
Delft University of Technology
Delft Center for Systems and Control

Technical report 14-031

Modeling of the dynamics and the energy
consumption of a fleet of cybercars∗

R. Luo, T.J.J. van den Boom, and B. De Schutter

If you want to cite this report, please use the following reference instead:
R. Luo, T.J.J. van den Boom, and B. De Schutter, “Modeling of the dynamics and
the energy consumption of a fleet of cybercars,” Proceedings of the 2014 European
Control Conference, Strasbourg, France, pp. 720–725, June 2014.

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/14_031.html

https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/14_031.html


Modeling of the Dynamics and the Energy Consumption of a Fleet of

Cybercars*

Renshi Luo, Ton J.J. van den Boom, and Bart De Schutter

Abstract— Automated driving technologies have already been
developed for individual vehicles. However, the lack of efficient
control strategies for the cooperation of a fleet of vehicles
is one of the biggest challenges that cybercars (i.e., fully
automatic road vehicles providing on-demand and door-to-
door transportation service) are facing. Before an efficient fleet
control method can be developed, a reasonably accurate and
sufficiently fast model of the dynamics of a fleet of cybercars
that is suited for control design is needed. In this paper, we
discuss the modeling of the dynamics of a fleet of cybercars
in a dedicated road network using a discrete-time modeling
description. We consider the total time spent and total energy
consumption by all the cybercars in the network and derive
how these can be affected by the route choices.

I. INTRODUCTION

In many metropolises, the ever-increasing use of private

cars together with the highly disorganized behaviors of

human drivers is causing severe problems (e.g., a large

amount of injuries and fatalities, frequent congestion, soaring

energy consumption and pollution, increased noise levels)

that degrade the quality of life and the environment. Be-

ing considered suitable solutions to these problems, public

transportation systems (e.g., buses, trams, subways, etc) have

been widely used and continuously improved. However, in

public transportation systems, passengers have to accept pre-

defined schedules and routes, and hence have to spend extra

time waiting and transferring, and they also have to travel

longer distances because of indirect routes. Since they are

outperforming public transportation systems on the personal

mobility level, private cars still form a large part of the

current transport system and the problems caused by the

increasing use of private cars are still largely unsolved.

A new and promising option to deal with this situation is

to use a cybernetic transportation system i.e., an intelligent

transportation system formed by a fleet of cybercars that

drive automatically and provide on-demand and door-to-door

service [1]–[4]. Cybercars are often small-sized and based

on electric power, which is more efficient and less polluting

than fossil fuels. They have high flexibility and reactivity

(i.e., they can provide on-demand transportation service for

any location at any time) and hence offer better urban

mobility than conventional public transportation systems [5].

Besides, in terms of energy consumption, they are even

competitive on a per passenger-km basis compared with
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public transportation [6]. The European project CyberCars

[7] is one of the first projects dedicated to developing such

a cybernetic transportation system.

In fact, automated driving technologies have been well

developed for individual vehicles [8] and some of the tech-

nologies (e.g., adaptive cruise control [9], automated lane

change [10], etc.) are operating in real-life. But the lack of

efficient strategies for the cooperation of a fleet of cybercars

is still one of the biggest obstacles that hinder the large-scale

application of cybercars.

The cooperation of a fleet of cybercars is necessary for the

optimal performance of a cybernetic transportation system.

There are several kinds of cooperation among cybercars, such

as collision avoidance, platoon merge and split, dynamic

routing, etc. When it comes to cooperation, cybercars can

be characterized as moving decision-making agents with ex-

tensive on-board processing and communication capabilities

as well as abundant information of the environment.

Actually, the fleet control problem of cybercars has already

been considered in the literature. More specifically, in [6],

the problem was studied from a conceptual point of view

and a centralized fleet management system was presented.

In [11], a new concept of control named open-control was

proposed to merge centralized and decentralized control

approaches. However, that paper just simply demonstrated

how the open-control approach can help to deal with a

perturbed environment, but it did not introduce a specific

control algorithm. In contrast, in our research, our aim is to

explore a specific instance of the fleet control problem, i.e.,

the dynamic routing of a fleet of cybercars and to develop

a distributed control algorithm to solve this problem. But

before working on the control solution, as a first step, in

this paper we model the problem in such a way that model-

based and optimization-based control methods (e.g., model

predictive control) can be used.

