
Delft University of Technology
Delft Center for Systems and Control

Technical report 15-002

Towards railway traffic management using
switching max-plus-linear systems –
Structure analysis and rescheduling∗

B. Kersbergen, J. Rudan, T. van den Boom, and B. De Schutter

If you want to cite this report, please use the following reference instead:
B. Kersbergen, J. Rudan, T. van den Boom, and B. De Schutter, “Towards railway
traffic management using switching max-plus-linear systems – Structure analysis and
rescheduling,” Discrete Event Dynamic Systems: Theory and Applications, vol. 26,
no. 2, pp. 183–223, 2016. doi:10.1007/s10626-014-0205-7

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/15_002.html

https://doi.org/10.1007/s10626-014-0205-7
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/15_002.html

Towards Railway Traffic Management Using Switching

Max-Plus-Linear Systems

Structure Analysis and Rescheduling

Bart Kersbergen · János Rudan ·

Ton van den Boom · Bart De Schutter

Abstract In this paper we present a railway traffic model and a model predic-
tive controller for online railway traffic management of railway networks with a
periodic timetable. The main aim of the controller is to recover from delays in
an optimal way by changing the departure of trains, by breaking connections, by
splitting joined trains, and - in the case of multiple tracks between two stations -
by redistributing the trains over the tracks. The railway system is described by a
switching max-plus-linear model. We assume that measurements of current run-
ning and dwell times and estimates of future running times and dwell times are
continuously available so that they can be taken into account in the optimization
of the system’s control variables. The switching max-plus-linear model railway
model is used to determine optimal dispatching actions, based on the prediction
of the future arrival and departure times of the trains, by recasting the dispatch-
ing problem as a Mixed Integer Linear Programming (MILP) problem and solving
it. Moreover, we use properties from max-plus algebra to rewrite and reduce the
model such that the MILP problem can be solved in less time. We also apply the
algorithm to a model of the Dutch railway network.

Keywords Max-plus algebra · Railway networks · Rescheduling · Model
reduction · MILP

1 Introduction

In recent years a lot of research effort has been oriented towards the design of
timetables that are robust against propagation of delays in the railway network,

B. Kersbergen · T.J.J. van den Boom · B. De Schutter
Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2,
2628CD Delft, The Netherlands
E-mail: {B.Kersbergen, A.J.J.vandenBoom, B.DeSchutter}@tudelft.nl

J. Rudan
Faculty of Information Technology, Pázmány Péter Catholic University, 1083 Budapest, Práter
utca 50/a ,Budapest, Hungary
E-mail: rudan.janos@itk.ppke.hu

2 Bart Kersbergen et al.

caused by technical failures, fluctuation of passenger volumes, and weather influ-
ence (Goverde 2007, 2010; Kroon and Peeters 2003). Developing decision support
systems for dispatchers, that determine new conflict-free schedules and routes for
the railway traffic when delays occurs, has been a topic of interest for many re-
searchers in recent years (Caimi et al 2012; Corman et al 2012; Kecman et al 2013;
Törnquist Krasemann 2012).

In Caimi et al (2012) a decision support system is developed that tries to
schedule and route all trains in an area in and around a large station. A model
predictive control approach with a microscopic model of the railway operations
is used based on blocking times. At each point where rescheduling of a train is
possible, a set of possible blocking times for different routes and departure times
at platforms or arrival times at the boundaries of the area are considered for that
train. As many trains as possible are then assigned a route with corresponding
blocking times while all safety and operational constraints are respected. The
objective is to optimize the passenger satisfaction, measured by punctuality and
reliability. The resulting optimization problem is a binary linear programming
problem. Our approach differs in the scale of the networks considered and the
detail of the model. We aim to schedule the railway traffic for the entire national
railway network and to be able to do that we model the railway traffic and network
as a macroscopic model. We do not consider routing problems of trains through
station areas.

In D’Ariano et al (2007) the railway operation is also modeled as a microscopic
model based on blocking times with an Alternative Graph approach. In their alter-
native graph approach for every train occupying a block section a node is created
in the graph. The nodes of a single train are then connected to each other through
running time constraints and for every pair of trains occupying the same block
section headway/separation constraints are added. If the order in which the trains
can occupy the block sections can be changed with dispatching actions, then a
pair of alternative arcs defining the two orders in which the trains can occupy
the block section are added to the graph. A new schedule for the railway traffic
is found when for each pair of alternative arcs only one arc is chosen. The graph
has an extra node, to which all nodes are connected and the weights of the arcs
from all nodes to this extra node are chosen such that minimizing the maximum
weight of all paths from the starting to the ending node corresponds to minimiz-
ing the maximum consecutive delay. To solve this problem the authors use their
own branch and bound algorithm. Corman et al (2012) has extended the work of
D’Ariano et al (2007) to also consider breaking connections. For different sets of
maintained connections the maximum consecutive delay is determined and the de-
crease of the maximum consecutive delay is weighted against the number of broken
connections. The biggest differences in modeling between this work and our work
is the level of detail considered and the solver used to solve the problem. We do
not consider block sections, but only tracks between stations and the interlocking
area of a station is considered as a single node. Our models are also built as cyclic
models allowing us to easily expand the simulation and control period to multiple
cycles without having to rebuild the entire model. The method for solving the
optimization problem is also different. D’Ariano et al (2007) and Corman et al
(2012) use a specifically designed branch and bound algorithm made for minimiz-
ing the maximum consecutive delay. We use state of the art Mixed Integer Linear
Programming (MILP) solvers allowing us to freely choose our objective function,

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 3

as long as it is a linear function. This makes it easier to add dispatching actions
such as breaking connections and changing tracks, and incorporate a penalty for
these actions in the cost function.

In Kecman et al (2013) the same Alternative Graph approach as in Corman
et al (2012) and D’Ariano et al (2007) is used but now for macroscopic models
with different levels of details. The level of detail in this model is similar to our
own work. One of the differences between their work and ours is that they model
the system as an alternative graph and not as a max-plus-linear system and the
alternative graph is specifically designed such that the maximum consecutive delay
can be minimized using the branch and bound algorithm of D’Ariano et al (2007).
This branch and bound algorithm is specifically designed to minimize the weight
of the longest path and the alternative graph is adjusted such that the weight of
the longest path corresponds to the maximum consecutive delays. If they want to
consider breaking connections they have to adjust the whole solution procedure as
was seen in Corman et al (2012). In our approach the cost of breaking connections,
and other dispatching actions can be added by simply adjusting the cost function
by changing the weights on the decision variables corresponding to those actions.

Most of the previously mentioned approaches use a microscopic model. The
advantage of a microscopic model is that the railway operation is modeled in
more detail and is therefore more accurate. The railway operations in stations
are also modeled in full detail; all tracks, platforms, signals, and switches are
considered. With these details the decision support system can determine the
optimal routes and schedule for the trains at the stations as well. The downside
to using a microscopic model is that the increased detail and accuracy result in a
very complex model. Only the railway operation of a part of the whole network
is considered when solving the dispatching problem, since it would take too much
time to find the optimal solution to the dispatching problem for the entire network,
to be of use in an on-line dispatching support system. The authors of Törnquist
Krasemann (2012) limit the computation time needed to solve the dispatching
problem by using a greedy method to find a good solution as fast as possible, and
improve on this solution if time permits it, instead of trying to solve the problem
to optimality. Next we will describe our approach to the decision support system
in general

In our approach the decision support system is divided into four subsystems:

– A monitoring system
– A model predictive controller
– The model of the model predictive controller
– A route planning system

In Figure 1 it is shown how these systems are connected to each other and to
the actual railway operations. Currently there is no system for the tracking of all
trains in the Netherlands in rail-time and this is the case in many other countries
as well. As a result the monitoring of the trains in The Netherlands has to be done
based on data from the signaling system. Once the data from the signaling system
has been processed the model predictive controller uses the data to update the
model and determine the optimal dispatching actions based on the current state
of the network and the predictions of the effects of the dispatching actions. The
result is an updated timetable that is conflict free with respect to the considered
model. Due to the changes in the timetable, and the reordering of trains, some

4 Bart Kersbergen et al.

trains need new routes. These routes and trajectories are determined in the route
planning system. Although it does not show in the figure, there is also feedback
from the route planning system to the model when the route planning system
cannot find feasible routes for all trains. The model predictive controller then
adjusts its model and process times and recomputes a new timetable. The route
planning then determines new routes for the new timetable. The new timetable
and routes are then given to the dispatchers who can implement them on the
railway system.

Decision support system

Railway System

Monitoring

Model Predictive Controller

Model

External disruptions

Route Planning

Fig. 1 The decision support system

In this paper we concentrate on the model predictive controller and the model
used to predict the future arrival and departure times of the trains. Particularly
we focus on how the model is built and on improving the time needed to solve a
single step of the model predictive controller. In a single step the model predictive
controller solves the dispatching problem for the railway operations on the entire
passenger railway network using a macroscopic model of the railway operations
for a given prediction and control horizon. The dispatching actions are limited to
changing the order of trains, breaking train connections, changing the tracks trains
are driving on, and breaking joined trains. Rerouting trains in and around the
interlocking areas of stations is not considered. We focus on a single step because
each step needs to be solved very fast, since the controller needs to be usable during
real-time operations. Because the problem is an MILP problem the computation
time will, in the worst case, increase exponentially with the number of binary
control variables. If we want to be able to use the system to help dispatchers solve
the rescheduling problem for the network of a whole country for a long prediction
and control horizon we need to be able solve the problem fast, especially when
several iterations may be necessary when the route planning cannot find feasible
routes.

In Braker (1991, 1993), de Vries et al (1998), Heidergott and Vries (2001),
de Waal et al (1997), and Minciardi et al (1995) it has been shown that a model
of a railway network, with a fixed routing schedule and fixed connections, can
be described as a max-plus-linear model. In max-plus algebra such a model is

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 5

‘linear’. Max-plus algebra uses maximization and addition as its basic operations
(Baccelli et al 1992). A system that can be described by a max-plus-linear model
can be characterized as a discrete event system in which only synchronization
occurs, but no concurrency or choice (Baccelli et al 1992). However, in the case of
delays, it is sometimes better to make small changes to the schedule and possibly
break connections. By taking these actions the total delay in the network may be
reduced, at the cost of some extra delays for a small part of the trains. The current
paper builds on the work of de Vries et al (1998) and Heidergott and Vries (2001),
where the concept of controlling the connections of train in a railway network
using max-plus algebra is introduced. This paper also builds on the work of van
den Boom and De Schutter (2006), van den Boom et al (2011), van den Boom
et al (2012), and Kersbergen et al (2013a,b), where a controlled railway system
is modeled using switching max-plus-linear (SMPL) models. In this description
a number of max-plus-linear models is used, where each model corresponds to
a specific mode, describing the railway network by a different set of connection
constraints, a different train schedule and a different routing plan. The system
is controlled by switching between different modes, allowing us to break train
connections, to change the order of trains, and to change the track the trains run
over in case there are multiple tracks to choose from between stations or junctions.
In De Schutter et al (2002) it has been shown that model predictive control is
a suitable option for reducing the delays in railway networks. We continue the
work of van den Boom et al (2012) by extending the analysis of the structure of
the system matrices with the introduction of the coupling matrix and separate
headway matrices for the headway constraints between arrivals and departures.
The mathematical notation is also improved in such a way that we no longer
need the ⊙-operator, used for the max-plus Schur product, and we make use of
max-plus binary variables, which is more in line with the notation of Kersbergen
et al (2013a,b). The new notation ensures the model can be described within the
max-plus algebra, which in turn ensures that the conversion of the model into its
explicit form is possible, since the conversion of the model from its implicit to its
explicit form is based on a theory from max-plus algebra and that is only valid for
max-plus models. Furthermore, we extend the results of Kersbergen et al (2013a,b)
by showing how the matrix structure can be used to calculate the explicit model.
We also extend the computational results of Kersbergen et al (2013a,b) with a
new case study where we measure the computation time for solving the MILP
problems for different cost functions.

