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Abstract

Urban traffic networks are large-scale systems, consisting of many intersections controlled by

traffic lights and interacting connected links. For efficiently regulating the traffic flows and mit-

igating the traffic congestion in cities, a network-wide control strategy should be implemented.

Control of large-scale traffic networks is often infeasible by only using a single controller, i.e.

in a centralized way, because of the high dimension, complicated dynamics, and uncertainties

of the system. In this paper we propose a multi-agent control approach using a congestion-

degree-based serial scheme. Each agent employs a model-based predictive control approach and

communicates with its neighbors. The congestion-degree-based serial scheme helps the agents

to reach an agreement on their decisions regarding traffic control actions as soon as possible. A

simulation study is carried out on a hypothetical large-scale urban traffic network based on the

presented control strategy. The results illustrate that this approach has a better performance with

regard to computation time compared with the centralized control method and a faster conver-

gence speed compared with the classical parallel scheme.

Keywords: Multi-agent control, model predictive control, large-scale networks, urban traffic

networks.

1. Introduction

Traffic congestion in urban road networks creates a series of social-economic problems, such

as the excessive consumption of energy, the environmental pollution, and the risk of car acci-

dents. Although this problem can be solved by constructing new transportation infrastructures

and extending the road networks, such a solution is both costly and time-consuming. Therefore,

a potential solution is to apply network-wide traffic signal control on the basis of the existing

transportation infrastructures.

Since the early 1980s, some TUC (Traffic-responsive Urban Control) strategies have been

developed to address the congestion problem in road networks. SCOOT [1] and SCATS [2]

are two well-known commercial traffic control systems and have been widely used in many
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big cities around the world. These systems determine the signal timings based on an adaptive

control approach responding to the current traffic states and they also use a simple hierarchical

control scheme. OPAC [3] and RHODES [4] are real-time traffic-adaptive signal control sys-

tems. Their hierarchical structure has been designed to realize different functions at each level,

such as coordination and synchronization of traffic signals, interaction control, and network flow

control. From the experiment results in the literature, it is shown that these real-time signal con-

trol systems are more efficient than the fixed-time control plans and to some extent have a better

performance in reducing traffic congestion.

More recently, with the development of computer techniques, a number of more precise

model-based control approaches based on macroscopic traffic models that can describe the dy-

namics of the traffic flow of the whole urban traffic network in a sufficiently detailed way

have been proposed, and some numerical solution algorithms are used to solve the optimiza-

tion problems based on these models. Diakaki et al. [5] presented a multivariable regulator

for traffic-responsive coordinated network-wide signal control based on the well-known store-

and-forward urban traffic model. They formulated a linear-quadratic optimal control problem

and designed the offline feedback regulator to calculate in real-time the signal splits using the

measured traffic states from the detectors. Aboudolas et al. [6, 7, 8] further reformulated a

quadratic-programming problem and embedded it into a rolling-horizon control scheme. This

approach can predict the future traffic states based on the model, realize the rolling optimization

and derive the optimal signal timing using the current states of the traffic system. Meanwhile, it

can significantly reduce the on-line computational complexity because of the linear optimization

problem, which is readily solved by use of the available tools within a few seconds. However,

the models used in the approaches mentioned above are usually very simple, which limits the

application of these systems. For example, in oversaturated traffic conditions, the performance

of the urban traffic networks would deteriorate due to the mismatches between the reality and

the models. Lin et al. [9] presented an efficient network-wide model predictive control (MPC)

approach for urban traffic networks. MPC [18] is a model-based control strategy in which an

optimal control sequence is determined by implementing numerical optimization over a given

horizon based on a prediction model. Lin et al. [9] designed the MPC controllers based on a

more accurate urban traffic model fully considering the various traffic scenarios. In order to fur-

ther improve the computational efficiency and make the approach applicable in practice, they re-

formulated the nonlinear optimization problem into a mixed-integer linear programming (MILP)

optimization problem [10]. Additional urban traffic control strategies have also been proposed in

[11, 12, 13, 14].

The model-based control strategies developed in the literature can control and coordinate the

urban traffic networks in real time; however, they also encounter on-line computation complexity

problems when implemented in practice. For a large-scale urban network, the traffic flow system

is a complex dynamic process. It is characterized by numerous intersections and roads, which

means the dimension of traffic system is very high. The unpredictable activities of vehicles

will lead to uncertainty in the traffic states of each road. There also exist complex interactions

between connected roads. Hence, the urban traffic system is usually a dynamic large-scale system

with multiple inputs and multiple outputs, the complexity of optimization problem increases with

the growing scale of the networks, and it will bring high computational burden to design the real-

time efficient centralized traffic control methods. Therefore, it is necessary to develop distributed

or hierarchical coordination structures to reduce the on-line computational complexity, and make

the traffic system more robust to unexpected disturbances.

