unexpected events. This

is called operational scheduling or rescheduling.

Since the preliminary work of Johnson [16] on scheduling

problems, several books have presented general surveys [5],

[9], [25]. However, [6], [7], [18], [19], [24], [30] already

showed that for many scheduling problems, above all for

semi-cyclic discrete event systems, max-plus algebra is better

suited for solving sequencing problems than the classical
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algebra. An overview of the cyclic scheduling problem is

available in [10], [12]. In this paper we continue this work on

scheduling semi-cyclic discrete event systems using switch-

ing max-plus linear models, and extend this work so that we

can handle rerouting, reordering, and resynchronization in a

systematic way. We like to emphasize the importance of the

use of switching max-plus linear systems in the scheduling

procedure:

1) By using max-plus linear systems for modeling dy-

namical discrete event systems, we are able to analyze

the evolution of the system by computing the system

trajectories. In this way we can obtain valuable infor-

mation about its behavior and use this information to

explain observed phenomena.

2) There are many system-theoretical results for max-

plus linear systems in literature. We can use them

for finding bottlenecks in the scheduling process as

well as good initial scheduling values by using sys-

tem properties, based on the max-plus eigenvalue and

eigenvectors (see [17]).

3) There is a close relation between max-plus linear

models and the graph representation of the system.

Graph-based methods can be used in the scheduling

procedure (see [21]).

4) Max-plus linear models are often written implicitly:

routing, ordering, and synchronization occur within

the same cycle resulting in expressions where the

state variables appear on both sides of the constraint

equations for the same cycle k. Using max-plus theory

we can easily transform such a model into an explicit

form from which the optimization of the schedule may

benefit.

The model predictive scheduler contains four basic mod-

ules: the switching max-plus-linear model, the schedule

optimization module, the observer, and the actuator. Figure 1

shows the interconnection structure of these four basic mod-

ules and their environment.

Max-plus algebra

First we give the basic definition of the max-plus algebra

[4], [11].

Define ε = −∞ and Rε = R∪ {ε}. The max-plus-algebraic

addition (⊕) and multiplication (⊗) are defined as follows:

x⊕ y = max(x, y) , x⊗ y = x+ y

for any x, y ∈ Rε, and

[A⊕B]i,j = ai,j ⊕ bi,j = max(ai,j , bi,j)
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Fig. 1. The model predictive scheduler and its environment

[A⊗ C]i,j =
n

⊕

k=1

ai,k ⊗ ck,j = max
k=1,...,n

(ai,k + ck,j)

[A⊙B]ij = aij + bij

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε . The last

operation (⊙) is the max-plus Schur product. The matrix

ε is the max-plus-algebraic zero matrix: [ε]i,j = ε for all

i, j.

Let u ∈ Bε = {0, ε} be a max-plus binary variable, then

the adjoint variable ū ∈ Bε is defined as follows:

ū =

{

0 if u = ε

ε if u = 0

II. SWITCHING MAX-PLUS-LINEAR MODELS

The core of the model predictive scheduling approach is

the semi-cyclic model for which a max-plus linear (MPL)

system description is proposed. An MPL system is a discrete-

event dynamic system characterized by synchronization con-

straints that excellently fits the modeling of large-scale

discrete event systems.

Three basic types of control decisions that play a major

role in scheduling are routing, ordering, and synchronization.

Routing decides how a job follows a sequence of resources.

A job typically consists of a number of operations that have

to be performed using different resources. Each job has to

follow a route through the system [16]. Often alternative

routes are also possible and the routing for each job has

to be determined. Once the routing of the jobs has been

done, conflicts may occur while jobs need to be operated

at the same resource. The second step in the scheduling is

to determine the ordering of concurring jobs in resources.

Finally some jobs running on different resources may need

synchronization. An operation of a job can only start when

a specific operation of another job has finished. This be the

third and final step in the scheduling.

Routing in MPL systems

We aim to derive models that describe the behavior of

the semi-cyclic discrete event systems, and that contain the

three basic types of control decisions variables for routing,

synchronization, and ordering.