In Section 2 the nominal operation of the railway traffic on the railway network
is described, converted to a max-plus-linear (MPL) model, and the structure of
the system matrices is analyzed. In Section 3 the model is extended so the train
orders can be changed, connections can be broken, joined trains can be split up,
and trains can change track if there are multiple tracks available. The effects of
this extension on the model structure is also analyzed in this section. In Section
4 it is explained how the model of the previous section can be converted into its
explicit form and how the model structure of the system matrices can be used to
convert it. In Section 5 the model is reduced by limiting the control freedom. In
Section 6 a case study is performed on a model of a railway network for different
objective functions of the rescheduling problem. In Section 7 conclusions are drawn
and recommendations for future research are made.

6 Bart Kersbergen et al.

2 Nominal Operation

Consider a railway network for a passenger trains, where the trains are operating
according to a periodic railway timetable with a period T . This railway network
consists of a set of tracks and a set of stations. Each track starts and ends at
a station and trains cannot overtake each other on the tracks. In this paper we
generalize the concept of a ‘station’ to places where the train order may be changed.
This includes actual stations and their interlocking areas, but also junctions outside
the interlocking areas.

2.1 Model

The nominal operation of the railway network is modeled as a cyclic discrete-event
system, with cycle counter k. The events of the discrete-event system are the arrival
and departure events of the trains at the stations. In one cycle all departure events
of all trains for one period of the timetable, and their corresponding arrival events,
are modeled. For all past cycles k − n, n ∈ N, all event times are known, fixed,
and in the past.

The combination of the following actions: a train departing from a station,
traversing a track, and arriving at the next station, is called a train run. Each
train run has an index i, and an associated departure time di and arrival time ai.
A set of train runs, modeling the same ‘physical’ train, will be called a line. During
nominal operation, the railway traffic operates according to the nominal timetable:
the trains follow their pre-determined routes, the order in which the trains depart
and arrive at stations is fixed, all connections are maintained and there are no
delays in the network. The operation of the railway network can be described as
a set of train runs connected to each other through various constraints.

2.2 Constraints Connecting the Train Runs

There are six different constraints connecting the trains; these are:

– Running time constraints
– Continuity constraints
– Timetable constraints
– Headway constraints
– Coupling constraints
– Connection constraints

Next all of these constraints are described in more detail.

2.2.1 Running time constraints

The relation between the arrival time and departure time of a train run can be
described by a running time constraint. In the rest of this paper we will simply
refer to a ‘train run’ as a ‘train’. A running time constraint is defined such that
the arrival and departure of a train belong to the same cycle.

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 7

This results in the following definition for a running time constraint for train
i in cycle k:

ai(k) ≥ di(k) + τr,i(k), (1)

where τr,i(k) is the running time, i.e. the time the train needs to traverse the track,
for train run i in cycle k. Process times may vary each cycle, even during nominal
operation, e.g. due to a changing number of passengers and different rolling stock,
and therefore the running times depend on k.

2.2.2 Continuity constraints

A continuity constraint connects two trains of the same line to each other. For
example, a ‘physical’ train driving from one station to the next and then continuing
on to a third station. This can be modeled by considering train i and its predecessor
pi. Let train pi model the ‘physical’ train driving from the first to the second
station and let train i model the ‘physical’ train driving from the second to the
third station. Train i can then only start some time after train pi has arrived:

di(k) ≥ api
(k − µi,pi

) + τd,i,pi
(k), (2)

where µi,pi
= 0 if train pi in cycle k continues as train i in cycle k and µi,pi

= α
if train pi in cycle k − α continues as train i in cycle k, and τd,i,pi

(k) is the dwell
time, i.e. the time the train waits at the station for passengers to board and alight.

2.2.3 Timetable constraints

Since the passenger railways operate according to a timetable, none of the trains
are allowed to depart before their scheduled departure times and in some cases
they may not arrive before their scheduled arrival times either. This requirement
can be modeled by adding timetable constraints:

di(k) ≥ rd,i(k) (3)

ai(k) ≥ ra,i(k), (4)

where rd,i(k) and ra,i(k) are the scheduled departure and arrival time of train i
in cycle k. Note that for a cyclic timetable it holds that rd,i(k) = rd,i(0)+kT and
ra,i(k) = ra,i(0) + kT . In many countries trains are allowed to arrive before their
scheduled arrival time; in that case the timetable constraint on the arrival time,
as in (4), should be left out for those trains.

2.2.4 Headway constraints

Headway constraints define the order in which trains traverse tracks and they
indirectly define the minimum distance between trains. This is done by relating
the arrival and departure times of one train to the arrival and departure time of
the other trains traversing the same track. The headway times are chosen such
that, as long as there are no unexpected delays on the tracks, none of the trains
run into a yellow or red signal and have to break. If several trains traverse a track
in the same direction, then for train i the set Hi is defined as the set of trains that
start on the track before train i and traverse the track in the same direction during

8 Bart Kersbergen et al.

nominal operation. The headway constraints for train i for the trains traversing
the track in the same direction are:

di(k) ≥ dl(k − µi,l) + τh,d,i,l(k) (5)

ai(k) ≥ al(k − µi,l) + τh,a,i,l(k), (6)

for each l ∈ Hi, where τh,d,i,l(k) is the headway time for departures, i.e. the time
needed between the departure of train l in cycle k−µi,l and the departure of train
i in cycle k, τh,a,i,l(k) is the headway time needed between the arrival of train l
in cycle k − µi,l and the arrival of train i in cycle k, and where µi,l is defined in
the same way as for (2).

If trains traverse the track in the opposite direction, then for train run i, the
set Si is defined as the set of trains that start on the same track before train i and
traverse the track in opposite direction during nominal operation. The headway
constraints for train i for the trains traversing the track in the opposite direction
are:

di(k) ≥ am(k − µi,m) + τs,i,m(k), (7)

for each m ∈ Si, where τs,i,m(k) is the separation time, i.e. the time the train i in
cycle k must wait before it can enter the track after train m in cycle k− µi,m has
left the track and where µi,m is defined in the same way as for (2).

2.2.5 Coupling constraints

At some stations two ‘physical’ trains are coupled and continue as a single ‘physi-
cal’ train; this is modeled by coupling constraints. The coupling constraints ensure
that the arrival and departure times of the two ‘physical’ trains are the same. Con-
sider train i and let train oi be the train to which train i should be coupled to
during nominal operation. For these trains the coupling constraints are:

di(k) = doi
(k) (8)

ai(k) = aoi
(k). (9)

Here it is assumed both trains are in the same cycle, since they have the same
departure and arrival times. These two equality constraints can be written as four
inequality constraints:

di(k) ≥ doi
(k) (10)

doi
(k) ≥ di(k) (11)

ai(k) ≥ aoi
(k) (12)

aoi
(k) ≥ ai(k). (13)

These four inequality constraints are used instead of two equality constraints be-
cause in the perturbed operation (see Section 3) it will be possible to cancel the
coupling if one of the trains is delayed and using these inequalities instead of
equalities makes it easier to support that modification.

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 9

2.2.6 Connection constraints

At some stations passengers can transfer to another train. Transfers that are guar-
anteed, are modeled by connection constraints. Connection constraints ensure that
passengers can change trains at stations by defining a relation between the depar-
ture time of one train and the arrival time of the train from which the passengers
transfer. Define Ci as the set of train runs, train i has to give a connection to
during nominal operation. Then the connection constraints for train i are defined
as:

di(k) ≥ ae(k − µi,e) + τc,i,e(k), (14)

for each e ∈ Ci, and where τc,i,e(k) is the connection time, i.e. the time needed for
the passengers to transfer from train e in cycle k − µi,e to train i in cycle k.

2.3 Max-Plus Algebra

In the next subsection we will use max-plus algebra to describe the model of
the railway traffic for nominal operation. Therefore we will introduce the basic
concepts of max-plus algebra in this subsection.

The max-plus algebra is an idempotent semi-ring, consisting of the set Rε =
R ∪ {ε}, where ε = −∞, equipped with the two operators ⊕ and ⊗, that are
defined as follows (Baccelli et al 1992; Cuninghame-Green 1979; Heidergott et al
2006):

a⊕ b = max(a, b)

a⊗ b = a+ b,

for a, b ∈ Rε. During evaluation ⊗ has priority over ⊕.

For matrices these operators are defined as:

[A⊕B]i,j = [A]i,j ⊕ [B]i,j = max([A]i,j , [B]i,j)

[A⊗ C]i,j =

n⊕

w=1

[A]i,m ⊗ [C]m,j = max
w=1,...,n

([A]i,m + [C]m,j),

where A,B ∈ R
m×n
ε and C ∈ R

n×p
ε .

The matrix E is the max-plus-algebraic zero matrix: Eij = ε for all i, j. A max-
plus diagonal matrix D = diag⊕(δ1, . . . , δn) ∈ R

n×n
ε has elements [D]i,j = ε for

i 6= j and diagonal elements [D]i,i = δi for i = 1, . . . , n. A max-plus permutation
matrix T ∈ R

m×m
ε has one zero in each row and one zero in each column and ε

elsewhere.

Furthermore, define a max-plus binary control variable as u ∈ {0, ε} and define
the adjoint u as:

u =

{
ε if u = 0
0 if u = ε,

(15)

which will be used in Section 3 and the sections there after.

10 Bart Kersbergen et al.

2.4 Max-Plus-Linear Model

If all constraints are satisfied, the trains can depart and arrive without running
into any conflicts with other trains. Therefore, we assume that all trains depart
and arrive as soon as all constraints are satisfied. Then the constraints for train i
can be written using two equations, one for the arrival and one for the departure
time:

di(k) = max

(

api
(k − µi,pi

) + τd,i,pi
(k),

max
l∈Hi

(

dl(k − µi,l) + τh,d,i,l(k)
)

,

max
m∈Si

(

am(k − µi,m) + τs,i,m(k)
)

,

max
e∈Ci

(

ae(k − µi,e) + τc,i,e(k)
)

,

doi
(k), rd,i(k)

)

(16)

ai(k) = max

(

max
l∈Hi

(

al(k − µi,l) + τh,a,i,l(k)
)

,

di(k) + τr,i(k), aoi
(k), ra,i(k)

)

. (17)

Note that in an undisturbed, well-defined time schedule the terms rd,i(k) and
ra,i(k) in (16) and (17) respectively will be the largest. However, if one of the
trains pi, l,m, e or oi has a delay, due to unforeseen circumstances (an incident,
a late departure, etc.), then the corresponding term can become larger than the
others and train i will depart later than the scheduled departure time rd,i(k) and
will therefore be delayed as well.

Now let us consider a network with n ‘trains’ and define the vectors

x(k) =













d1(k)
...

dn(k)
a1(k)

...
an(k)













∈ R
2n
ε , r(k) =













rd,1(k)
...

rd,n(k)
ra,1(k)

...
ra,n(k)













∈ R
2n
ε .

By defining appropriate matrices Aµ(k) ∈ R
2n×2n
ε for µ = 0, 1, . . . , µmax, where

µmax = maxi,j µi,j , (16) and (17) can be rewritten as

xi(k) = max
(
max

j
(xj(k) + [A0(k)]i,j),max

j
(xj(k − 1) + [A1(k)]i,j), . . . ,

max
j

(xj(k − µmax) + [Aµmax
(k)]i,j), ri(k)

)
, (18)

where [Aµ(k)]i,j is the (i, j)th entry of1 Aµ(k).