In recent years, distributed coordination control of multi-agent systems has gained increasing
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attention in various fields because of its broad applications in e.g. electric power networks [15],

sensor networks [16], road networks [17], and so on. Based on the decomposition of the entire

network or system, several agents (local controllers) are developed and allocated to the corre-

sponding non-overlapping subsystems, that each agent determines which traffic control actions

how to be taken in the subsystem for which it is responsible. Each agent is able to make decisions

by negotiating with its neighbors with the aim of achieving the best performance of the whole

system.

In this paper, we mainly focus on the communication scheme among the agents. This paper

contributes to the state-of-the-art by proposing a novel congestion-degree-based serial scheme

for multi-agent control. First of all, the MPC methodology is used to design the local controllers.

Then, a congestion-degree-based serial scheme for multi-agent decision making is proposed to

coordinate the agents. In this scheme, the sequence of the agents implementing their own op-

timization depends on the severeness of the traffic conditions in each subnetwork. Through

simulation experiment for a large-scale urban traffic network, we show the beneficial properties

of the proposed approach compared with other control approaches.

The remainder of this paper is organized as follows. In Section II, a macroscopic traffic

model from the literature is introduced and then used as the prediction model for network-wide

control. Based on this model, the optimization problem of single-agent (centralized) MPC is

formulated. In Section III, we propose a distributed multi-agent MPC approach fully considering

the characteristics of the urban traffic network and the complex interactions between subsystems.

An experiment using the presented method to control a typical traffic network is provided in

Section IV. The comparison with other control methods is also given in this section. Section V

concludes this paper and considers the future work.

2. MPC for a single urban traffic subnetwork

2.1. Urban traffic modeling

An urban traffic model is the basis of model-based traffic predictive controllers for urban

networks. In this section, the S model [9] that can describe the dynamic process of traffic flow

in a macroscopic way is briefly introduced, and then used as the prediction model of subnetwork

MPC controllers.

An urban traffic network can be considered as a kind of complex network with links and inter-

sections. As shown in Fig. 1, a typical urban road (link (u,d)∈L ) is represented by its upstream

intersection u (u ∈ Iu,d) and downstream intersection d (d ∈ Ou,d). The input and output links of

link (u,d) can also be indicated by the upstream intersections i j and the downstream intersections

o j, j = 1,2,3. αenter
u,d (k), αarrive

u,d (k), α leave
u,d (k) denote the flow rates of vehicles entering, arriving

and leaving link (u,d) at step k, and qu,d(k) is the queue length in link (u,d).

In the S model, it is assumed that the cycle time ccycle is equal to the sampling time interval for

all intersections. Therefore, the number of vehicles in link (u,d) can be updated by the following

conservation equation:

nu,d(k+1) = nu,d(k)+(αenter
u,d (k)−α leave

u,d (k)) · ccycle (1)

where the flow rate entering link (u,d) is the sum of the flow rates leaving from its upstream

links, i.e.

αenter
u,d (k) = ∑

i∈Iu,d

αenter
i,u,d (k) (2)
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Figure 1: A link between two adjacent intersections

Similarly, the leaving flow rate is equal to the sum of the flow rates leaving for its downstream

links, i.e.

α leave
u,d (k) = ∑

o∈Ou,d

α leave
u,d,o(k) (3)

The leaving average flow rate over ccycle is determined by

α leave
u,d,o(k) =min(βu,d,o(k) ·µu,d ·gu,d,o(k)/ccycle,

qu,d,o(k)/ccycle +αarriv
u,d,o(k),

βu,d,o(k)(Cd,o −nd,o(k))/ccycle)

(4)

where the three terms represent the capacity of the intersection, the number of vehicles waiting

and arriving, and the available space in the downstream link, respectively. Moreover, βu,d,o is

the relative fraction of the traffic turning to o, µu,d is the saturated flow rate leaving link (u,d),
gu,d,o is the green time length for the traffic stream towards o in link (u,d), Cd,o is the capacity of

downstream links expressed in number of vehicles, nd,o is the number of vehicles in link (d,o).
The number of vehicles waiting in the queue turning to o is updated as:

qu,d,o(k+1) = qu,d,o(k)+(αarriv
u,d,o(k)−α leave

u,d,o(k)) · ccycle (5)

Moreover, the S model explicitly considers the situation that vehicles that entered link (u,d)
will arrive at the end of the queues after a time delay τ(k) · ccycle + γ(k), i.e.