Consider a system that has to operate M jobs. For each

job a specific route through the system has to be scheduled

and resources have to be ordered accordingly. Let job j ∈
{j = 1, . . . ,M} consist of pj operations on the sequence

of resources Rj = (rj,1, . . . , rj,pj
) in processing order,

and let Tj(k) = (τj,1(k), . . . , τj,pj
(k)) be the corresponding

processing times in cycle k with τj,i(k) ≥ 0 for all i, j.

Each operation is assigned to a unique machine and is not

interruptible.

Finally, let x̌(k) =
[

xj,1(k) . . . xj,pj
(k)

]T
be the

vector with all starting times of the operations of job j. This

will give us the following inequalities for all j = 1, . . . ,M :

xj,m(k) ≥ xj,l(k)+τj,l(k), with m > l, m, l ∈ {1, . . . , pj}.

In max-plus matrix notation this can be written as










xj,1(k)
xj,2(k)

...

xj,pj
(k)











≥











ε ε . . . ε

τj,1(k) ε ε
...

. . .
. . .

...

ε . . . τj,pj−1(k) ε











⊗











xj,1(k)
xj,2(k)

...

xj,pj
(k)











or in short notation

x̌j(k) ≥ Ǎjob,j(k)⊗ x̌j(k)

If we have M jobs, we can collect all starting times in

one state vector x(k) and we obtain:

x(k) =











x̌1(k)
x̌2(k)

...

x̌M (k)











≥











Ǎjob,1(k) ε . . . ε

ε Ǎjob,2(k) ε

...
. . .

...

ε . . . . . . Ǎjob,M (k)











⊗











x̌1(k)
x̌2(k)

...

x̌M (k)











≥ Ajob(k)⊗ x(k)

In many applications jobs are not finished within one cy-

cle, but need multiple cycles to complete. The state equation

is then given by

x(k) ≥ A
(0)
job(k)⊗ x(k)⊕A

(−1)
job (k)⊗ x(k−1) (1)

Often there are alternative routes available for the jobs.

Alternative routes may result in the same ‘product’ (e.g.

various machines in production line may execute the same

operation) and sometimes the route may be changed to make

another ‘product’.

Let there be L alternative sets of routes for this system,

then for each set of routes we can define the matrices A
(0)
job,ℓ

and A
(−1)
job,ℓ for ℓ = 1, . . . , L. Let us now define a set of

max-plus binary variables (w1(k), . . . , wL(k)) such that if

we have the ℓth set of alternative routes for the system in



cycle k, we find wℓ(k) = 0 and wj(k) = ε for all j 6= ℓ.

Now the job-system matrices can be written as

A
(µ)
job(w(k), k) ≥

L
⊕

ℓ=1

wℓ ⊗A
(µ)
job,ℓ(k), (2)

Now let 2m−1 < L ≤ 2m. Then we can parameterize

the variables (w1, . . . , wL) by m max-plus binary variables

(ω1, . . . , ωm) and its adjoint values (ω̄1, . . . , ω̄m). For ex-

ample if L = 8 we can parameterize w1, . . . , w8 as follows:
























w1(k) = ω̄1(k)⊗ ω̄2(k)⊗ ω̄3(k)
w2(k) = ω̄1(k)⊗ ω̄2(k)⊗ ω3(k)
w3(k) = ω̄1(k)⊗ ω2(k)⊗ ω̄3(k)
w4(k) = ω̄1(k)⊗ ω2(k)⊗ ω3(k)
w5(k) = ω1(k)⊗ ω̄2(k)⊗ ω̄3(k)
w6(k) = ω1(k)⊗ ω̄2(k)⊗ ω3(k)
w7(k) = ω1(k)⊗ ω2(k)⊗ ω̄3(k)
w8(k) = ω1(k)⊗ ω2(k)⊗ ω3(k)

(3)

In general we can define a max-plus multiplicative

function f such that wi(k) = fi(ω(k)). By substitution

of w(k) = f(ω(k)) in (2) the number of variables can be

reduced. Instead of A
(µ)
job(w(k), k) we will use the notation

A
(µ)
job(ω(k), k).

Remark: If L is not an exact power of 2, there will be more

permutations of ωi(k) and ω̄i(k) than necessary. In that case

we can either introduce constraints on ωi(k) and ω̄i(k) to

describe the allowed set.