1 The matrices Aµ(k) can be completed by adding [Aµ(k)]i,j = −∞ for all combinations
(µ, i, j, k) that do not appear in (18).

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 11

Using the max-plus algebra, (18) can be written as a max-plus-linear equation:

xi(k) = ri(k)⊕

µmax⊕

µ=0

2n⊕

j=1

xj(k − µ)⊗ [Aµ(k)]i,j . (19)

By determining this max-plus-linear equation for all xi(k) the model can be
written as a max-plus-linear (MPL) model defined as:

x(k) = r(k)⊕

µmax⊕

µ=0

Aµ(k)⊗ x(k − µ), (20)

which is an MPL model of a railway network with a fixed routing schedule and
fixed connections, such as the models of Braker (1991) and Goverde (2010). In the
next sections we will omit (k) from the notation of the Aµ(k) matrices to improve
the readability.

2.5 System Matrices for the Nominal Operation

From (20) it is clear that the dynamics of the railway system are described by
the matrices Aµ, µ = 0, . . . , µmax. In this section we will study the structure of
these matrices for the nominal operation. It can be verified that the matrices Aµ,
µ = 0, . . . , µmax can be written as

Aµ =

[
Aµ,4,d ⊕Aµ,6,d Aµ,2 ⊕Aµ,3 ⊕Aµ,5

Aµ,1 Aµ,4,a ⊕Aµ,6,a

]

, (21)

with Aµ,1, Aµ,2, Aµ,3, Aµ,4,d, Aµ,4,a, Aµ,5, Aµ,6,d, Aµ,6,a ∈ R
n×n
ε . The structure

of these six matrices will now be discussed in detail.

2.5.1 The running time matrix

The running time matrix, denoted by Aµ,1, represents the running time con-
straints. Since by definition the arrival and departure of a train are in the same
cycle, Aµ,1 = E for all µ 6= 0. As a result, Aµ,1 has the following structure:

Aµ,1 =

{

diag⊕(τr,1(k), τr,2(k), · · · , τr,n(k)) for µ = 0

E for µ 6= 0.
(22)

2.5.2 The dwell time matrix

The dwell time matrix, denoted by Aµ,2, represents the continuity constraints.
The structure of this matrix is defined as follows:

[Aµ,2]i,j =

{

τd,i,pi
(k) if j = pi and µ = µi,pi

ε else.
(23)

Continuity constraints are only defined between trains of the same line that directly
follow each other, i.e. between train i and its predecessor pi = j.

12 Bart Kersbergen et al.

Let nL be the number of lines in the network, let nl,m be the number of trains
on line m, m = 1, . . . , nL, so nl,1 + nl,2 + . . . + nl,nL

= n, and let Lm ∈ R
nl,m be

a vector containing the indices of the trains of line m, with Lm,i the ith element
of vector Lm. Define a max-plus permutation matrix Edwell ∈ R

n×n
ε that orders

the rows and columns of Aµ,2, such that the associated event times are ordered
by line2 and per line by the departure times in the timetable:

Aµ,2 = Edwell ⊗









Âµ,2,1 E · · · E

E Âµ,2,2
. . .

...
...

. . .
. . . E

E · · · E Âµ,2,nL









⊗ E⊤
dwell, (24)

where Âµ,2,m ∈ R
nl,m×nl,m can be described as:

Âµ,2,m =











ε · · · · · · ε τ̂d,m,µ,1,nl,m
(k)

τ̂d,m,µ,2,1(k)
. . .

. . .
... ε

ε τ̂d,m,µ,3,2(k)
. . .

...
...

...
. . .

. . . ε
...

ε · · · ε τ̂d,m,µ,nl,m,nl,m−1(k) ε












, (25)

where

τ̂d,m,µ,i,j(k) =

{

τd,Lm,i,Lm,j
(k) if Lm,j = pLm,i

and µ = µLm,i,Lm,j

ε else.

If Lm,i = pLm,j
then train Lm,i is the predecessor of train Lm,j – in other

words, train Lm,i continues as train Lm,j – and there should be a dwell time
between the arrival of train Lm,j and the departure of train Lm,i.

2.5.3 The connection matrix

The connection matrix represents the connection constraints and is denoted by
Aµ,3. This matrix is structured as follows:

[Aµ,3]i,j =

{

τc,i,j(k) if j ∈ Ci and µ = µi,j

ε else.
(26)

If j ∈ Ci, then train i has to give a connection to train j; therefore a constraint is
set on the departure time of train i which depends on the arrival time of train j.

2 Recall that a line is defined as the set of train runs modeling the same ‘physical’ train.

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 13

2.5.4 The headway matrices

The matrices Aµ,4,d and Aµ,4,a represent the headway constraints for trains in the
same direction on the same track.

Let nT be the number of tracks in the network, let nt,m be the number of trains
on track m, m = 1, . . . , nT, so nt,1 + nt,2 + . . . + nt,nT

= n, and let Tm ∈ R
nt,m

be a vector containing the indices of the trains on track m, ordered according to
the timetable. Define a max-plus permutation matrix Et ∈ R

n×n
ε that reorders

the half of the state vector x(k) containing the departure events d1(k) up to dn(k)
such that the event times are ordered per track and for each track the events are
ordered according to the timetable. The matrices Aµ,4,d can then be defined as:

Aµ,4,d = Et ⊗









Âµ,4,d,1 E · · · E

E Âµ,4,d,2

. . .
...

...
. . .

. . . E

E · · · E Âµ,4,d,nT









⊗ E⊤
t , (27)

where Âµ,4,d,m ∈ R
nt,m×nt,m and where for µ = 0 we have

Â0,4,d,m =









ε τ̂h,d,m,0,1,2(k) . . . τ̂h,d,m,0,1,nt,m
(k)

...
. . .

. . .
...

...
. . . τ̂h,d,m,0,nt,m−1,nt,m

(k)
ε ε









, (28)

and for µ = 1, . . . , µmax

[Âµ,4,d,m]i,j = τ̂h,d,m,µ,i,j(k), (29)

with

τ̂h,d,m,µ,i,j(k) =

{

τh,d,Tm,i,Tm,j
(k) if Tm,j ∈ HTm,i

, and µ = µTm,i,Tm,j

ε else.
(30)

The if-condition is satisfied if the jth train in track m is in the set HTm,i
, which

is the set of trains that traverse track m before the ith train on track m in the
same direction. When it is satisfied there should be a headway time between the
departure times of the two trains.

For Aµ,4,a, the structure of the matrix is the same as for Aµ,4,d, the only

differences being that in (27)- (30) Âµ,4,d,m is replaced by Âµ,4,a,m, τ̂h,d,m,µ,i,j(k)
is replaced by τ̂h,a,m,µ,i,j(k), and τh,d,Tm,i,Tm,j

(k) is replaced by τh,a,Tm,i,Tm,j
(k).

2.5.5 The separation matrix

The separation matrix is denoted by Aµ,5, and represents the headway constraints
for trains driving over the same track in the opposite direction. Using the same

14 Bart Kersbergen et al.

permutation matrix Et as for the headway matrices, Aµ,5 can be written as:

Aµ,5 = Et ⊗









Âµ,5,1 E · · · E

E Âµ,5,2
. . .

...
...

. . .
. . . E

E · · · E Âµ,5,nT









⊗ E⊤
t , (31)

where Âµ,5,m ∈ R
nt,m×nt,m and can be described as:

[Âµ,5,m]i,j =

{

τs,Tm,i,Tm,j
(k) if Tm,j ∈ STm,i

and µ = µTm,i,Tm,j

ε else.
(32)

The if-condition is satisfied if the jth train in track m is in the set STm,i
, which

is the set of trains that traverse track m before the ith train on track m in the
opposite direction. When the if-condition is satisfied there should be a separation
time between the departure time of the ith train and the arrival time the jth train
on track m.

2.5.6 The coupling matrices

The coupling matrices, denoted by Aµ,6,d and Aµ,6,a, define which trains are cou-
pled into one single train. The matrices Aµ,6,d and Aµ,6,a have the following struc-
ture:

[Aµ,6,d]i,j =







0 if j = oi and µ = 0

0 if i = oj and µ = 0

ε else.

(33)

Furthermore, Aµ,6,a = Aµ,6,d. The reason for defining two matrices that are iden-
tical is that during perturbed operation these matrices may differ: they will depend
on control variables and different process times and for most combinations of con-
trol variables they will be different.

3 Perturbed Operation

The model, as described in the previous section, is a static model: the order of
the trains on the tracks is fixed, connections cannot be broken, coupled trains
cannot be decoupled, process times are fixed, and when there are multiple tracks
trains can use, they cannot change tracks. In this section the abilities to change
the order of the trains, break connections, decouple trains, and change tracks
will be added step by step. These abilities are added by extending the model of
the previous section to a switching max-plus-linear (SMPL) model by modifying
constraints and adding max-plus binary control variables ui,l(k − µ) and their

adjoint ui,l(k − µ), as defined in (15), to the constraints. It is called an SMPL
model, since it can switch between behaviors (train orders, track choices, broken
connections). The SMPL model can be described as:

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 15

x(k) = r(k)⊕

µmax⊕

µ=0

Aµ(k, u(k−µ))⊗x(k−µ)⊕
−1⊕

µ=−µmax

Aµ(k, u(k))⊗x(k−µ), (34)

where the elements of Aµ contain the modified constraints with control variables
ui,l(k − µ) and ui,l(k − µ), and u is the control vector containing all control vari-
ables. The first max-plus sum for µ = 0, 1, . . . , µmax contains the part of the model
that describes the dependency of the event times of the current cycle to the event
times of previous cycles. Since the event times of previous cycles are known, fixed
and in the past the control variables relating these event times to event times of
the current cycle are also fixed, known and in the past. As a result Aµ depends on
u(k−µ) when µ ≥ 0 and not on u(k). By adding the ability to change the order of
the trains, break connections, decouple trains, and change tracks new constraints
are introduced between trains in the current cycle k and future cycles k − µ, for
µ < 0. For example if a train in the current cycle is delayed a lot and is delaying a
train in the next cycle we should be able to change the order of these trains. This
involves constraints between an event in cycle k and in cycle k+1. By adding the
second max-plus sum from −µmax to −1 these constraints can also be modeled.
Since the control variables in the second max-plus sum are taken during the kth
cycle, Aµ in the second max-plus sum depends on u(k).

For Aµ(k, u(k − µ)), with µ ∈ {0, . . . , µmax}, and their submatrices, the argu-
ment in the next part of the section is always (k, u(k − µ)) and will therefore be
omitted. For Aµ(k, u(k)), with µ ∈ {−µmax, . . . ,−1}, and their submatrices, the
argument is always (k, u(k)) and will also be omitted.