αarriv
u,d (k) =(1−

γ(k)

ccycle

) ·αenter
u,d (k− τ(k))

+
γ(k)

ccycle

·αenter
u,d (k− τ(k)−1)

(6)
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τ(k) = floor

{
(Cu,d −qu,d(k)) · lveh

Nlane
u,d · vfree

u,d · ccycle

}
,

γ(k) = rem

{
(Cu,d −qu,d(k)) · lveh

Nlane
u,d · vfree

u,d · ccycle

} (7)

where Nlane
u,d is the number of lanes in link (u,d), vfree

u,d is the free-flow vehicle speed in link (u,d),

lveh is the average vehicle length, floor{x} means the largest integer that is smaller than or equal

to x, and rem{x} is the remainder.

After entering the link (u,d), the flow rate of arriving vehicles will reach the tail of waiting

queues depending on the turning rates

αarrive
u,d,o (k) = βu,d,o ·α

arrive
u,d (k) (8)

2.2. Single-agent MPC

Assume that an urban traffic subnetwork is controlled by an agent individually and there is

no communication among these agents. The aim of the agent is to generate a set of optimal

traffic signal timings according to the current traffic conditions. The corresponding algorithm

should be embedded in a rolling-horizon framework so that the optimal control problem can be

solved on-line before every control cycle. To this end, MPC is employed by the agent since MPC

enables it to implement optimal control repeatedly over a prediction horizon of several steps and

to take various constraints into consideration in the optimization.

According to the S model presented in last subsection, the dynamic traffic model for each

link can be described as

n(k+1) = f(n(k),g(k),d(k)) (9)

where n(k) = [n(k|k)T,n(k+1|k)T, · · ·n(k+Np−1|k)T]T contains the number of vehicles in each

link of the network for time step k up to k+Np − 1, g(k) = [g(k|k)T,g(k+ 1|k)T, · · ·g(k+Np −
1|k)T]T contains the future control inputs (the green times of the traffic signals), and d(k) =
[d(k|k)T,d(k + 1|k)T, · · ·d(k +Np − 1|k)T]T contains the predicted disturbances (the traffic de-

mands). Since our goal is to regulate the traffic flows and improve the mobility of the subnetwork,

the control objective is to minimize the risk of oversaturation and the number of vehicles in the

subnetwork. Therefore, the TTS (Total Time Spent) is used as the objective function. Given the

current traffic states at time step k measured from all links in the subnetwork as the initial local

state n(k), and the local known traffic demand d(k) = [d(k|k)T,d(k+1|k)T, · · ·d(k+Np−1|k)T]T

over the prediction horizon Np, the optimization problem of MPC solved by single agent can be

formulated as follows

min
g(k)

J =Jlocal(n(k),g(k)) = ∑
(u,d)∈L

k+Np

∑
k+1

nu,d(k) · ccycle

s.t. n(k+1) = f(n(k),g(k),d(k))

Φ(g(k)) = 0;

gmin ≤ g(k)≤ gmax

(10)

where Φ(g(k)) = 0 represents the cycle time constraints for all intersections in the network,

g(k) = [g(k|k)T,g(k+1|k)T, · · ·g(k+Np −1|k)T]T is the future control input sequence (the splits
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Figure 2: The interactions between subnetworks

of the traffic signals). Once the single agent has solved the optimization problem and obtained the

control input sequence over the horizon, it will implement the first sample to the traffic signals.

At the next sample step, the agent will receive the new measured values from traffic subnetwork,

move the prediction horizon forward with one sample step, and start the optimization again. The

moving horizon scheme of MPC does not only guarantee the system to reach a better perfor-

mance due to the feedback, but it also enhances the robustness of the system in the face of the

uncertainties and disturbances of the various urban traffic scenarios.

3. Multi-agent MPC with a serial scheme for large-scale urban traffic networks

3.1. Control problem formulation

For a large-scale urban traffic network, single-agent MPC (centralized MPC) will bring high

computational complexity and low robustness. Therefore, multi-agent MPC is increasing more

and more attention and it is being applied to many different fields. Based on partition of the

network, the whole system is first decomposed into several subsystems [19, 20]. The neighbors

of each subnetwork are determined to be the agents of the subnetworks directly connected to

the given subnetwork. In a multi-agent MPC scheme each subsystem will be assigned an agent,

and each agent employs MPC to determine the control actions for its subsystem by solving a

low-dimensional optimization problem. Meanwhile, each agent can receive information from

its neighbors through communication. This information influences the decision making of each

agent. This scheme makes all agents reach an agreement on taking actions that yield a better

performance for the whole system. In this paper, a novel multi-agent MPC scheme so-called

congestion-degree-based serial scheme is proposed to deal with the large-scale urban traffic net-

works control problem.