This paper is organized as follows. In Section II, we

present the general description of the dynamic routing prob-

lem of a fleet of cybercars and the assumptions we made

for modeling the problem. In Section III, considering that

the route of each cybercar in a fleet can be decided by itself

and also can be assigned by a centralized routing controller,

we model the dynamics and the energy consumption of

each cybercar in a dedicated road network using a discrete-

time modeling description. In Section IV, we consider the

total time spent and total energy consumption by all the

cybercars and formulate the dynamic routing problem of a

fleet of cybercars in a model predictive control framework.

In Section V, we present a simple case study of the modeling



and the model predictive route choice control of cybercars.

Finally, in Section VI, we summarize the results of this paper

and present some ideas for future work.

II. PROBLEM DESCRIPTION

We consider a cybernetic transportation network consisting

of a set of dedicated (i.e., only open to cybercars) roads

where vehicles are not allowed to turn around, and a set

of dedicated intersections. Each road starts and ends at

an intersection. Each cybercar can make its desired route

decisions or receive route instructions from a centralized

routing controller at every simulation time step, but only

the route decision or instruction right before the cybercar

crosses an intersection will be put into use. In this paper,

we simply refer to a road as a ‘link’, an intersection as a

‘node’, and a ‘cybercar run’ (i.e., a cybercar running from

its departure point to its destination) as a car. Each link

is divided into a number of segments with length typically

in the range of 50 to 100 m. In each link, the segments

are labeled by consecutive integers starting from 1. At any

time, the traffic density (i.e., the number of vehicles per

kilometer) in a segment is assumed to determine the speeds

of all the cybercars running in that segment. Moreover, each

segment has its maximum capacity (i.e., the maximal allowed

number of cars at the same time). More specifically, if the

number of vehicles running in a segment reaches or exceeds

the maximum capacity, that segment will be blocked and

no vehicle is allowed to enter that segment. The energy

consumption of a car is a function of its velocity and also

the variation of its velocity (i.e., acceleration or deceleration).

We assume that the departure point and destination of a car

are always at a node, and all cybercars have the same length.

We also assume that within a simulation time interval, no car

can cover a distance longer than the length of the segment

it is running in. Namely, we assume that vfree,m, j ·T < Lm, j

holds for all m and j, where vfree,m, j denotes the free speed of

segment m of link j, T denotes the simulation time interval

(typically 1 second), and Lm, j denotes the length of segment

m of link j.

III. DISCRETE-TIME MODELING

A. Definitions

Let k be the discrete-time counter and i be the car index.

Let Tstart,i denote the time instant when car i is due to run

from its departure point and Tstop,i denote the time instant

when car i arrives at its destination. Let li(k) and si(k) be

the link and the segment in which car i is running at time

kT , respectively. Let xi(k) be the position (measured along

the longitudinal axis of link) of car i in the link li(k) at time

kT , and lfinal,i be the final link of car i, i.e., the end of lfinal,i

is the destination of car i. Let ri(k) be the route selected by

car i at time kT , and ui(k) be the next link of car i after li(k)
following the current route ri(k).

Let pstart
m, j and pend

m, j denote the positions of the starting point

and the ending point of segment m of link j, respectively.

Defining Nm, j(k) as the number of vehicles running in

segment m of link j at time kT and Lm, j as the length of

nodevirtual link segment

link

CTS network

departure point

A

B

Fig. 1. Cybernetic transportation network

that segment, then the traffic density in segment m of link j

at time kT is

ρm, j(k) =
Nm, j(k)

Lm, j
(1)

Besides, let Cm, j(k) denote the maximum capacity of seg-

ment m of link j. Let bm, j(k) define the blocking signal of

segment m in link j at time kT . More specifically, bm, j(k)= 1

means that the number of vehicles running in segment m of

link j at time kT has reached or exceeded the maximum

capacity and hence the segment is blocked, while bm, j(k) = 0

means that segment is not blocked at time kT . Finally, let

∆m, j denote the temporary variable that collects the change

of the number of vehicles in segment m of link j during one

simulation time interval.

Note that at the start of the simulation, for each car i,

Tstop,i is initialized with a sufficient large number, which is

used for (14) before Tstop,i can be determined. In addition,

at the start of every simulation time interval, ∆m, j for all m

and j are set to be 0.

B. Network Set-Up

Considering the cybercars that are not able to enter the

network due to a blocked departure link, we introduce a

virtual link with zero length and infinite capacity to each

departure point. Then the layout of the network can be

represented by the following figure.