3.1 Changing the Order of Trains

To change the order of trains on a track, the headway constraints need to be
manipulated. As an example consider two trains running over the same track and
in the same direction. These trains are described by train i in cycle k and l in
cycle k − µi,l. If the order of trains is “l before i”, then headway constraints (5)
and (6) define this order. If the order is “i before l” then the following headway
constraints should replace equations (5) and (6):

dl(k − µi,l) ≥ di(k)⊗ τh,d,l,i(k − µi,l) (35)

al(k − µi,l) ≥ ai(k)⊗ τh,a,l,i(k − µi,l) (36)

To be able to change the order of trains, it is necessary to be able to turn
headway constraints on and off. This can be done by multiplying (5) and (6) with
ui,l(k − µi,l), and (35) and (36) with ui,l(k − µi,l). Then we obtain:

di(k) ≥ dl(k − µi,l)⊗ τh,d,i,l(k)⊗ ui,l(k − µi,l) (37)

ai(k) ≥ al(k − µi,l)⊗ τh,a,i,l(k)⊗ ui,l(k − µi,l) (38)

dl(k − µi,l) ≥ di(k)⊗ τh,d,l,i(k − µi,l)⊗ ui,l(k − µi,l) (39)

al(k − µi,l) ≥ ai(k)⊗ τh,a,l,i(k − µi,l)⊗ ui,l(k − µi,l). (40)

16 Bart Kersbergen et al.

A detailed example describing the effects of the control variables on (37)-(40) can
be found in Appendix A.1.

For two trains running over the same track, and in opposite direction the same
procedure of multiplying the constraints by control inputs can be applied:

di(k) ≥ am(k − µi,m)⊗ τs,i,m(k)⊗ ui,m(k − µi,m) (41)

dm(k − µi,m) ≥ ai(k)⊗ τs,m,i(k − µi,m)⊗ ui,m(k − µi,m) (42)

Using this methodology the matrices Aµ,4,d, Aµ,4,a, and Aµ,5 can be modified
to allow reordering of trains. The new matrices can be described by (27) and
(31) respectively, where Âµ,4,d,m ∈ R

nt,m×nt,m and Âµ,5,m ∈ R
nt,m×nt,m can be

described as:

[Âµ,4,d,m]i,j =







τh,d,Tm,i,Tm,j
(k)⊗ uTm,i,Tm,j

(k − µ) if Tm,j ∈ HTm,i
and

µ = µTm,i,Tm,j

τh,d,Tm,i,Tm,j
(k)⊗ uTm,j ,Tm,i

(k) if Tm,i ∈ HTm,j
and

µ = −µTm,j ,Tm,i

ε else,

(43)

[Âµ,5,m]i,j =







τs,Tm,i,Tm,j
(k)⊗ uTm,i,Tm,j

(k − µ) if Tm,j ∈ STm,i
and

µ = µTm,i,Tm,j

τs,Tm,i,Tm,j
(k)⊗ uTm,j ,Tm,i

(k) if Tm,i ∈ STm,j
and

µ = −µTm,j ,Tm,i

ε else,

(44)

where Tm is again the vector containing the indices of the trains on track m,
ordered according to the timetable. The first if-condition in both equations de-
scribes the nominal situation where the jth train on track m is in the set HTm,i

or
STm,i

respectively and denotes the headway or separation times between the trains
with the added control variable uTm,i,Tm,j

(k− µ). The second if-condition in both
equations states that if the default order of the trains on track m is the ith train
before the jth train then element i, j should contain a headway or separation time
respectively and an adjoint control variable uTm,j ,Tm,i

(k), since it corresponds to
a train order that is different from the nominal order.

For Aµ,4,a, the structure of the matrix is the same as for Aµ,4,d, the only

differences are that in (43) Âµ,4,d,m is replaced by Âµ,4,a,m, and τh,d,Tm,i,Tm,j
(k)

is replaced by τh,a,Tm,i,Tm,j
(k).

The reader should note that for a track with n trains running over it the
number of control variables added to the model is n(n − 1)/2. The number of
possible combinations of control actions is then 2n(n−1)/2, but the number of
possible train order is only n!. For n ≥ 3 there are more combinations of control
variables than possible train orders. As a result some combinations of control
variables do not correspond to possible train orders, they describe infeasible train
orders. For an example of an infeasible train order see Appendix A.2, where we
will also show that an infeasible train order results in infinite departure and arrival
times of some trains.

The reason for adding more control variables than necessary is because it is
easier to formulate the model: each combination of two trains on a track has one
control variable that determines the order.

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 17

3.2 Breaking Connections

Breaking connections can be done by manipulating the entries of Aµ,3. By set-
ting the elements of Aµ,3 to ε the connection is broken. This can be done by
adding a control variable ui,j+n(k − µi,j) ∈ {ε, 0} to the connection constraint,
as was already shown in de Vries et al (1998) and Heidergott and Vries (2001).
If ui,j+n(k − µi,j+n) = ε the connection is broken, if ui,j+n(k − µi,j+n) = 0 the
connection is maintained. This results in a new matrix:

[Aµ,3]i,j =

{

τc,i,j(k)⊗ ui,j+n(k − µi,j) if j ∈ Ci and µ = µi,j

ε else.
(45)

The indices of the control variables are determined by the indices the element has
in Aµ. Since Aµ,3 is in the top right part of Aµ index i remains the same and
index j is shifted by n to j+n. This also ensures there is no overlap in the indices
of the control variables for the different dispatching actions. The indices of the
connection times and µ are determined by the trains they are related to and since
index j and j + n, for j ≤ n, both correspond to train j (departure and arrival
time), the indices do not need to be shifted.

3.3 Decoupling Trains

When two trains are decoupled, the coupling constraints need to be removed and
headway constraints need to be added. These headway constraints should also
allow the trains to depart in a different order. For the decoupling new max-plus
binary variables are used: vi,j(k) and its adjoint vi,j(k). These max-plus binary
variables are defined as in (15). This results in the following build-up of the cou-
pling matrix Aµ,6,d:

[Aµ,6,d]i,j =







0⊗ ui,j(k)⊕ τh,d,i,j(k)⊗ vi,j(k)⊗ ui,j(k) if j = oi, i > j,

and µ = 0

0⊗ ui,j(k)⊕ τh,d,i,j(k)⊗ vi,j(k)⊗ ui,j(k) if i = oj , i < j,

and µ = 0

ε else,

(46)

where vi,j(k) is the control variable for (de)coupling and ui,j(k) is the control
variable that determines the order of the train departures if the trains are decou-
pled. The matrices Âµ,6,a are defined in the same way as Âµ,6,d with only one
difference: τh,d,i,j(k) is replaced by τh,a,i,j(k).

Clearly if vi,j(k) = 0 then vi,j(k) = ε and the trains remain coupled. If
vi,j(k) = 0 then either [Aµ,6, d]i,j = τh,d,i,j(k) and [Aµ,6]j,i = ε or [Aµ,6]i,j = ε
and [Aµ,6,d]j,i = τh,d,j,i(k).

3.4 Switching Between Tracks

Between certain stations in a railway network, there may be two (or more) parallel
tracks that can be used by trains. To determine which track should be used, extra

18 Bart Kersbergen et al.

control variables are added per train. In this paper we will be dealing with at most
two parallel tracks in each direction (two sets of two unidirectional tracks). This
is done for the sake of simplicity. As a result only one control variable has to be
added per train traversing one of these parallel tracks. However, this approach can
easily be generalized to the case where there are more parallel tracks. In that case
one control variable per track per train is added, that indicates whether the train
is on that track. Although this will result in many more control variables than
needed in theory, it will keep the constraints as simple as possible.

The tracks are numbered in such a way that parallel tracks always have con-
secutive numbers. If trains can switch between track m and m+ 1, then this can
be modeled by changing the headway matrices Aµ,4,d. Consider the part of Aµ,4,d,
as described in (27), consisting of

Ãµ,4,d,m =

[
Âµ,4,d,m E

E Âµ,4,d,m+1

]

,

where Âµ,4,d,m and Âµ,4,d,m+1 contain the headway times for the departures of
the trains on track m and m+1, respectively. Define Tm as the vector containing
the indices of the trains on track m, ordered according to the timetable and T̃m =
[T⊤

m T⊤
m+1]

⊤ is the vector containing the indices of the trains on track m and track
m+1. To enable switching between parallel tracks new max-plus binary variables
are introduced: wi,j(k) and its adjoint wi,j(k). These max-plus binary variables
are defined as in (15). Switching between tracks can then be done by redefining
the entries of Ãµ,4,d,m as follows:

[
Ãµ,4,d,m

]

i,j
=







τh,d,T̃m,i,T̃m,j
(k)⊗

uT̃m,i,T̃m,j
(k − µ)⊗

(
wT̃m,i

(k)⊗ wT̃m,j
(k − µ)⊕

wT̃m,i
(k)⊗ wT̃m,j

(k − µ)
)

if T̃m,j ∈ HT̃m,i
and

µ = µT̃m,i,T̃m,j

τh,d,T̃m,i,T̃m,j
(k)⊗

uT̃m,j ,T̃m,i
(k)⊗

(
wT̃m,i

(k)⊗ wT̃m,j
(k − µ)⊕

wT̃m,i
(k)⊗ wT̃m,j

(k − µ)
)

if T̃m,i ∈ HT̃m,j
and

µ = −µT̃m,j ,T̃m,i

τh,d,T̃m,i,T̃m,j
(k)⊗

uT̃m,i,T̃m,j
(k − µ)⊗

(
wT̃m,i

(k)⊗ wT̃m,j
(k − µ)⊕

wT̃m,i
(k)⊗ wT̃m,j

(k − µ)
)

if rd,T̃m,i
(k) ≥ rd,T̃m,j

(k − µ),

µ = µT̃m,i,T̃m,j
≥ 0 and

T̃m,i ∈ Tm, T̃m,j ∈ Tm+1 or

T̃m,i ∈ Tm, T̃m,j ∈ Tm

τh,d,T̃m,i,T̃m,j
(k)⊗

uT̃m,j ,T̃m,i
(k)⊗

(
wT̃m,i

(k)⊗ wT̃m,j
(k − µ)⊕

wT̃m,i
(k)⊗ wT̃m,j

(k − µ)
)

if rd,T̃m,j
(k − µ) > rd,T̃m,i

(k),

µ = −µT̃m,j ,T̃m,i
≤ 0 and

T̃m,i ∈ Tm, T̃m,j ∈ Tm+1 or

T̃m,i ∈ Tm+1, T̃m,j ∈ Tm.

(47)

The control variables uT̃m,i,T̃m,j
(k), uT̃m,i,T̃m,j

(k − µ) are used to determine the

order of the trains T̃m,i and T̃m,j . The control variables wT̃m,i
(k) and wT̃m,j

(k−µ)

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 19

are used to determine on which track trains T̃m,i and T̃m,j are respectively. The
values are chosen such that if wT̃m,j

(k) = 0 and wT̃m,j
(k − µ) = 0, trains T̃m,i

and T̃m,j are on the same track as in the nominal case. The first two if-statements
describe the headway constraints for trains that are on the same track during
nominal operation with the added control variables for the different tracks. The
last two if-statements are the headway constraints between trains, that during the
nominal operation, traverse parallel tracks. The default order between these trains
is chosen according to their scheduled departure times.

For Ãµ,4,a,m, the structure of the matrix is the same as for Ãµ,4,d,m, the only
differences is that in (47) τh,d,T̃m,i,T̃m,j

(k) is replaced by τh,a,T̃m,i,T̃m,j
(k).

An example of the constraints for four trains running over two parallel tracks
can be found in Appendix A.3.

4 Explicit Model

The model introduced in (34) has a specific structure called the implicit form. In
an equation in the implicit form the state vector x(k) does not only depend on
the state vector of the previous cycles (and the timetable reference), but also on
itself. There also exist models where the state vector x(k) does not depend on
itself, only on the state vector of the previous cycles (and the timetable reference),
such a model is called an explicit model. Implicit models can be converted into
an explicit model by simply substituting equations into each other as long as no
equation of the following form results from the substitution: xi(k) = xi(k) ⊗ τi
where τi > 0. In the following example we show how an implicit model can be
converted to an explicit model using substitution.