For illustration purpose, we consider an urban traffic network that is divided into three sub-

networks, i, j, and l, as shown in Fig. 2 (this approach can be extended easily for four or more

subnetworks). For subsystems i, j, l, the optimization problem can be expressed as

6



• Subsystem i:

min
gi(k)

Ji = Jlocal,i(ni(k),gi(k))

s.t. ni(k+1) = f(ni(k),gi(k),di(k),z ji(k),zli(k));

Φi(gi(k)) = 0;

gi,min ≤ gi(k)≤ gi,max;

yi j(k) = fi, j(ni(k),gi(k),di(k));

yil(k) = fi,l(ni(k),gi(k),di(k));

(11)

• Subsystem j:

min
g j(k)

J j = Jlocal, j(n j(k),g j(k))

s.t. n j(k) = f(n j(k),g j(k),d j(k),zi j(k),zl j(k));

Φ j(g j(k)) = 0;

g j,min ≤ g j(k)≤ g j,max;

y ji(k) = f j,i(n j(k),g j(k),d j(k));

y jl(k) = f j,l(n j(k),g j(k),d j(k));

(12)

• Subsystem l:

min
gl(k)

Jl = Jlocal,l(nl(k),gl(k))

s.t. n̂l(k) = f(nl(k),gl(k),dl(k),zil(k),z jl(k));

Φl(gl(k)) = 0;

gl,min ≤ gl(k)≤ gl,max;

yli(k) = fl,i(nl(k),gl(k),dl(k));

yl j(k) = fl, j(nl(k),gl(k),dl(k));

(13)

where yi j,yil ,y ji,y jl ,yli,yl j,zi j,zil ,z ji,z jl ,zli,zl j are the interaction variables among subnetworks

i, j, l. More specifically, y ji, represents the vector of the traffic flows running out of subnetwork

j and then into subnetwork i, which can be considered as the influence that agent j has on the

control problem of agent i. Moreover, z ji represents the vector of the traffic flows exiting sub-

network j and entering subnetwork i, which can be seen as the input caused by agent j on the

control problem of agent i. It is obvious that the interaction input traffic flow z ji must be equal

to the interaction output traffic flow y ji. Therefore, the interactions between subnetworks will be

guaranteed by the following interaction constraints

yi j(k) = zi j(k)

yil(k) = zil(k)

...

yl j(k) = zl j(k)

(14)

7



However, the interaction constraints cannot be added into the optimization problem of any of

the individual agents directly, since each interaction constraint includes two variables from the

optimization problem of different agents. Therefore, in order to make sure that the interaction

constraints among subnetworks are satisfied, the coordination methodology of multi-agent MPC

is developed. Let Nm be the set of neighbors of agent m. In our case, we have e.g. Ni = { j, l}.

Moreover, we define

yiNi
(k) =

[
yi j(k)
yil(k)

]
.

In a similar way, we can also define yNmm(k), zmNm
(k), and zNmm(k) for m ∈ {i, j, l}.

3.2. Distributed multi-agent MPC approach

We combine the control problems of three agents (11,12,13) mentioned above and the inter-

action constraints (14), and then obtain the overall control problem, i.e.,

min
gm(k)

J = ∑
m∈{i, j,l}

Jlocal,m(nm(k),gm(k))

s.t. nm(k+1) = f(nm(k),gm(k),dm(k),zNmm(k));

Φm(gm(k)) = 0;

gm,min ≤ gm(k)≤ gm,max;

ymNm
(k) = fm,Nm

(nm(k),gm(k),dm(k));

yNmm(k) = zNmm(k).

(15)

Due to the interaction constraints yNmm(k) = zNmm(k), the overall control problem (15) is not

separable into three optimization subproblems using only local information of individual agent.

In order to handle these interaction constraints, the dual decomposition method (the augmented

Lagrangian method) [21, 22, 23] has been introduced to move the interaction constraints into the

objective function in the form of adding the Lagrangian multipliers to guarantee the satisfaction

of interaction terms as well as additional quadratic terms. Therefore, the Lagrangian function of

the overall optimization problem can be written as

L = ∑
m∈{i, j,l}

Jlocal,m(nm(k),gm(k))

+ ∑
m∈{i, j,l}

(
λ T

Nmm(k)(zNmm(k)−yNmm(k))

+
c

2
‖zNmm(k)−yNmm(k)‖

2
2

)
(16)

where λNmm(k) is the Lagrangian multiplier vector corresponding to the interaction constraint

yNmm(k) = zNmm(k), and c is a positive constant.