In the network, as shown in Figure 1, a link is represented

by a directed line with the arrow indicating the heading

direction, and a node is represented by a small solid circle.

C. Dynamics of a Single Vehicle

When Tstart,i comes, car i will enter the network. At each

simulation time step kT , with xi(k), li(k), si(k), ri(k) of car i

and the information of the network Nm, j(k), ρm, j(k), bm, j(k)
for all j and m given, the variables xi(k+1), li(k+1), and

si(k+1) of car i need to be updated. As car i may go from

one segment (or link) to a different segment (or link) during

[kT,(k + 1)T ], we also need to capture the change of the

number of vehicles in the segments related to car i.

The update process consists of five main cases, which are

described as

• “same segment, same link”: car i runs in the same

link and the same segment between time t = kT and

t = (k+1)T .



• “different segments, same link”: car i runs in the same

link but goes from the current segment si(k) to the next

one between t = kT and t = (k+1)T .

• “desired link blocked”: car i arrives at the end of its

current link, but the first segment of its desired next link

is blocked between t = kT and t = (k+1)T .

• “different links”: car i arrives at the end of its current

link and the first segment of its desired next link is not

blocked between t = kT and t = (k+1)T . The car goes

from its current link to its desired link.

• “arrival”: car i arrives at its destination between t = kT

and t = (k+1)T .

For the sake of simplicity of notation, we assume li(k) = j

and si(k) =m, then present the conditions of all the five cases

and describe how the dynamics of car i are updated in each

of the cases.

For the case of same segment, same link, the following

conditions must be satisfied:

Tstart,i < (k+1)T

xi(k)+ fm, j

(

ρm, j(k)
)

T > pstart
m, j

xi(k)+ fm, j

(

ρm, j(k)
)

T ≤ pend
m, j

where the function fm, j(·) describes how the speed of cars

in a segment depends on the traffic density in that segment.

Since cybercars are automated vehicles, according to the fun-

damental flow-density curve for automated traffic presented

in [12], one possible way to define fm, j(·) based on the

constant time headway policy is given by

fm, j

(

ρm, j(k)
)

=

{

vfree,m, j, if ρm, j(k)≤ ρcrit,m, j

1
hcon

(

1
ρm, j(k)

−Lveh

)

, if ρm, j(k)> ρcrit,m, j

(2)

where [12]

ρcrit,m, j =
1

hconvfree,m, j +Lveh

(3)

is the critical traffic density of segment m of link j at

which the maximal flow is obtained, hcon is the constant

time headway of automated vehicles, and Lveh is the length

of the vehicle. In this case, the dynamics of car i are updated

by

xi(k+1)← xi(k)+ fm, j

(

ρm, j(k)
)

T

li(k+1)← li(k)

si(k+1)← si(k)

Actually, in this case, only the position of car i is changed.

For the case of different segments, same link, the

conditions are:

Tstart,i < (k+1)T

xi(k)+ fm, j

(

ρm, j(k)
)

T > pend
m, j

xi(k)+ fm, j

(

ρm, j(k)
)

T ≤ pend
m+1, j

bm+1, j(k) = 0

In this case, during [kT,(k + 1)T ] car i first keeps speed

fm, j

(

ρm, j(k)
)

until it arrives at the end of the current

segment m. After that, it runs at fm, j

(

ρm+1, j(k)
)

in the next

segment m+ 1 for the rest of the time. Then the dynamics

of car i are updated by

xi(k+1)← pend
m, j + fm, j

(

ρm+1, j(k)
)



T −
pend

m, j− xi(k)

fm, j

(

ρm, j(k)
)





li(k+1)← li(k)

si(k+1)← si(k)+1

and the changes of the number of vehicles in segment m and

segment m+1 caused by car i are captured by

∆m, j← ∆m, j−1

∆m+1, j← ∆m+1, j +1

Next, assuming the desired next link of car i at kT is

ui(k) = j∗, the conditions of desired link blocked are:

Tstart,i < (k+1)T

xi(k)+ fm, j

(

ρm, j(k)
)

T > pend
m, j

b1, j∗(k) = 1

Since the desired next link j∗ is blocked during [kT,(k +
1)T ], after car i arrives at the end of the current link, it has

to wait there. Then the dynamics at (k+1)T are updated by

xi(k+1)← pend
m, j

li(k+1)← li(k)

si(k+1)← si(k)

Then for the case of different links, also assuming ui(k) =
j∗, the conditions are:

Tstart,i < (k+1)T

xi(k)+ fm, j

(

ρm, j(k)
)

T > pend
m, j

b1, j∗(k) = 0

In this case, car i is allowed to enter its desired next link,

and its dynamics are updated by

xi(k+1)← fm, j

(

ρ1, j∗(k)
)



T −
pend

m, j− xi(k)

fm, j

(

ρm, j(k)
)





li(k+1)← ui(k)

si(k+1)← 1

Further, the changes of the number of vehicles in segment

m of link j and segment 1 of link j∗ caused by car i are

captured by

∆m, j← ∆m, j−1

∆1, j∗ ← ∆1, j∗ +1
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Fig. 2. Two possible cases of the speed change of a car

Finally, for the case of arrival, the conditions are:

Tstart,i < (k+1)T

xi(k)+ fm, j

(

ρm, j(k)
)

T > pend
m, j

lfinal,i = j

In this case, car i stops running after arriving at its destina-

tion. Then Tstop,i is obtained by

Tstop,i = kT +
pend

m, j− xi(k)

fm, j

(

ρm, j(k)
) (4)

After that, car i leaves the network and ∆m, j is updated by

∆m, j← ∆m, j−1

D. Network Dynamics

After every simulation time step, with the updated infor-

mation of all cars, the update of the states of the whole

network, for all m and j, is given by

Nm, j(k+1) = Nm, j(k)+∆m, j

ρm, j(k+1) =
Nm, j(k+1)

Lm, j

bm, j(k+1) = 1x≥0

(

Nm, j(k+1)−Cm, j

)

where 1x≥0(·) is an indicator function defined by

1x≥0(a) =

{

1, if a≥ 0

0, if a < 0
(5)

E. Energy Consumption of a Single Vehicle

The energy consumption of a electric vehicle consists of

four consuming factors [13], which are:

• speeding up

• air drag

• rolling resistance

• energy losses in the energy-conversion chain

Starting from the speeds of the vehicle at respectively time

t = (k−1)T and t = kT , we consider all of the four factors

described above and make the graph of Figure 2 to describe

how the energy consumption of a car is calculated, where t1
and t2 are absolute time instants while T is the simulation

time interval. We assume that t2− t1 < T always holds and

the car has the same acceleration and deceleration rate. It

should be noted that different from Section III.C where the

dynamics of all cars and the network are updated using

constant speeds for all cars in every simulation interval, in

this subsection, the acceleration and deceleration processes

are approximated and then taken into account in the energy

consumption calculation since energy consumption formulas

for cars are acceleration dependent. In fact, we could also

consider acceleration and deceleration in the update of the

position of the cybercar (cf. Section III.C). But the relative

effect of that will be smaller than for the energy consumption

formulas and it also create a lot of extra complexity in the

position update equations.

According to Figure 2, the car is accelerating or deceler-

ating between t1 and t2. Let us call [t1, t2] the acceleration-

deceleration period. Then define Evar kin as the kinetic energy

change of the car due to the speed change from vinit to

vnew, Evar air as the energy consumption of the car needed

to overcome the air drag during the acceleration-deceleration

period, and also Evar rol as the energy consumption of the car

needed to overcome the rolling resistance during this period.

Based on [13], Evar kin, Evar air and Evar rol are given by

Evar kin =
∫ t2

t1

M
dv

dt
vdt = M

∫ vnew

vinit

vdv

=
1

2
M(v2

new− v2
init) (6)

Evar air =
∫ t2

t1

1

2
ρairAfrontv

3dt

=
1

2
ρairAfront

∫ t2

t1

[vinit±amax(t− t1)]
3dt

=
ρairAfront

∣

∣

∣
v4

new− v4
init

∣

∣

∣

8amax
(7)

Evar rol =
∫ t2

t1

crMgvdt = crMg

∫ t2

t1

[vinit±amax(t− t1)]dt

=
crMg

∣

∣

∣
v2

new− v2
init

∣

∣

∣

2amax
(8)

where M is the mass of the vehicle, amax is the maximal ac-

celeration and deceleration rate, ρair is the air density, Afront is

the effective frontal area of the vehicle, g is the gravitational

acceleration, and cr is the rolling resistance coefficient. As

amax is assumed to be positive and fixed, for compactness,

we use the combination expression vinit±amax(t− t1) for the

speed of a vehicle during acceleration-deceleration period in

(7) and (8). For clarity, vinit +amax(t− t1) denotes the speed

of the vehicle when it is accelerating while vinit−amax(t−t1)
denotes the speed of the vehicle when it is decelerating.