Given the following implicit model

x1(k) = x1(k − 1)⊗ 3⊕ x2(k − 1)⊗ 3 (48)

x2(k) = x1(k)⊗ 3⊕ x1(k − 1)⊗ 3⊕ x2(k − 1)⊗ 3 (49)

Equation (48) is already in explicit form, but (49) has an implicit and an explicit
part. By substituting (48) into (49) the equation is converted to its explicit form
and the result is an explicit model:

x1(k) = x1(k − 1)⊗ 3⊕ x2(k − 1)⊗ 3 (50)

x2(k) = x1(k − 1)⊗ (6⊕ 3)⊕ x2(k − 1)⊗ (3⊕ 6)

= x1(k − 1)⊗ 6⊕ x2(k − 1)⊗ 6 (51)

For an example with only a few, or in this case a single implicit equation this is
easy to do. But if there are multiple implicit equations, which will be the case
for larger models, this is far from trivial and in some cases an implicit model
cannot be converted into an explicit model. In max-plus algebra there is a specific
method for the conversion of an implicit into an explicit model by using max-plus
matrix multiplication (Theorem 3.17 of Baccelli et al (1992)) . It also gives clear
requirements on the implicit model that need to be met to be able to convert it
to an explicit model. This method is explained below.

The model of (34) can be rewritten in its explicit form. By doing so the de-
pendency of state vector x(k) on itself is removed.

20 Bart Kersbergen et al.

In general an implicit max-plus-linear model as described by

x(k) = r(k)⊕A0 ⊗ x(k)⊕

µmax⊕

µ=1

Aµ ⊗ x(k − µ) (52)

can be converted to an explicit max-plus-linear model described by

x(k) = A∗
0 ⊗

(

r(k)⊕

µmax⊕

µ=1

Aµ ⊗ x(k − µ)

)

, (53)

where A∗
0 is defined as ((Baccelli et al 1992)):

A∗
0 =

∞⊕

p=0

A⊗p

0 , (54)

with

A⊗p

= A⊗A⊗ . . .⊗A
︸ ︷︷ ︸

p times

, (55)

and A⊗0

= E.
However, the model (34) is an implicit switching max-plus-linear model, where

the matrices depend on the control variables and the values of the different process
times (i.e. the dwell times, headway times, separation times, running times, and
connection times); furthermore, the matrices Aµ(k − µ) with µ < 0 need to be
handled. Hence, we cannot directly apply (53)-(55). In the next part of this section
we will first describe how the implicit SMPL for a single cycle can be converted
into its explicit form and after that the method is expanded to an implicit SMPL
for multiple cycles.

4.1 Explicit Model for a Single Cycle

For a model of a single cycle x(k) only needs to be determined and no future
cycles, i.e. x(k− µ) with µ < 0, are considered. As a result, Aµ is only needed for
µ = 0, . . . , µmax. This reduces the implicit model to

x(k) = r(k)⊕A0 ⊗ x(k)⊕

µmax⊕

µ=1

Aµ ⊗ x(k − µ).

Next, A∗
0 will need to be determined. Calculating the max-plus matrix powers A⊗p

0

can be done in the same way as for a constant matrix; the problem is the infinite
sum in (54). To tackle this issue we use Theorem 3.20 of Baccelli et al (1992):

Theorem. (Theorem 3.20 of Baccelli et al (1992))
If the precedence graph G(A) has no circuits of positive weight, then

A∗ = E ⊕A⊕A⊗2 ⊕ . . .⊕A⊗n−1

,

where n is the dimension of A.

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 21

The precedence graph G(A) is defined as in Definition 2.8 of Baccelli et al
(1992):

Definition. The precedence graph of a square n × n matrix A with entries in C
is a weighted digraph with n nodes and an arc (j, i) if Ai,j 6= ε, in which case the
weight of this arc receives the numerical value of Ai,j . The precedence graph is
denoted as G(A).

This means that if A⊗p

0 for p = 1, . . . , n does not contain any positive diagonal
elements then the infinite sum in (54) can be limited to the range p = 1, . . . , n−1.

Note that a positive diagonal element [A⊗p

0]ii for p ∈ {1, . . . ,∞}, i ∈ {1, . . . , n}
would describe the following relation:

xi(k) ≥ xi(k)⊗ [A⊗p

0]ii.

The solution to this equation would then be xi(k) = ∞.
If one or more event times are infinite, the timetable is infeasible. Since the

nominal model results in a feasible timetable, infinite event times can only result
from changing the control variables. Infinite event times can only have two causes:
infinite process times or positive diagonal elements in one of the max-plus matrix
powers A⊗p

0 . Since none of the process times in the model can be infinite, the
only cause that remains is positive diagonal elements. It is therefore clear that
the combinations of control variables resulting in infinite event times also result
in positive diagonal elements of A⊗p

0]ii for p ∈ {1, . . . ,∞}. Hence, it is necessary
to determine the combinations of control variables that result in positive diagonal
elements when calculating A∗

0 and remove all elements containing these specific
combinations of control variables from the matrix powers of A0(k, u(k)). This can
be done by simply calculating the matrix powers of A0 and each time a non-ε diag-
onal element is in the matrix, check which combination(s) of control variables the
diagonal elements consist of and set all elements that have those combinations of
control variables to ε. This process is shown in Appendix A.2 for a small example.

By removing these infeasible combinations of inputs from the model a feasible
explicit switching max-plus-linear model of the following form is found:

x(k) = A∗,feas
0 ⊗

(

r(k)⊕

µmax⊕

µ=1

Aµ ⊗ x(k − µ)

)

, (56)

where A∗,feas
0 is the feasible part of A∗

0; the infeasible combinations of control
variables are removed from the matrix. In Appendix A.2 it is explained how this
can be done using a small example.

Some dispatching actions may have an effect on the event times in the next
cycle, or even the cycles after that, therefore it may be needed to extend the model
to multiple cycles. This will be done in the next section.

4.2 Explicit Model for Multiple Cycles

A model with multiple cycles is used to predict the arrival and departure times for
the current and future cycles and the effects of the dispatching actions on these
arrival and departure times based on the current situation. That means x(k) and

22 Bart Kersbergen et al.

the event times of future cycles (x(k−µ), with µ < 0) need to be determined. The
model for m+ 1 cycles can be described by the following set of equations:

x(k + q) =r(k + q)⊕

µmax⊕

µ=1

Aµ ⊗ x(k + q − µ)⊕
0⊕

µ=−min(µmax,m−q)

Aµ ⊗ x(k + q − µ),

for the range q = 0, . . . ,m. By extending the state vector to

x̆(k) =
[
x⊤(k) x⊤(k + 1) . . . x⊤(k +m− 1) x⊤(k +m)

]⊤
,

the above set of equations can be written as

x̆(k) = r̆(k)⊕ Ă0 ⊗ x̆(k)⊕

µmax⊕

µ=1

Ăµ ⊗ x(k − µ),

where Ă0(k, u(k)) contains the matrices with the process times for the constraints
between event times of the current and future cycles (x(k − µ), with µ ≤ 0), and
the max-plus sum with µ ranging from 1 to µmax contains the matrices with the
process times for the constraints between event times of past cycles (x(k − µ),
with µ > 0) and event times of the current and future cycles. These matrices are
defined as follows:

[Ă0(k, u(k))]i,j =







Ai−j(k + i− 1, u(k + j − 1)) if 0 ≤ i− j ≤ µmax

and 1 ≤ i, j ≤ m+ 1

Ai−j(k + i− 1, u(k + i− 1)) if − µmax ≤ i− j ≤ −1

and 1 ≤ i, j ≤ m+ 1

E else,

and

Ăµ =
[
A⊤

µ A⊤
µ+1 . . . A⊤

µmax
E⊤ . . . E⊤

]⊤
.

The reference vector r̆(k) containing the planned event times is defined as follows:

r̆(k) =
[
r⊤(k) r⊤(k + 1) . . . r⊤(k +m− 1) r⊤(k +m)

]⊤
.

The same procedure as for the model of one cycle can now be applied to Ă0,
resulting in Ă∗,feas

0 and a feasible explicit switching max-plus-linear model for
multiple cycles:

x̆(k) = Ă∗,feas
0 ⊗

(

r̆(k)⊕

µmax⊕

µ=1

Ăµ ⊗ x(k − µ)

)

(57)

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 23

4.3 Structured Approach to Matrix Multiplication

The calculation of the matrix powers of A0 can be simplified by making use of the
structure of the matrix as shown in (21) and the submatrices that are described
in Sections 2.5 and 3. First denote A0,4,d ⊕ A0,6,d as Aa, A0,2 ⊕ A0,3 ⊕ A0,5 as
Ab, A0,1 as Ac, and A0,4,a ⊕A0,6,a as Ad; then any A⊗m

0 can be split up into four
submatrices

A⊗m
0 =

[
A1,1,m A1,2,m

A2,1,m A2,2,m

]

, (58)

with3

A1,1,m =
⊕

(q1,q2,q3)∈S1,1,m

l⊗

i=1

A⊗
q1,i

a ⊗A⊗
q2,i

b ⊗A⊗
q3,i

d ⊗A⊗
q2,i

c , (59)

where q1,i = (q1)i, q2,i = (q2)i, q3,i = (q3)i, and where the set S1,1,m contains all
tuples (q1, q2, q3) of vectors that satisfy the following equation:

l∑

i=1

q1,i + 2q2,i + q3,i = m,

with q1,i ∈ {0, . . . ,m}, q2,i ∈ {0, 1}, and q3,i = 0 if q2,i = 0 and q3,i ∈ {0, . . . ,m}
if q2,i = 1.

For the other submatrices similar equations can be determined:

A1,2,m =
⊕

(q1,q2,q3,q4)∈S1,2,m

l⊗

i=1

A⊗
q1,i

a ⊗A⊗
q2,i

b ⊗A⊗
q3,i

d ⊗A⊗
q4,i

c , (60)

where q1,i = (q1)i, q2,i = (q2)i, q3,i = (q3)i, and where the set S1,2,m contains all
tuples (q1, q2, q3, q4) that satisfy the following equation:

l∑

i=1

q1,i + 2q2,i − 1 + q3,i = m,

where q1,i ∈ {0, . . . ,m}, q2,i ∈ {0, 1}, q2,l = 1, q3,i = 0 if q2,i = 0 and q3,i ∈
{0, . . . ,m} if q2,i = 1, q4,i = q2,i, for i = 1, . . . , l − 1, and q4,l = 0.

A2,1,m =
⊕

(q1,q2,q3,q4)∈S2,1,m

l⊗

i=1

A⊗
q1,i

d ⊗A⊗
q2,i

c ⊗A⊗
q3,i

a ⊗A⊗
q4,i

b , (61)

where q1,i = (q1)i, q2,i = (q2)i, q3,i = (q3)i, and where the set S2,1,m contains all
tuples (q1, q2, q3, q4) that satisfy the following equation:

l∑

i=1

q1,i + 2q2,i − 1 + q3,i = m,

3 In this equation the exponents of the factors of the matrix product are determined using
graph theory: according to graph theory [A⊗m

]i,j corresponds to the maximum weight of all
paths of length m from node j to node i in the precedence graph of A. See Baccelli et al (1992)
for a detailed review of graph theory.

24 Bart Kersbergen et al.

where q1,i ∈ {0, . . . ,m}, q2,i ∈ {0, 1}, q2,l = 1, q3,i = 0 if q2,i = 0 and q3,i ∈
{0, . . . ,m} if q2,i = 1, q4,i = q2,i, for i = 1, . . . , l − 1, and q4,l = 0.