Ordering operations on resources in MPL systems

Consider a system with n operations, divided over N

resources. Further let the system allow L alternative routes,

and let Pℓ ∈ Bε
n×n, ℓ ∈ {1, . . . , L}, be a matrix with

max-plus binary entries, where [Pℓ]i,j = 0 if operation i

and operation j are executed on the same resource, and

[Pℓ]i,j = ε if operation i and operation j are executed on

different resources. The matrix P (ω(k)) for selection of the

resources can now be expressed as follows:

P (ω(k)) =

L
⊕

ℓ=1

fℓ(ω(k))⊗ Pℓ

Let H(k) be a separation time matrix, where Hi,j(k) 6= ε

is the separation time between operations i and j if they

may be scheduled on the same resource and Hi,j(k) = ε

if operations i and j can never be scheduled on the same

resource. Finally let V (µ)(k) be order decision matrices with

max-plus binary entries, where [V (µ)(k)]i,j = 0 if operation

i in cycle k is scheduled after operation j in cycle k+µ, and

[V (µ)(k)]i,j = ε if operation i in cycle k is scheduled before

operation j in cycle k+µ. Define v(µ)(k) = vec(V (µ)(k),
then we use the notation vec(V (µ)(k)) = V (v(µ)(k)).

Finally define the ordering matrices

A
(µ)
ord(ω(k), v

(µ)(k), k) = P (ω(k))⊙ V (v(µ)(k))⊙H(k)
(4)

Now the operation ordering constraints in the system can be

formulated as follows:

x(k) ≥

µmax
⊕

µ=µmin

A
(µ)
ord(ω(k), v

(µ)(k), k)⊗ x(k − µ) (5)

where µmin and µmax are the minimum and maximum value

for µ, respectively. The terms with µ > 0 are due to the fact

that in some circumstances it may happen that we want an

operation in cycle k to be scheduled behind an operation in

cycle k + µ (see e.g. [28]).

Note that certain values of v(µ)(k) will lead to an infea-

sible schedule because of cycles in the ordering1. To avoid

these infeasible schedules we can define the set V with all

feasible values v(µ)(k). To reduce the number of parameters

needed we can make use of a binary decision tree [1]. For

scheduling p operations on one resource we have p! possible

permutations. This is also the maximum number of elements

in the set V . Let m = ⌈log2 p!⌉ then we need m binary pa-

rameters γ(µ)(k) =
[

γ
(µ)
1 (k) . . . γ

(µ)
m (k)

]T

to model

all possible allowed values v(µ)(k). Using a binary decision

tree we can define max-plus function f : (Bε)
p2

× (Bε)
m

such that v
(µ)
i (k) = f

(µ)
i ((γ(µ)(k)).

Example 1: Consider an example for p = 3, where we

have a matrix

V (v(0)(k)) =







v
(µ)
1 v

(0)
2 v

(0)
3

v
(0)
4 v

(0)
5 v

(0)
6

v
(0)
7 v

(0)
8 v

(0)
9







with 9 variables. First note that all diagonal elements

are redundant2 and so v
(0)
1 = v

(0)
5 = v

(0)
9 = ε are

chosen fixed. We have p! = 6 feasible combinations of

(v
(0)
2 , v

(0)
3 , v

(0)
4 , v

(0)
6 , v

(0)
7 , v

(0)
8 ) and so m = ⌈log2 3!⌉ = 3.

TABLE I

MAX-PLUS TRUTH TABLE AND CORRESPONDING PERMUTATION

γ
(0)
1 γ

(0)
2 γ

(0)
3 v

(0)
2 v

(0)
3 v

(0)
4 v

(0)
6 v

(0)
7 v

(0)
8 perm

0 ε ε ε ε ε 0 ε 0 0 1 2 3
1 ε ε 0 ε ε 0 0 0 ε 1 3 2
2 ε 0 ε 0 ε ε ε 0 0 2 1 3
3 ε 0 0 0 0 ε ε ε 0 2 3 1
4 0 ε ε 0 0 ε 0 ε ε 3 1 2
5 0 ε 0 ε 0 0 0 ε ε 3 2 1

6 0 0 ε 0 0 0 0 0 0 dummy
7 0 0 0 0 0 0 0 0 0 dummy

Table I shows the permutations (last column) with the

corresponding values of the entries v(0) of the matrix V (0).