After the acceleration-deceleration period, the car keeps

the constant speed vnew for time length T − (t2− t1), with

t2−t1 =
|vnew−vinit|

amax
. Let us call this the constant-speed period.

Since the car keeps a constant speed during this period,

its kinetic energy does not change. Now by defining Ect air

and Ect rol as the energy consumption of the car needed to



overcome the air drag and the rolling resistance during the

constant-speed period, respectively, we find

Ect air =
∫ T+t1

t2

1

2
ρairAfrontv

3
newdt

=
1

2
ρairAfrontv

3
new(T + t1− t2)

=
1

2
ρairAfrontv

3
new

(

T −
|vnew− vinit|

amax

)

(9)

Ect rol =
∫ T+t1

t2

1

2
crMgvnewdt

=
1

2
crMgvnew

(

T −
|vnew− vinit|

amax

)

(10)

Besides, we define ηmotor as the efficiency of electric

motors1. Then, the actual energy consumption of the vehicle

during the simulation time interval [t1, t1 +T ] is

E(vinit,vnew,amax,T ) =


















1

ηmotor
(Evar kin +Evar air +Evar rol +Ect air +Ect rol),

if vnew ≥ vinit

1

ηmotor
(Ect air +Ect rol), if vnew < vinit

(11)

Note that since a vehicle does not consume energy during the

acceleration-deceleration period when it is decelerating, only

the energy consumption of the vehicle during the constant-

speed period is calculated in the second part of (11).

However, if a vehicle uses regenerative braking (i.e., using

the vehicle’s momentum to recharge the on-board batteries),

it could save part of the kinetic energy lost in braking. We

define γrecover as the round-trip energy recovery coefficient2

of the regenerative braking system. Then when regenerative

braking is used, the second part of (11) becomes

E(vinit,vnew,amax,T ) =
γrecover

ηmotor
(Evar kin +Evar air +Evar rol)

+
1

ηmotor
(Ect air +Ect rol), if vnew < vinit

(12)

where Evar kin+Evar air+Evar rol is negative and represents the

part of the car’s kinetic energy that can be used to recharge

the on-board batteries.

Finally, by defining Ei(k) as the energy car i consumes

during [kT,(k+1)T ], we have

Ei(k) = E
(

vi(k−1),vi(k),amax,T
)

(13)

1Energy dissipates in the energy chain and the maximal efficiency of
electric motors is about 85% to 90% [13]. That means for the best case,
only 90% percent of the electricity used to charge the onboard batteries is
available to power the vehicle.

2According to [14], the round-trip energy recovery coefficient (i.e., the
ratio between the electric energy recovered from braking and the electric
energy spent on accelerating) is around 38%.

IV. ROUTE CHOICE CONTROL PROBLEM

FORMULATION

In our research, our aim is to design a control strategy that

enables all cybercars to receive dynamic routes so that the

total time spent (TTS) and total energy consumption (TEC)

by all the cars are minimized.

Model predictive control (MPC) is widely recognized as

a high-performance control approach that can be used to de-

termine optimal control actions for complex and constrained

systems [15], [16]. MPC determines these control actions by

solving a constrained finite-horizon optimal control problem

in a receding horizon fashion. As presented in the previous

section, the dynamics of all cars and of the network are

highly complex and subject to many constraints. Therefore,

we adopt an MPC scheme to formulate the dynamic routing

problem of a fleet of cybercars based on the discrete-time

model given in the previous section.

Based on the model of Section III, the total time spent and

total energy consumption of all cars in the network during

the prediction period [kT,(k+Np)T ] are given by

JTTS(k) = ∑
i∈I(k,Np)

min
(

(k+Np)T −Tstart,i, Tstop,i− kT,

Tstop,i−Tstart,i, NpT
)

+ Jend
TTS(k) (14)

JTEC(k) =
Np−1

∑
n=0

∑
i∈I(k,Np)

Ei(k+n) + Jend
TEC(k) (15)

with Np the prediction horizon and I(k,Np) the set of all cars

that are in the network during [kT,(k+Np)T ], Jend
TTS(k) and

Jend
TEC(k) are measures of the expected remaining total time

spent and expected remaining total energy consumption from

their positions at that time to their destinations for all the

cars that are still in the network at t = (k+Np)T . One way

to compute Jend
TTS(k) and Jend

TEC(k) is using the speeds of the

cars at t = (k+Np)T and shortest time routes computed by

Dijkstra’s algorithm [17] based on those speeds.