A2,2,m =
⊕

(q1,q2,q3)∈S2,2,m

l⊗

i=1

A⊗
q1,i

d ⊗A⊗
q2,i

c ⊗A⊗
q3,i

a ⊗A⊗
q2,i

b , (62)

where q1,i = (q1)i, q2,i = (q2)i, q3,i = (q3)i, and where the set S2,2,m contains all
tuples (q1, q2, q3) that satisfy the following equation:

l∑

i

q1,i + 2q2,i + q3,i = m,

where q1,i ∈ {0, . . . ,m}, q2,i ∈ {0, 1}, q3,i = 0 if q2,i = 0 and q3,i ∈ {0, . . . ,m} if
q2,i = 1.

The general idea of how these equations have been determined can be found
in Appendix A.4.

The same approach can be applied to Ă0 by reordering the state vector as
follows: the event times should be split up in departure and arrival times, the
first half of the state vector should consist of the departure times, the second half
should consist of the arrival times, and both arrival and departure times should
be sorted per track. This results in the same structure for matrix Ă0 as A0; the
dimensions of the submatrices are just larger.

5 Reduction Method

At stations where trains can be reordered, the model can model the change in order
of any two trains running over the next track, even if there is a very large time
difference between the scheduled departure times. If the maximum of the delays
of all trains is known it is possible to determine which (combinations of) control
variables will not be used when determining the optimal dispatching actions for
reducing the delays. In this section it is explained how these (combinations of)
control variables can be determined and removed from the model. First, the delay
model will be explained. After that the reduction method is explained using the
delay model.

5.1 Delay Model

The model as defined in Section 3 has a state vector x(k) that corresponds to the
arrival and departure times of the trains. When dealing with delays and trying
to minimize them it can be more useful to transform the model such that the
transformed state vector xd(k) shows the delays instead of the arrival and depar-
ture times of the trains. Another advantage of this model transformation is that
the elements of the transformed matrix Ad

µ are the negative slack times between
the events. The concepts of the delay model and negative slack time are based on
slack time, realizability and structural delays as described by Goverde (2010) and
Hansen and Pachl (2008). The slack time is defined in Hansen and Pachl (2008)
as:

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 25

Definition 1. For any activity (j, i) the slack time is the difference of the end
xj(k−µij)+aij(k, u(k−µij) of the activity and the start xi(k) of the new activity.

where an activity (j, i) is described by one of the constraints introduced in Section
3. The slack time can be used to analyze the model on robustness against delays,
and in the perturbed mode, it can be used to analyze the effects of the different
dispatching actions.

The matrix Aµ is transformed into Ad
µ, containing the negative slack times:

[Ad
µ]i,j = [Aµ]i,j − (ri(0)− (rj(0)− µT)) (63)

where we used

r(k) = r(0) + kT. (64)

With these matrices the model from (34) can be transformed into

xd(k) = 0⊕

µmax⊕

µ=0

Ad
µ(k, u(k − µ))⊗ xd(k − µ)⊕

−1⊕

µ=−µmax

Ad
µ(k, u(k))⊗ xd(k − µ),

(65)

where the state vector xd(k) contains the delays of the events of cycle k and 0 is
a vector of the same length as r(k) filled with zeros.

Because the elements of the matrix Ad
µ represent the negative slack times

between events, the value of the elements shows how much one event is delayed
directly by another event. For example, if [Ad

0]i,j = 2, then xi(k) is delayed by at
least 2 minutes by xj(k). Therefore, during nominal operation all the elements of
the matrices should be negative, otherwise there would be delays during nominal
operation.

5.2 Removing Redundant Control Variables

In the previous subsection the model was rewritten into a delay model, where
the entries of the matrix Ad

µ contain the negative slack times. The negative slack
times can be used as a measure of the effects of the control variables. Theorem 1
of Kersbergen et al (2013b) states:

Theorem. (Theorem 1 of Kersbergen et al (2013b)) The elements of the matrix
powers of Ad

0 give lower bounds to the delays caused by the control variables, if and
only if, the process times used are the minimal process times.

The minimal process times are the smallest possible process times that are
achievable by the trains and the railway operations.

By using the delay model together with the minimal process times the mini-
mum delays caused by the (combinations of) control variables can be determined.
Then by assuming there is a known maximum value for the delays, the (combina-
tions of) control variables, that would result in delays larger than the maximum
delay, can be removed. Removing these (combinations of) control variables will
have no effect on the solution of the dispatching problem, but it will reduce the
complexity of the problem. These value combinations of control variables can be

26 Bart Kersbergen et al.

removed in the same way as the control variables for infeasible train orders are
removed, which was shown in Appendix A.2.

These (combinations of) control variables can be found by determining which
of the control variables result in at least one element of the max-plus powers of
Ăd

0 being larger than the maximum value for the delays. These elements can be
determined off-line by making use of Theorem 1 and the minimal process times. By
using the minimal process times the values of the max-plus powers of Ăd

0 are a lower
bound of the delays caused by the different (combinations of) control variables.
The reduction is done by replacing these (combinations of) control variables by ε
in all elements of the max-plus powers of Ăd

0 , effectively removing them from the
model. The reduction can be applied while calculating the feasible explicit model
resulting in a reduced explicit model:

x̆d(k) = Ăd,∗,red
0 ⊗

(

0̆(k)⊕

µmax⊕

µ=1

Ăd,red
µ ⊗ xd(k − µ)

)

. (66)

This reduction method can also be applied to the implicit model, but it will not
be as effective, because most combinations of control variables are only modeled
explicitly in the max-plus matrix powers of Ăd,∗,red

0 and can therefore not be
removed from the implicit model. In fact, in the implicit model most combinations
of control variables are modeled implicitly through the dependency of x(k) on itself.

In Kersbergen et al (2013a) it was shown how an SMPL model can be used for
the dispatching problem. The dispatching problem is the problem of minimizing
a measure of the delays (for example the sum of delays) using the available dis-
patching actions (reorder trains, switch tracks, break connections and break joined
trains) by predicting the effects of the dispatching actions on the future events of
the railway network. This problem can be described as a MILP problem, where
the SMPL is used for the prediction of the effects of the dispatching actions. The
model is converted to suite the MILP format by replacing the max-plus control
variables by binary variables and converting all maximizations back to separate
constraints. For a more detailed explanation the reader is referred to Kersbergen
et al (2013a).

In the next section we will show the effects of the reduction method on the
computation time.

6 Case Study

In this section the effects of the reduction method on the solution time of the
rescheduling problem will be evaluated. Furthermore, the effects of different ob-
jective functions on the found solution and computation time will be evaluated via
a case study. In this case study we will look at a single step of the model predictive
controller.

The case study will be based on the Dutch Railway network and the timetable
of the year 2006, since we have accurate process times available for this timetable.
The model is simplified because only intercity and interregional trains are con-
sidered. Furthermore, only stations and junctions are considered where the trains
can be rescheduled. Arrivals and departures at stations where trains can only stop
and not overtake are not explicitly modeled. The only dispatching actions in this

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 27

case study are the reordering of trains. The timetable period is one hour and the
railway traffic is considered for a single hour.

Delays in the network can be divided into two types: primary and secondary
delays. For each train the primary delays are the delays that cannot be avoided.
They are caused by increased process times of that train or because of trains that
hinder it and cannot be avoided by rescheduling. The secondary delays of a train
are all delays that can be avoided by applying dispatching actions. For the entire
network none of the primary delays can be recovered with the use of dispatching
actions. Only some of the secondary delays can be recovered with dispatching
actions. Not all secondary delays can be recovered since some dispatching actions
may reduce the secondary delays of one train, but increase the secondary delays
of another train. The goal is to minimize the secondary delays.

To test the effectiveness of the rescheduling method and the computation time
needed for the implicit and reduced explicit model we have built a set of 500
delay scenarios. In each scenario 20% of the trains in the first hour are randomly
selected and given a random primary delay by increasing the running time of
those trains. The value of the delay is determined by a Weibull distribution with
scale parameter 6 and shape parameter 0.8. The model predictive controller then
optimizes the dispatching actions for the next hour. In this hour no new primary
delays are introduced. The only delays present in this hour are the delays that
propagated from the primary delays in the previous period. The same is also
done with a model predictive controller that optimizes the dispatching actions for
the next two hours. Determining the optimal dispatching actions can be done by
solving an MILP problem.

The value for the maximum delay used in the reduction method is set to 15
minutes.

All calculations are done on an AMD Phenom II X4 960T at 3GHz with 16GB
of memory, running Windows 7 64bit. The model is built up in MATLAB and
all solvers are called using the mex-interface of MATLAB. The solvers used are
GLPK 4.46 (GLPK (2014)), Gurobi 5.60 (Gurobi (2014)) and TOMLAB /CPLEX
12.5 (TOMLAB (2014)).

6.1 Minimization of the Sum of Delays

In general an MILP problem has the following structure:

min
z

c z

s.t.Az ≤ b

where z is a set of mixed (continuous, integer and binary) variables that can be
adjusted in order to minimize the cost function c z, while the variables must satisfy
the constraints in Az ≤ b. In this case study z = [x⊤, ν⊤]⊤,where x contains
the arrival and departure delays of x(k) for the hour in which the controller is
active and ν contains the binary variables corresponding to the max-plus binary
variables u(k), v(k), and w(k) for this period of time. For the exact details on how
to write the dispatching problem as an MILP problem we refer to Kersbergen et al
(2013a). The cost-function is c z = [1 0.0001×1] [x⊤ ν⊤]⊤, where 1 is a row vector
of appropriate size containing only ones. It is the sum of all delays and a very small

28 Bart Kersbergen et al.

weight is put on the control variables to ensure that if multiple solutions result
in the same sum of delays the solution with the least changes to the schedule is
chosen.

If information is known about the number of passengers that get on and off
at each station, this information could be used to weigh the delays by changing 1

into a vector with different weights for different continuous variables. This would
give a measure of passenger delays instead of train delays. Another possible cost
function would be the reduction of the maximum secondary delay, but this would
require the model to be adapted in a similar way as is done by Corman et al
(2012), such that a continuous variable represents this maximum secondary delay.
For more complex case studies including multiple kinds of dispatching actions the
weights on the control actions could be changed such that breaking connections
are weighted against the increase in delays.

The term Az ≤ b describes the constraints of the implicit and explicit mod-
els respectively. Because the exact set of trains and dispatching actions that are
considered depends on the delay scenario, the size of the constraint matrices vary.
The general structure of the matrices remains the same for the different delay
scenarios and is shown in Figures 2 and 3 for the implicit and explicit MILP prob-
lem. The constraints in the implicit MILP problem have one or two continuous
variables. The constraints in the explicit MILP problem all have one continuous
variable, except for the constraints used to ensure that certain combinations of
control variables are not chosen, such as the combinations that result in infeasible
train order and the combinations of control variables removed by the reduction
method. Those constraints have no continuous variables in them.

200 400 600
6000

5000

4000

3000

2000

1000

0

Continuous variables

C
o

n
s
tr

a
in

t
(#

)

800 1000 1200 1400
6000

5000

4000

3000

2000

1000

0

Integer variables

Fig. 2 Structure of the constraint matrix of the implicit MILP problem.

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 29

200 400 600
23000
22000
21000
20000
19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

Continuous variables

C
o

n
s
tr

a
in

t
(#

)

800 1000 1200 1400
23000
22000
21000
20000
19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

Integer variables

Fig. 3 Structure of the constraint matrix of the explicit MILP problem.

6.1.1 Prediction Horizon of One Hour

The average, minimum, and maximum number of continuous variables, binary
variables, and constraints for the implicit and explicit model for a prediction hori-
zon of one hour are given in Table 1.