The column ‘perm’ gives the ordering of the operations.

From the table we can see that

v
(0)
2 = γ

(0)
2 ⊕ (γ

(0)
1 ⊗ γ̄

(0)
3 )

v
(0)
3 = γ

(0)
1 ⊕ (γ

(0)
2 ⊗ γ

(0)
3 )

1An infeasible ordering is for example in the case of three starting times
of operations x1, x2, x3 we choose an ordering x1 > x2, x2 > x3, and
x3 > x1.

2Note that for positive values of the diagonal entries we obtain a
contradiction xi(k) > xi(k), i = 1, 2, 3, and for zero or negative values
of the diagonal entries we obtain a triviality xi(k) = xi(k), i = 1, 2, 3.



v
(0)
4 = (γ̄

(0)
1 ⊗ γ̄

(0)
2 )⊕ (γ

(0)
1 ⊗ γ

(0)
3 )⊕ (γ

(0)
1 ⊗ γ

(0)
2 )

v
(0)
6 = γ

(0)
1 ⊕ (γ̄

(0)
2 ⊗ γ

(0)
3 )

v
(0)
7 = (γ̄

(0)
1 ⊗ γ̄

(0)
2 )⊕ (γ̄

(0)
1 ⊗ γ̄

(0)
3 )⊕ (γ

(0)
1 ⊗ γ

(0)
2 )

v
(0)
8 = γ

(0)
2 ⊕ (γ̄

(0)
1 ⊗ γ̄

(0)
3 )

A way to derive concise description of the function f can

be found in [1].

Subsequently we can substitute v(µ)(k) = f (µ)((γ(µ)(k)))
into (4) and we obtain

A
(µ)
ord(ω(k), γ

(µ)(k), k) = P (ω(k))⊙ V (f(γ(µ)(k)))⊙H(k)
(6)

Note that for higher values of p the difference between p2

and m grows very rapidly. Using the variables γ(µ)(k) has

two important advantages: we need less parameters and there

are no infeasible choices for v(µ)(k). This is very beneficial

if we want to optimize the schedule later on.

Synchronization of operations in MPL systems

Synchronization occurs when a specific operation can only

start when a specific operation of another job has finished.

In general we can define a number of synchronization modes

ℓ = 1, . . . , Lsyn, where for every mode we obtain a system

matrix

[A
(µ)
syn,ℓ(k)]ij =















0
if operation j in cycle k is to be

scheduled behind operation i in cycle

k+µ.

ε elsewhere

Now the operation synchronization constraints in the system

can be formulated as follows:

x(k) ≥

µmax
⊕

µ=1

A(µ)
syn(s(k), k)⊗ x(k − µ), (7)

where

A(µ)
syn(s(k), k) =

Lsyn
⊕

ℓ=0

sℓ(k)⊗A
(µ)
syn,ℓ(k), (8)

where s(k) ∈ B
Lsyn

ε are max-plus binary variables for

scheduling the synchronizations. Synchronizations may be

coupled and appear in groups (e.g. the synchronization of

legs in a legged robot [17]), but can also be an isolated

phenomenon (e.g. the synchronization of two trains on a

platform to give passengers the chance to change trains [8]).

If there is a coupling between the synchronization variables,

this coupling can be parameterized in a way similar to the

ones in (3).

Reference signal

Some discrete event systems work with a predefined

schedule that gives a lower bound for the starting time of the

operations in the system (e.g. in a railway system we have

a timetable with the departure time of trains). Let rj(k) be

the starting time for operation i according to the given time

schedule. To guarantees a lower bound ri(k) on operation i

we introduce the constraint

x(k) ≥ r(k). (9)

Overall MPL system

We have derived four conditions (1), (5), (7), and (9) for

x(k). We also have a set of scheduling decision variables

from

• Routing: ω(k).
• Ordering: γ(µ)(k), µ = µmin, . . . , µmax.

• Synchronization: s(k), µ = 1, . . . , µmax.