According to the theory of duality [23], the optimization problem of whole system is equiv-
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alent to its dual problem

max
λ (k)

(min
g(k)

L)

s.t. nm(k+1) = f(nm(k),gm(k),dm(k),zNmm(k));

Φm(gm(k)) = 0;

gm,min ≤ gm(k)≤ gm,max;

ymNm
(k) = fm,Nm

(nm(k),gm(k),dm(k)).

(17)

Once the Lagrangian multipliers λ (k) are fixed, the overall dual control problem can be

divided into several subproblems. Since the formulation (16) including quadratic terms is non-

separable, we approximate it with the following equation (see [24] for more details and a moti-

vation of this approach):

L̃ = ∑
m∈{i, j,l}

Lm

= ∑
m∈{i, j,l}

(
Jlocal,m(nm(k),gm(k))

+ Jinter,m(zNmm(k),ymNm(k),λNmm(k),λmNm
(k))

)
(18)

where Jinter,m(·) is the cost function associated with the interaction variables (see (23) below for

the detailed definition).

In order to reduce the number of optimization variables of the control problem of each agent,

the interaction prediction principle is used to coordinate the agents. In this principle, the inter-

actions among subnetworks are not disconnected, but are estimated using the information from

their neighbors. At every iteration, the input traffic flow of subnetwork m, i.e. zNmm(k), is

not considered as a variable that needs to be optimized by agent m, but as a known variable

based on the information received from its neighboring subnetworks through communication,

e.g. zs+1
Nmm

(k) = ys
Nmm(k). Therefore, taking the network illustrated in Fig. 2 as an example, the

distributed multi-agent MPC approach for large-scale urban traffic networks at each control step

k can be described as follows:

I Initialization

Get the current traffic states of the road subnetwork as the initial states for each agent and

estimate the expected traffic demand.

II Iteration

The iteration optimization process to make the interaction constraints satisfied is illustrated

as follows:

1. Set the iteration step s = 1, the Lagrange multipliers λ s
Nmm(k),λ

s
mNm

(k) and the input

traffic flow zs
Nmm(k) for each agent m ∈ {i, j, l}.

2. Since the coordination operators and the interaction variables are given, agent m can

9



solve the following optimization problem over the prediction horizon

min
gm(k)

Jlocal,m(nm(k),gm(k))

+∑
Nm

Jinter,m(z
s
Nmm(k),ymNm

(k),λ s
Nmm(k),λ

s
mNm

(k))

s.t. nm(k+1) = f(nm(k),gm(k),dm(k),

zs
Nmm(k));

Φm(gm(k)) = 0;

gm,min ≤ gm(k)≤ gm,max;

ymNm
(k) = fm,Nm

(nm(k),gm(k),dm(k));

(19)

and obtain the green time split gs+1
m and the output traffic flow ys+1

mNm
.

3. Update the Lagrange multipliers by

λ s+1(k) = λ s(k)+ ces+1(k) (20)

where c is the positive constant representing the update step length, and es+1(k) are

the errors between the desired traffic flow input zs+1
Nmm

(k) and the real traffic flow

supply ys+1
Nmm

(k) from the neighboring subnetworks

es+1(k) =




zs+1
Nii

(k)−ys+1
Nii

(k)

zs+1
N j j

(k)−ys+1
N j j

(k)

zs+1
Nl l

(k)−ys+1
Nl l

(k)




=




ys
Nii

(k)−ys+1
Nii

(k)

ys
N j j(k)−ys+1

N j j
(k)

ys
Nl l

(k)−ys+1
Nl l

(k)




(21)

4. Move to the next iteration s+ 1 and repeat step (II) (1)-(3) until the interaction bal-

ance constraints are satisfied, or the termination condition is reached, e.g. ‖es(k)‖2 <
ε , for some ε > 0.

III Implement actions

The agents implement the green time splits to the traffic signals in their subsystems of the

road network.

IV Start the process for the next control step

3.3. Congestion-degree-based serial scheme

Generally speaking, distributed multi-agent MPC uses a parallel scheme [25, 26, 27] to im-

plement the step II.2. In the parallel scheme, each agent solves its own optimization problem at

the same time using the information provided by its neighbors during the last iteration step. In

order to improve the rate of convergence, Negenborn et al. [15] proposed a serial scheme and

verified that in some cases it has preferable properties in terms of the convergence speed and

the quality of the solution. In contrast with the parallel scheme, in the serial scheme one agent

10



after another solves its own control problem by using the local information and the interaction

variables that is updated immediately while the other variables are fixed.