Considering JTTS(k) and JTEC(k) have different orders of

magnitude and different units, in order to properly balance

them in optimization, we design the following objective

function

J(k) = w1
JTTS(k)

JTTS,typical

+w2
JTEC(k)

JTEC,typical

(16)

where JTTS,typical and JTEC,typical are the “typical” values3 of

the total time spent and total energy consumption of all cars

in one prediction period NpT , and w1,w2 > 0 are weights.

At MPC step k, the decision variables for all car i with i∈
I(k,Np) are routes to be taken leading to the final destinations

(i.e., at step k, each car i has to select one route from a

finite discrete set of possible routes Ri(k)). Note that once a

route ri(k)∈ Ri(k) has been selected by car i, the link choice

3These values are e.g., the values of the total time spent and total energy
consumption of all cars in one prediction period in a numerical simulation
where the routes of all cars are fixed or a simple route control strategy (e.g.,
fastest route) is used.
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Fig. 3. Road network

TABLE I

TRANSPORTATION DEMAND

Origin Destination Departure times

A B 0.2s, 1.4s, 2.6s, 3.8s, 5.0s, 6.2s, 7.4s,
8.2s, 8.6s, 9.0s, 9.4s

A C 0.4s, 0.6s, 1.0s, 1.2s, 1.6s, 1.8s, 2.2s,
2.4s, 2.8s, 3.0s, 3.4s, 3.6s, 4.0s, 4.2s,
4.6s, 4.8s, 5.2s, 5.4s, 5.8s, 6.0s, 6.4s,
6.6s, 7.0s, 7.2s, 7.6s, 7.8s

B C 0.8s, 2.0s, 3.2s, 4.4s, 5.6s, 6.8s, 8.0s,
8.4s, 8.8s, 9.2s, 9.6s

sequence ui(k) can be determined and used as input for the

model of Section III.

Finally, together with the nonlinearity of the dynamics of

all cars and the objective function, the discrete nature of

the decision variables of all cars leads to a mixed integer

nonlinear programming (MINLP) problem, for which several

algorithms are available, such as genetic algorithm, branch

and bound, simulated annealing, etc [18]. In general how-

ever this problem is computationally very hard to solve, in

particular if the number of cybercars is large. Hence, a major

challenge is to find efficient approximated solution methods,

possibly based on a distributed control approach. This will

be a topic for future research.

V. CASE STUDY

The modeling and the dynamic routing formulation of

a fleet of cybercars developed in the previous sections are

applied to the case study network depicted in Figure 3. The

network contains three origins and destinations connected by

three bidirectional links. The link lengths are indicated in the

figure. All segments in all links have a length of 50 m. Table

I lists the demands.

Taking T = 1 s, vfree,m, j = 60 km/h, hcon = 0.3 s, Lveh = 3.2
m, amax = 2.45 m/s2, M = 1000 kg, ρair = 1.3 kg/m3,

Afront = 0.8 m2, g = 9.8 m/s2, cr = 0.01, ηmotor = 0.85,

γrecover = 0.38, Np = 15, w1 = 0.6 and w2 = 0.4, we compare

the performance of MPC route choice control and the shortest

routes strategy. The result are listed in Table II.

Note that with optimized routes assigned by MPC con-

troller, the fleet of cybercars successfully avoids congestion

TABLE II

COMPARISON: SHORTEST ROUTE AND MPC ROUTE CHOICE CONTROL

Method TTS TEC

Shortest Route 6258.0 s 15.20 kWh

MPC Route Choice Control 4517.6 s 7.64 kWh

in the network, so that they save time (i.e., travel at higher

speeds) and save energy (i.e., less accelerating and braking).

VI. CONCLUSION

Considering cybercars as moving decision-making agents

that can decide their desired route choices or receive route in-

structions from a higher-level controller, we have presented a

discrete-time model of the dynamics and energy consumption

of a fleet of cybercars running in a dedicated road network.

We have considered the total time spent and total energy

consumption by all the cybercars in the network and have

derived how these performance measures can be affected by

the route choices. Finally, with the proposed model, we have

formulated the dynamic routing control problem according

to a model predictive control scheme.

In our future work, we will seek to work out efficient dis-

tributed model predictive control solutions for the dynamic

routing problem of a fleet of cybercars.
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