If we now stack all decision variables into one vector

u(k) =















ω(k)
γ(µmin)(k)

...

γ(µmin)(k)
s(k)















∈ (Bε)
Ltot

where Ltot is the total number of scheduling variables, then

we can write our scheduling model as follows

x(k) =

µmax

⊕

µ=µmin

A(µ)(u(k), k)⊗ x(k − µ)⊕ r(k) (10)

where

A(µ)(u(k), k) =

=A
(µ)
job(ω(k), k)⊕A

(µ)
ord(ω(k), v

(µ)(k), k)⊕A(µ)
syn(s(k))

=

Ltot
⊕

ℓ=1

uℓ(k)⊗A
(µ)
tot,ℓ(k)

Note that by choosing a specific control vector u(k) the

system switches between different modes of operation. Such

a system is called a switching max-plus linear system [29].

III. MODEL PREDICTIVE SCHEDULING

In this paper we will use a model predictive scheduling

strategy. With a receding horizon principle the schedule for

the complete task is not calculated at once, but in several

iterations. In every iteration the schedule is calculated for

only the jobs in the nearest future, where only these few

future jobs and the necessary past jobs are taken into account,

instead of all jobs in the scheduling task. Two reasons to use

the model predictive scheduling method:

• The scheduling task may contain many jobs. The com-

putation time of the optimal solution increases as the

number of scheduling variables increases. A too long

computation time can cancel out the time gained by

optimizing the schedule, or even deteriorate the total

solution. The negative impact of the computation time

can be avoided by using the receding horizon principle,

which is one of the main characteristics of MPC.

• We aim for reactive operational scheduling, which

means that based on observations of the system’s be-

havior we can reschedule (reroute, resynchronize, and



reorder) the jobs of the system to optimize the per-

formance. This means that we have to perform the

optimization in real-time based on measurements of

the actual state and knowledge of delayed operations

(possibly with estimation of the remaining processing

times).

Let t be the present time instant, and we like to compute the

optimal future control actions. Further, define the cycle k−1
as the last cycle at which the state x(k − 1) is completely

known, so

k = argmax
κ

{

κ|xi(κ−ℓ) ≤ t, ∀ℓ ≥ 1, i ∈ {1, . . . , n}
}

(11)

Hence, all states x(k − ℓ) for ℓ ≥ 1 with the starting and

finished times for the cycle k − ℓ are completely known at

time t, and thus the control actions u(k−ℓ) are also available.

This means that some components of the states x(k + j),
j ≥ 0 may be known and some parts are unknown at time

t. At each time t we can define matrices Sx(k + j, t) and

Su(k + j, t) such

Sx(k + j, t)⊗ x(k + j) = xpast(k + j, t) ≤ t

Su(k + j, t)⊗ u(k + j) = upast(k + j, t)

where xpast(k + j, t) and upast(k + j, t) are the parts of

x and u that are known at time t. Further measurements

of processing times of past operations and information

about future delays leads to time-varying system matrices

A(µ)(u(k + j, t), t).

We can now formulate the Model Predictive Scheduling

problem. To select the optimal set of possible future control

actions, we define the following optimal control problem at

cycle k and time instant t:

min
u(k+j,t), j=0,...,Np−1

J(k, t) (12)

x(k+j, k+j, t) =
max
⊕

µ=µmin

A(µ)(u(k+j, t), k+j, t)

⊗ x(k+j−µ, t)⊕ r(k+j) (13)

A(µ)(u(k+j, t), k+j, t) =

Ltot
⊕

ℓ=1

uℓ(k+j, t)⊗A
(µ)
tot,ℓ(, k+j, t)

(14)

Sx(k + j, t)⊗ x(k + j) = xpast(k + j, t) (15)

Su(k + j, t)⊗ u(k + j) = upast(k + j, t) (16)

where Np is the prediction horizon, and J(k, t) is the

performance index in cycle k at time t.