In this paper, we develop a serial scheme so-called congestion-degree-based serial scheme

to deal with distributed multi-agent MPC for large-scale urban traffic networks. Considering the

characteristics of urban traffic networks, the distribution of traffic densities is heterogeneous, i.e.

the congestion degree (see (22) below for a formal definition) for each subnetwork is different.

Therefore, the priority of the serial sequence for solving the control problems of the agents can

be determined by the congestion degree of the subnetworks. Because if one traffic subnetwork is

more congested than the others, it is important to execute the optimization by the corresponding

agent firstly. The interaction variables are then transmitted to the next agent of the less congested

subnetworks. The reason for this is to regulate the traffic flow so as to mitigate the traffic con-

gestion problems in the network as soon as possible and to provide the more accurate interaction

information to the other agents.

Hence, it is necessary to design the serial scheme based on the congestion degree of road

networks, which is a scalar to reflect the traffic states in real time. Recently, it has been verified

by Daganzo et al. [28] and Geroliminis et al. [29, 30] that there exists a well-defined macroscopic

fundamental diagram (MFD) with a unimodal and low-scatter relationship between the network

vehicle density and the space-mean flow in urban traffic networks. The maximum value of traffic

flow appears at the critical point of MFD. With the increase of vehicles in road network, the

flow decreases and the traffic conditions become more congested. So the critical point of MFD

indicates the optimal condition of traffic flow. Therefore, we can define the congestion degree

dm(k) for the subnetwork m at time step k as follows

dm(k) =
wm(k)

wcritical,m

wm(k) =
∑(u,d)∈Lm

nu,d(k)

Cu,d

#Lm

(22)

where wm(k) is the current average traffic density measured from the detectors, wcritical,m is the

critical traffic density, which can be determined off-line, and #Lm is the number of links in

subnetwork m. The value of dm decides the sequence of the control problem of the agents, i.e.

the higher the congestion degree, the higher the optimization priority.

Given the sequence of the implementation of the agents, for example, j → i→ l, the congestion-

degree-based serial scheme can be used to realize the coordination in the distributed multi-agent

MPC scheme. For the sake of compactness we drop the index k here for variables. At the cur-

rent iteration step s, agent j then solves its local control problem before agent i, computes the

interaction variables ys+1
ji and ys+1

jl , and sends the corresponding information to the agent i and

l. Then, agent i uses the new information from the agent j and the previous information of the

last iteration s−1 from agent l to solve the problem (19) using the following additional objective
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λ s
ji

λ s
li

−λ s
i j

−λ s
il
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z ji
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2

∥∥∥∥
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2

2
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+
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2

∥∥∥∥
[

ys−1
i j −yi j

ys−1
il −yil

]∥∥∥∥
2

2

(23)

where c is the positive scalar appearing in (16) that penalizes the deviation from the interaction

variables iterates that were computed by the other agents during the last iteration and by agent

i at the current iteration. Then, agent l uses the new information from agents i and j to solve

its own optimization problem. From the description above, it is obviously that the congestion-

degree-based serial scheme uses both information from the current iteration and from the last

iteration. Therefore, we can add one step into the initialization step I and revise the step II.2 as

follows:

I.2 Compute the congestion degree for each subnetwork and determine the sequence of the im-

plementation of control problem of the agents.

II.2 According to the sequence, one agent after another, the agent m determines the green time

split gs+1
m and the output traffic flow ys+1

mN
by solving the problem (19) and sends the new

values of the output traffic flow to its neighbors.

4. Simulation-based Experiments

To evaluate the effectiveness of the proposed congestion-degree-based serial distributed multi-

agent MPC method in urban traffic management, we construct a hypothetical test urban traffic

network to assess the performance of the proposed approach and to compare it with other existing

control approaches, namely the fixed-time control, the centralized MPC control and the parallel

distributed control.

4.1. Scenario

The test network is shown in Fig. 3. There are 55 nodes including 21 source nodes and 34

intersections, and 133 two-way links with length varying from 213 to 366 meters in it. All the

links have two lanes. We carry out the simulation by using CORSIM (CORridor SIMulation),

C++, and MATLAB. CORSIM is a microscopic traffic simulation software developed by the

FHWA (Federal Highway Administration) for analyzing traffic operations. It is able to simulate

the dynamics of an urban traffic network consisting of several intersections and allows the use

of an external control algorithm. MATLAB is used to solve the rolling-horizon optimization

problem. C++ provides the interface between CORSIM and MATLAB.