Table 1 Number of constraints, continuous and binary variables of the MILP problems

Average min max
Continuous variables 773.74 759 790
Binary variables 670.74 633 711
Constraints-Implicit 5946 5794 6118
Constraints-Explicit 3591 3109 4325

For the 500 scenarios we will first look at how much the secondary delays are
reduced by applying control. This is shown in Figure 4. On average the reduction
in secondary delays is 34.17%. In three scenarios there was no reduction in delays.

For the distribution of the delays we only consider the events that have a non-
zero delay in the uncontrolled and/or the controlled case. For these events the
distributions are shown in Figure 5 for the uncontrolled and controlled case. By
comparing the two distributions, it is clear that in the controlled case several events
are no longer delayed. From the comparison of the distributions in Figure 5, it is
also clear that in the controlled case there are more short delays and less longer
delays. The longest delays are also a couple of minutes bigger for the controlled
case. But there are very few of those delays.

Next we will look at the computation time of the solution of the MILP prob-
lems with the use of the solvers GLPK 4.46, CPLEX 12.5, and Gurobi 5.60 for

30 Bart Kersbergen et al.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Reduction of secondary delays (%)

s
oir

a
n

e
c

s f
o r

e
b

m
u

N

Fig. 4 Histogram of the reduction of secondary delay for the 250 scenarios.

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (min)

Uncontrolled

Controlled

P
ro

b
a

b
ili

ty

Fig. 5 Cumulative distribution of the delays for the controlled and uncontrolled case.

the implicit and explicit models. Box plots of the computation times for the 500
scenarios for the implicit and explicit MILP problem are given in Figure 6. Statis-
tics on the computations are given in Table 2 for CPLEX, Gurobi, and GLPK.
The mex-interface of GLPK did not provide any solver statistics except for the
computation time. The statistics that are given are the number of simplex itera-
tions and the computation time. The integrality gap is also given, which is not a
solver statistic, but a statistic of the MILP problem. It is the objective value of
the optimal solution of the MILP problem divided by the objective value of the
optimal solution of the linear programming relaxation of the MILP problem. The
minimum value of the integrality gap is one, since the objective value of the opti-
mal solution of the MILP problem can never be lower than the objective value of
the optimal solution of the linear programming relaxation of the MILP problem.

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 31

In general it is assumed that if the integrality gap is closer to one the problem is
easier to solve.

10
−2

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

10
−2

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

GLPK Gurobi CPLEX GLPK Gurobi CPLEX

a) Implicit b) Explicit

Fig. 6 Computation time of the MILP solvers for the implicit and explicit MILP problem for
a one hour prediction horizon.

Table 2 Computation statistics for the given MILP solvers

Implicit Explicit
avg min max avg min max

Comp. time (s) (GLPK) 11.93 0.1014 603.92 0.0233 0.0096 0.2161
Comp. time (s) (Gurobi) 0.1477 0.0459 0.3494 0.0315 0.0196 0.1358
Comp. time (s) (CPLEX) 0.1266 0.0754 0.3400 0.0331 0.0112 0.0902
Simplex iterations (Gurobi) 159.72 17 869 49.06 0 411
Simplex iterations (CPLEX) 119.7 14 617 27.97 0 232
Integrality Gap 1.0813 1.0148 1.2158 1.0715 1.0135 1.1757

For the GLPK solver the difference in computation time of the explicit MILP
problem compared to the explicit MILP problem is the largest. The explicit MILP
problem is solved 513 times faster on average than the implicit model. For the
Gurobi solver the difference is much smaller. The explicit MILP problem is solved
only 4.69 times faster on average. On average the Gurobi solver needs to solve 3.26
times less simplex iterations. For the CPLEX solver we see a similar picture. The
computation time is on average about 3.83 times faster. The number of simplex
iterations that need to be solved is on average 4.28 times higher for the implicit
MILP problem. The distance of the integrality gap to the value one is 12.1% lower
for the explicit model compared to the implicit model (0.0715 compared to 0.0813).
When we compare the fastest implicit solver (CPLEX) with the fastest explicit

32 Bart Kersbergen et al.

solver (GLPK), then the computation time needed to solve the implicit MILP
problem is 5.44 times higher.

6.1.2 Prediction Horizon of Two Hours

For the implicit and explicit MILP problems based on the prediction horizon of
two hours the average, minimum, and maximum number of continuous variables,
binary variables, and constraints for are given in Table 3.

Table 3 Number of constraints, continuous and binary variables of the MILP problems

Average min max
Continuous 1542.9 1530 1559
Binary 2347.8 2307 2400
Constraints-Implicit 14037 13870 14233
Constraints-Explicit 50981 46044 57332

For the prediction horizon of two hours we will only look at the computation
time and solver statistics, since the reduction of delays and the distribution of
the delays are similar to those shown for the prediction horizon of one hour. The
computation times for the 500 scenarios for the implicit and explicit MILP problem
are given as box plots in Figure 7.

GLPK Gurobi CPLEX GLPK Gurobi CPLEX

a) Implicit b) Explicit

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

Fig. 7 Computation time of the MILP solvers for the implicit and explicit MILP problem for
a two hour prediction horizon.

Statistics on the computation time for CPLEX, Gurobi, and GLPK are given
in Table 4.

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 33

Table 4 Computation statistics for the given MILP solvers

Implicit Explicit
avg min max avg min max

Comp. time (s) (GLPK) 155.8 0.9599 903.7 0.6132 0.2286 5.792
Comp. time (s) (Gurobi) 0.5451 0.1870 1.4355 0.5943 0.4515 1.1903
Comp. time (s) (CPLEX) 0.5019 0.3007 5.0470 0.5247 0.3900 0.8200
Simplex iterations (Gurobi) 188.9 39 1175 525.2 0 1633
Simplex iterations (CPLEX) 242.2 55 923 71.98 0 262
Integrality Gap 1.119 1.022 1.267 1.100 1.021 1.228

In this case the average computation time of the explicit model for GLPK is
254 times lower, while the maximum is 156 times lower. For Gurobi the explicit
model is solved 1.09 times slower on average. The number of simplex iterations is
much higher for the explicit model. The increased computation time and number
of simplex iterations is due to the increased size of the problem. The number of
constraints is, on average, 3.63 times higher for the explicit model. For CPLEX
the number of simplex iterations is lower for the explicit model, but the average
computation time is still 1.04 times higher. This is again due to the increased size
of the constraint matrix and as a result the simplex iterations take more time to
be completed. The maximum computation time however is 6.15 times lower for
CPLEX when solving the explicit MILP problem. The distance of the integrality
gap to the value one is 16.0% lower for the explicit model compared to the implicit
model (0.100 compared to 0.119)

6.2 Minimization of the Sum of Arrival Delays

When considering the delay in the network it can make more sense to only consider
one delay per train at each station, so only the arrival or the departure delay at
the station. Since passengers are mostly interested in the time they arrive we will
consider minimizing the sum of arrival delays as the cost function.

If we look at the structure of the explicit switching max-plus-linear model as
described in (57) and repeated here for convenience:

x̆(k) = Ă∗,feas
0 ⊗

(

r̆(k)⊕

µmax⊕

µ=1

Ăµ ⊗ x(k − µ)

)

And we expand it by splitting the state vector up into the arrival and departure
delays:

x̆(k) = Ă∗,feas
0 ⊗ r̆(k)⊕

µmax⊕

µ=1

Ăexp,µ ⊗ x(k − µ)

[

d̆(k)
ă(k)

]

=

[

Ă∗,feas
0,a Ă∗,feas

0,b

Ă∗,feas
0,c Ă∗,feas

0,d

]

⊗

[
r̆d(k)
r̆a(k)

]

⊕

µmax⊕

µ=1

[
Ăexp,µ,a Ăexp,µ,b

Ăexp,µ,c Ăexp,µ,d

] [

d̆(k − µ)
ă(k − µ)

]

34 Bart Kersbergen et al.

where Ăexp,µ = Ă∗,feas
0 ⊗ Ăµ, and

Ă∗,feas
0 =

[

Ă∗,feas
0,a Ă∗,feas

0,b

Ă∗,feas
0,c Ă∗,feas

0,d

]

Ăexp,µ =

[
Ăexp,µ,a Ăexp,µ,b

Ăexp,µ,c Ăexp,µ,d

]

This can be split into two equations, one to calculate the arrivals and one to
calculate the departures:

d̆(k) =
[

Ă∗,feas
0,a Ă∗,feas

0,b

]

⊗

[
r̆d(k)
r̆a(k)

]

⊕

µmax⊕

µ=1

[

Ăexp,µ,a Ăexp,µ,b

]
[

d̆(k − µ)
ă(k − µ)

]

(67)

ă(k) =
[

Ă∗,feas
0,c Ă∗,feas

0,d

]

⊗

[
r̆d(k)
r̆a(k)

]

⊕

µmax⊕

µ=1

[

Ăexp,µ,c Ăexp,µ,d

]
[

d̆(k − µ)
ă(k − µ)

]

(68)

In these equations the arrival delays only depend the arrival and departure delays
of the previous cycles and not on the departure delays of the current cycle. If
we only want to determine the arrival delays, for example in the case we are only
interested in minimizing the sum of arrival delays, then we do not need to calculate
the departure delays.

In this case the cost function of the MILP problem becomes:

c z = [01 0.0001× 1]





d(k)
a(k)
ν(k)



 .

We do not need the departure delays and therefore we can simply calculate the
arrival delay. For the explicit MILP problem this means that the constraint matrix
A only needs to consists of the constraints from (68), and the constraints from the
reduction method and infeasible train orders. This effectively reduces the size of
the explicit MILP problem.

We have generated 250 new scenarios, using the same parameters as in the
previous case study, and have compared the computation time needed to solve
the implicit and explicit MILP problems again for one and two hour prediction
horizons. In this case study we will only look at the computation time and compu-
tational statistics of the solvers, since the distribution and reduction of the delays
are again similar to the distribution and reduction in the first case study.

6.2.1 One hour prediction horizon

The specifications of the MILP problems for a prediction horizon of one hour are
in Table 5.

The explicit MILP problem has about half the continuous variables since it
only needs to determine the arrival delays thanks to the explicit model structure,
the implicit MILP problem has to determine all delays since the arrival delays
depend on the arrival and departure delays of other trains through the implicit
constraints. Because of the reduction method and the lower number of continuous
variables the explicit MILP problem needs to consider the number of constraints

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 35

Table 5 Number of constraints, continuous and binary variables of the MILP problems.

Implicit Explicit
avg min max avg min max

Continuous variables 773.96 759 792 385.48 378 393
Binary variables 671.36 639 710 671.36 639 710
Constraints 5950 5794 6252 6162 2210 1954 3061

is on average 2.69 times lower than the number of constraints of the implicit MILP
problem. We therefore expect the explicit MILP problem to be solved faster than
the implicit MILP problem. The computation time needed to solve the implicit and
explicit MILP problem for the three solvers is shown in Figure 8. The computation
time, number of simplex iterations, and the integrality gap for the different MILP
problems for CPLEX, Gurobi, and GLPK are given in Table 6.

10
−2

10
−1

10
0

10
1

10
2

C
P

U
 t
im

e
 (

s
)

10
−2

10
−1

10
0

10
1

10
2

C
P

U
 t
im

e
 (

s
)

GLPK Gurobi CPLEX GLPK Gurobi CPLEX

a) Implicit b) Explicit

Fig. 8 Computation time of the MILP solvers for the implicit and explicit MILP problem for
the sum of arrival delays for a prediction horizon of one hour.