The performance index J(k, t) is usually given by

J(k, t) = max
i=1,...,n

αxi(k+Np, t) +

Np−1
∑

j=0

n
∑

i=1

σj,i xi(k+j, t)

+

Ltot
∑

l=1

ρj,l ηl(k+j, t). (17)

where

ηl(k+j, t)=((ul(k+j, t)⊗1)⊕0)=

{

0 for ul(k+j, t) = ε

1 for ul(k+j, t) = 0
(18)

is a conventional binary variable. Further σj,i, ρj,l are

weighting scalars. The first term of (17) is the makespan over

the prediction horizon (that is the total production length over

the next Np jobs), the second term is related to the weighted

sum of all predicted starting times, and the third term denotes

the penalty for all changes in ordering or synchronization

during cycle k + j.

Often we like to minimize the global makespan, that is

the total length of the schedule. Let Ntot be the number

of job cycles to be scheduled. Then the aim will be to

minimize maxi xi(k+Ntot, t). If Ntot is very big it is usually

better to choose a prediction horizon Np ≪ Ntot, and the

criterion will be to minimize (17) where α = 1 and 0 ≤
σi ≪ 1 , i = 1, . . . , Np − 1. A major advantage of a small

prediction horizon Np is that the computational complexity

of the optimization problem is drastically reduced. In other

cases we like to minimize the sum of delays with respect

to a reference signal (i.e.
(

xi(k+ j, t) − ri(k+ j)
)

). We

then have α = 0 and σi = 1, ∀ i. (Note that skipping the

reference signal from the performance index does not change

the optimal schedule and so we can apply (17) for this case).

In principle we have all elements to solve the optimal

control problem (12)-(16).

IV. THE MIXED-INTEGER LINEAR

PROGRAMMING PROBLEM

The model predictive scheduling problem (12)-(16) can be

recast into a mixed-integer linear programming problem as

follows. The scheduling parameters in the model predictive

scheduling problem are either zero or infinity. For the actual

numerical implementation the infinite value ε cannot be used.

The first step will therefore be to replace the max-plus

binary variables by conventional binary variables. We use

the following approximation

ui(k, t) = β (1− ηi(k, t))

where β ≪ 0 is a very large (in absolute value) negative

number and η(k, t) ∈ {0, 1}Ltot is a conventional binary

variable. The adjoint of ui(k, t) can be approximated by

ūi(k, t) = β ηi(k, t)

Consider constraint (13). This can be written as a set of

constraints:

[x(k+j, t)]i ≥ [Aµ(β(1− η(k+j, t)), t)]il

+ [x(k+j−µ, t)]l (19)

[x(k+j, t)]i ≥ [r(k+j)]i (20)

for i = 1, . . . , n, l = 1, . . . , n, j = 0, . . . , Np − 1, µ =
µmin, . . . , µmax. In the absence of a reference signal, we can



drop constraint (20). Define the vectors

x̃(k, t)=







x(k, t)
...

x(k+Np−1, t)






, η̃(k, t)=







η(k, t)
...

η(k+Np−1, t)







r̃(k)=







r(k)
...

r(k+Np−1)







The cost criterion J(k, t) is linear in x̃(k, t), η̃(k, t), r̃(k),
and so there exists a vector c =

[

cT1 cT2 cT3
]

such that

J(k) = cT1 x̃(k, t) + cT2 η̃(k, t)− cT3 r̃(k, t) (21)

Now the model predictive scheduling problem is recast

into an Mixed integer programming problem of minimizing

criterion (21) subject to constraints (19)-(20). In general,

mixed integer linear programming problems are NP-hard

[26]. In practice, this means that the computational com-

plexity of a mixed integer linear programming problem

grows exponentially with the number of integer values in the

problem. Nevertheless, there exist fast and reliable solvers

(e.g. CPLEX, Xpres, [3]) for these problems.

V. DISCUSSION

In this paper we have discussed a general framework for

model predictive scheduling of semi-cyclic discrete event

systems. We have introduced a systematic way to model

the main scheduling steps: routing, ordering, and synchro-

nization. A max-plus linear model has been derived with

scheduling parameters for each scheduling step. The system

matrix is max-plus linear in the scheduling parameters and a

model predictive scheduling problem has been formulated.

This problem can be recast into a mixed integer linear

programming problem.

In future research we also like to consider large-scale

examples where MILP algorithms might fail. In that case

we will look at heuristic optimization techniques such as

optimistic optimization [22] or ordinal optimization [15].
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