First of all, the entire urban traffic network should be divided into several subnetworks ap-

propriately. We consider the partition method proposed by Zhou et al. [20] and divide the whole

network into three subnetworks, each controlled by an agent, as shown in Fig. 3. The cycle times

of the traffic signal are 60s for all intersections and the offsets between two adjacent intersections

12



i

j

l

Figure 3: Urban traffic network used for simulation

are 0s during the simulation. These two parameters are constant in our simulations. The total

simulation time is 5400s. The control time interval is 180s, thus yielding 30 control steps. The

average vehicle length is 5 meters, and the free-flow speed for each link is 50 km/h. At each

intersection, the turning rate for each direction is 33.33%. The input traffic flow rates of all the

source nodes to the network are equal, and the demand variation is illustrated in Table 1.

Table 1: Network inflow for each source node

Simulation time (s) Traffic demand flow (veh/h)

0-1800 2000

1800-3600 2500

3600-5400 3000

In the following we compare four control methods:

1. Fixed-time control method, which is a signal control plan that the green time split has been

designed for the intersections.

2. A single agent use centralized MPC to control the whole network;

3. The agents of the subnetworks use the parallel distributed multi-agent MPC scheme;

4. The agents of the subnetworks use the congestion-degree-based serial distributed multi-

agent MPC scheme.

In order to compare the results and assess the performance of each control plan, five different

estimation criteria are considered. The TTS is the total amount of time spent by all the vehicles

inside the road network since the beginning of the simulation, including both the vehicles freely

running on a link and the vehicles slowing down or waiting in queues:

TTS =
Kstep

∑
k=0

∑
(u,d)∈L

T ·nu,d(k). (24)

13



0 5 10 15 20 25 30
0

20

40

60

80

100

1.2

Step k
c

O
p
ti
m

a
lit

y
 r

a
te

 (
%

)

Figure 4: The rate of finding optimal values by using 5 initial points for centralized control

where Kstep is the time horizon. The TDT (Total Delay Time) is the difference between the total

travel time of all vehicles inside the road network since the beginning of the simulation and the

total free-flow travel time. So the TDT is actually the total amount of time that the vehicles are

delayed. The number of congested links denotes the number of oversaturated links, where a link

is considered to be congested if nu,d ≥ 0.7Cu,d .

The parameters we choose for all the control approaches are: the prediction horizon Np = 7,

the positive scalar c = 1, and the error threshold ε = 0.05.

Since the optimization problem is the non-linear, non-convex problem, the function of fmin-

con of the optimization toolbox of MATLAB is used to calculate the optimal control inputs.

Moreover, in order to avoid the optimization ending up on a local minimum, we use the multi-

start technique to search for a global optimal solution. Different feasible solutions are given as

initial starting points, and we run the solver for each initial and record the results. After that,

the one corresponding to the lowest objective function value is selected as the optimal solution

and applied to the traffic network. With respect to the selection of the number of initial points,

Fig. 4 shows the results of we use five initial feasible solutions for each step. The average rate of

finding the optimal value is 78%, which is acceptable in our experiment. Hence, we always use

5 initial points.

The selection of the prediction horizon is another important aspect in the MPC. It is noted that

an increase of the prediction horizon will improve the performance of the system, but at the same

time it will increase the computational complexity, especially for the non-linear, non-convex op-

timization problem. In a multi-agent MPC setting, an increase of Np will cause more information

uncertainties for the other agents. Therefore, more iteration steps will be required. The compu-

tation time will increase correspondingly with the increase of the number of iteration steps. For

large-scale urban traffic networks, an appropriate prediction horizon Np should be determined to
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Figure 5: Tuning parameter Np for the MPC controller

find the trade-off between the performance and the computational cost. We choose several values

for Np and computed the relative improvement in TTS corresponding to the MPC controller com-

pared with the fixed-time control according to the formula [%] = (JMPC − Jfixed−time)/Jfixed−time,

where J is computed according to (24). The results are shown in Fig. 5. We can see that the

improvement of the performance of the system tends to minor along with the increase of the pre-

diction horizon Np. Considering the computational cost, we set Np = 7 for the MPC controller in

this paper.

4.2. Simulation results

In this section, the simulation results are presented to explore the efficiency of the multi-agent

distributed MPC controllers compared with the fixed-time and centralized control, especially in

the congested conditions.

Fig. 6 shows the TTS and the TDT for all the control approaches. From Fig. 6 (a), we can see

that the centralized control and the two distributed control approaches yield a greater decrease in

the TTS compared with fixed-time control. Before the simulation step 20, the traffic network is

in the undersaturated situation. The difference between the three control approaches is not obvi-

ous. When the network becomes more congested because of the increasing number of vehicles,

the centralized control exhibits a better performance than the other two distributed control ap-

proaches. The mean error between the parallel scheme and centralized control is 2.29%, and the

maximal error is 4.16%. The mean error between the proposed method and centralized control

is 1.20%, and the maximal error is 3.13%. Comparing the typical parallel scheme and the pro-

posed method, our method yields a 1.05% improvement in TTS in the mean error and a 2.56% in

the maximal error. This means that the proposed method has a slightly better performance than

the parallel scheme. The reason is that our proposed method considers the congestion degree
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Figure 6: TTS and TDT comparison for fixed-time, centralized, parallel and serial MPC scheme
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Figure 7: Three indexes under four control strategies
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of each subnetwork and determines the implementation sequence of the optimization problem.

On the one hand, it can increase the speed of convergence; on the other hand, the agent for the

most congested subnetwork executes the optimization firstly to mitigate the traffic congestion

and improve the mobility, and through communication, its neighbors will receive more accurate

interaction information and perform their own optimization resulting in a more efficient decision-

making process. This can be verified in Fig. 7 (a), the weighted flow for the network, which is the

weighted average flow of all links in the network, reflecting the degree of mobility in the whole

network. We can see that the serial scheme is able to maintain a relative high weighted flow until

the later part of the simulation. After the step 25, the traffic network becomes very congested

because there is a high demand from the source node, and as a consequence all subnetworks

become congested. The performance of our method is worse than the other methods. This can

be solved in the future by adding the term of weighted flow into the objective function.

From Fig. 6 (b), we can see that all three methods can reduce the value of TDT. Moreover,

the performance of the proposed method is very close to that of the centralized control compared

with the parallel scheme. Fig. 7 (b) and Fig. 7 (c) show the evolution of the two indexes: the

occupancy and the number of congested links of the network. Comparing to the parallel scheme,

the proposed method can approach the performance of the centralized MPC. The detailed per-

formance comparison of the four control methods for entire network is given in Table 2.

The optimization problems are solved in MATLAB 7.11 environment on a computer with

Intel Core (TM) I5-2410M 2.3 GHz processor. Finally, we investigate the convergence speed

of the two multi-agent distributed control approaches, see Fig. 8. The traffic data collected

from the same simulation step is used to evaluate the convergence. The results show that the

proposed method converges faster than the parallel scheme. Since the scale of the optimization

problem for each agent in the multi-agent distributed control method is reduced, the CPU time for
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Table 2: Performance comparison of controllers for entire network

Index Fixed-time Centralized Parallel Serial

TTS (veh.s) 2.8×107 2.26×107 2.34×107 2.33×107

TDT (veh.s) 7.8×105 4.2×105 4.5×105 4.5×105

Mean occupancy 33.22% 26.83% 27.69% 27.67%

Mean weighted flow (veh/s) 0.17 0.30 0.29 0.29

# of congested links 38 24 27 26

solving optimization problem is much less than the centralized control. Table 3 gives the average

CPU time spent for solving the optimization problem once by the three control approaches,

which illustrates the computational complexity of multi-agent distributed control is significantly

reduced.

Table 3: Comparison of CPU time spent for three control strategies

Control strategy CPU time (s)

Centralized 1637.5

Parallel 948.6

Serial 891.2

5. Conclusions

Network-wide traffic control plays an important role in the mitigating and avoiding conges-

tion in urban traffic networks. However, the increasing scale of the traffic networks requires

to address some critical issues of such large-scale systems, such as high dimension, multiple

objectives, weak robustness, and so on. Multi-agent distributed control strategy is a good way

to address these problems. In this paper, based on a partition of the network, we designed an

MPC controller for each agent and proposed a congestion degree-based serial scheme to deal

with the interactions between agents. A case study was investigated using this approach, which

has also been compared with the centralized scheme and the traditional parallel scheme. The

simulation results show that the proposed multi-agent distributed control approach can coordi-

nate the agents, make them to reach an agreement on decision making through negotiations, and

yield an efficient performance that is comparatively close to the results of the centralized control

approach.

In the future, some global optimization algorithms will be explored for solving the non-linear

MPC control problem of the agent to obtain a better performance of the traffic system. Possible

approaches to reduce the computation time, such as implementation in object code, fast MPC

[10], parallel computing and parameterized MPC [32], should also be investigated in order to

further reduce the computation time and to make the proposed approach applicable in practice.

In addition, other traffic performance objectives such as L2-norm and L∞-norm [31] need to be

taken into account in the optimization problem to regulate the traffic flow and make the traffic

network more homogeneous.
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