Table 6 Computation statistics for the given MILP solvers.

Implicit Explicit
avg min max avg min max

Comp. time (s) (GLPK) 3.4993 0.0648 59.03 0.0128 0.0413 0.0078
Comp. time (s) (Gurobi) 0.1438 0.0438 0.3109 0.0122 0.0173 0.0610
Comp. time (s) (CPLEX) 0.1284 0.0836 0.2090 0.0259 0.0095 0.0506
Simplex iterations (Gurobi) 168.18 17 524 20.84 0 162
Simplex iterations (CPLEX) 103.39 14 331 15.27 0 66
Integrality Gap 1.098 1.026 1.181 1.086 1.023 1.169

36 Bart Kersbergen et al.

From these results we can conclude that the difference in computation time
between the explicit and implicit MILP problem is the largest for GLPK. The
explicit MILP problem is solved 272.7 times faster on average. For Gurobi the
difference is much smaller, but still significant, with the implicit MILP problem
being solved 7.8 times slower on average. The number of simplex relaxations that
need to be solved is on average 8.1 times higher for the implicit model. With
CPLEX the implicit MILP problem is solved 5.0 times slower than the explicit
MILP problem on average. The difference in the number of simplex relaxations
that need to be solved is on average 6.8 times lower for the explicit model. When
we compare the fastest implicit MILP solver (CPLEX) with the fastest explicit
MILP solver (GLPK) the solution is found 10.0 times faster on average using the
explicit MILP problem with GLPK. The distance of the integrality gap to the
value one is 11.8% lower for the explicit model compared to the implicit model
(0.086 compared to 0.098)

6.2.2 Two hour prediction horizon

For the two hour prediction horizon the number of constraints, continuous and
binary variables of the MILP problems are given in Table 7.

Table 7 Number of constraints, continuous, and binary variables of the MILP problems.

Implicit Explicit
avg min max avg min max

Continuous variables 1542.8 1530 1559 769.14 762 776
Binary variables 2347.1 2307 2382 2347.1 2307 2382
Constraints 14035 13870 14212 28791 26208 32092

Due to the increased size of the prediction horizon the number of constraints,
continuous, and binary variables have increased. The number of constraints of the
explicit MILP problems is now 2.05 times higher than the number of constraints
in the implicit model. This will affect the computation time the solvers of the
explicit MILP problems. The computation time needed to solve the implicit and
explicit MILP problem for the three solvers is given in Figure 9. The computation
time, number of iterations and number of nodes explored for the different MILP
problems for CPLEX and Gurobi are given in Table 8.

Table 8 Computation statistics for the given MILP solvers

Implicit Explicit
avg min max avg min max

Comp. time (s) (GLPK) 65.58 0.3904 902.7 0.2043 0.1484 0.4157
Comp. time (s) (Gurobi) 0.5906 0.2041 1.2246 0.3552 0.2862 0.8465
Comp. time (s) (CPLEX) 0.5213 0.3011 5.1109 0.2656 0.1328 0.4099
Simplex iterations (Gurobi) 227.0 31 1069 275 0 608
Simplex iterations (CPLEX) 224.5 46 642 33.42 0 128
Integrality Gap 1.137 1.001 1.320 1.115 1.000 1.234

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 37

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

10
−1

10
0

10
1

10
2

10
3

C
P

U
 t
im

e
 (

s
)

GLPK Gurobi CPLEX GLPK Gurobi CPLEX

a) Implicit b) Explicit

Fig. 9 Computation time of the MILP solvers for the implicit and explicit MILP problem for
the sum of arrival delays for a prediction horizon of two hours.

The GLPK solver solves the explicit MILP problems the fastest. It solves the
explicit MILP problems 321 times faster on average than the implicit MILP prob-
lems. Gurobi solves the explicit MILP problems 1.66 times faster than the implicit
MILP problems on average. CPLEX solves the explicit MILP problems 1.96 times
faster than the implicit MILP problems on average. The fastest solver for the
implicit MILP problems is CPLEX with an average computation time of 0.5213
seconds. The fastest solver for the explicit MILP problems is GLPK with an av-
erage computation time of 0.2043 seconds. This is 2.55 times faster. This may be
explained by the lower integrality gap of the explicit model. The distance of the
integrality gap to the value one is 16.1% lower for the explicit model compared to
the implicit model (0.115 compared to 0.137).

7 Conclusions

In this paper it has been shown how to model railway traffic and dispatching ac-
tions such as reordering trains, changing tracks, breaking connections and breaking
or joining trains, using the max-plus algebra.

With the use of a theory from max-plus algebra, which is only valid for max-
plus models, the implicit switching max-plus linear model can be easily converted
into its explicit form. The explicit model can be effectively reduced in size, re-
sulting in a decrease in the computation time needed to solve the rescheduling
problem using this model compared to the implicit model. For a model consisting
of the largest part of the Dutch railway network the average computation time of
the rescheduling problem was reduced by a factor 5.44 for a one hour prediction
horizon when trying to minimize the sum of delays and by a factor 10 when try-
ing to minimize the sum of arrival delays. For a two hour prediction horizon the

38 Bart Kersbergen et al.

average computation time did not decrease for the sum of delays, but the max-
imum computation time was 6.15 times lower. For the sum of arrival delays the
computation was reduced by a factor 2.55. The proposed conversion to the explicit
model and subsequent reduction of the model clearly reduces the time needed to
solve the dispatching problem using that model.

The next step in our research will be to consider even larger dispatching prob-
lems, such as the whole Dutch railway network for a period of several hours.
Another step will be to solve the dispatching problem using distributed model
predictive control, in order to further reduce the computation time. By splitting
up the model into several smaller models we can take advantage of the explicit
model structure to further improve the computation time. Some solvers work faster
when the constraint matrix has a specific structure, such a block angular struc-
ture. We expect that if we reorder the constraint matrix some of the solvers will be
able to solve the problem faster. In our future work we will therefore investigate
the effects of reordering the constraint matrix of the MILP according to the track
layout or per train line. More research should also be done on the other subsys-
tems of the dispatching support system such as the monitoring and the route and
trajectory optimization.

Acknowledgements This research is supported by the Dutch Technology Foundation STW,
project 11025 “Model-Predictive Railway Traffic Management; A Framework for Closed-Loop
Control of Large-Scale Railway Systems”. STW is part of the Netherlands Organisation for
Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs.

This research is also funded by TÁMOP-4.2.1./B-11/2/KMR-2011-002 and TÁMOP-4.2.2./B-
10/1-2010-0014.

Appendix

A.1 Headway Constraints with Control Variables

If uil(k − µi,l) = 0 in (37)-(40), then uil(k − µi,l) = ε and the equations become:

di(k) ≥ dl(k − µi,l)⊗ τh,d,i,l(k)⊗ 0 = dl(k)⊗ τh,d,i,l(k)

ai(k) ≥ al(k − µi,l)⊗ τh,a,i,l(k)⊗ 0 = al(k)⊗ τh,a,i,l(k)

dl(k − µi,l) ≥ di(k)⊗ τh,d,l,i(k − µi,l)⊗ ε = ε

al(k − µi,l) ≥ ai(k)⊗ τh,d,l,i(k − µi,l)⊗ ε = ε.

The first two equations are identical to equations (5) and (6), and the last two
equations simply state that dl(k − µi,l) and al(k − µi,l) should be larger than ε,
which they always are. This results in the default order of the train runs: first l,
then i.

If ui,l(k − µi,l) = ε, then ui,l(k − µi,l) = 0 and the equations become:

di(k) ≥ dl(k − µi,l)⊗ τh,d,i,l(k)⊗ ε = ε

ai(k) ≥ al(k − µi,l)⊗ τh,a,i,l(k)⊗ ε = ε

dl(k − µi,l) ≥ di(k)⊗ τh,d,l,i(k − µi,l)⊗ 0 = di(k)⊗ τh,d,l,i(k − µi,l)

al(k − µi,l) ≥ ai(k)⊗ τh,d,l,i(k − µi,l)⊗ 0 = ai(k)⊗ τh,a,l,i(k − µi,l)

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 39

Now the first two equations simply state that di(k) and ai(k) should be larger
than ε, which they always are, and the last two equations are equal to equations
(35) and (36). This results in the changed order of train runs: first i, then l.

A.2 Infeasible Train Order

Consider the headway constraints of three trains running over the same track in
the same cycle. Let us assume that the headway times between all three trains are
3 minutes, then the headway constraints between the departures are given by

A0,4,d(u(k), k) =





ε 3⊗ u1(k) 3⊗ u3(k)

3⊗ u1(k) ε 3⊗ u2(k)
3⊗ u3(k) 3⊗ u2(k) ε





where u1(k) determines the order between train 1 and 2, u2 determines the order
between train 2 and 3, and u3(k) determines the order between train 1 and 3.
Now if we set u1(k) = 0, then train 1 traverses the track before train 2; if we set
u2(k) = 0, then train 2 traverses the track before train 3; and if we set u3(k) = ε,
then train 3 traverses the track before train 1. But this is impossible because if
train 1 traverses the track before train 2 and 2 traverses the track before 3 then
u1 = 0 together with u2 = 0 implies that train 1 traverses the track before train
3, which is exactly the opposite of what u3 = ε implies. Clearly the combination
u1 = 0, u2 = 0, and u3 = ε is an infeasible combination and can be removed from
the model without having an effect on the feasible train orders.

These infeasible train orders can be derived from the matrix powers of A0,4,d:

A⊗2

0,4,d(u(k), k) =





6⊗ u1(k)⊗ u1(k) 6⊗ u2(k)⊗ u3(k) 6⊗ u1(k)⊗ u2(k)

6⊗ u2(k)⊗ u3(k) 6⊗ u2(k)⊗ u2(k) 6⊗ u1(k)⊗ u3(k)

6⊗ u1(k)⊗ u2(k) 6⊗ u1(k)⊗ u3(k) 6⊗ u3(k)⊗ u3(k)





=





ε 6⊗ u2(k)⊗ u3(k) 6⊗ u1(k)⊗ u2(k)

6⊗ u2(k)⊗ u3(k) ε 6⊗ u1(k)⊗ u3(k)

6⊗ u1(k)⊗ u2(k) 6⊗ u1(k)⊗ u3(k) ε





The diagonal elements in A⊗2

0,4,d(u(k), k) are ε by definition since ui(k)⊗ui(k) = ε
and ε⊗ a = ε. The next matrix power of A0,4,d is:

A⊗3

0,4,d(u(k), k) =





9⊗ (u1(k)⊗ u2(k)⊗ u3(k)⊕ u1(k)⊗ u2(k)⊗ u3(k))

9⊗ u1(k)⊗ u2(k)⊗ u2(k)

9⊗ u2(k)⊗ u2(k)⊗ u3(k)

. . .

9⊗ u1(k)⊗ u3(k)⊗ u3(k)

9⊗ (u1(k)⊗ u2(k)⊗ u3(k)⊕ u1(k)⊗ u2(k)⊗ u3(k))

9⊗ u2(k)⊗ u3(k)⊗ u3(k)

. . .

9⊗ u1(k)⊗ u1(k)⊗ u3(k)

9⊗ u1(k)⊗ u1(k)⊗ u2(k)

9⊗ (u1(k)⊗ u2(k)⊗ u3(k)⊕ u1(k)⊗ u2(k)⊗ u3(k))





40 Bart Kersbergen et al.

All non-diagonal elements are ε by definition. The diagonal elements are positive
if u1(k)⊗ u2(k)⊗ u3(k) = 0 or u1(k)⊗ u2(k)⊗ u3(k) = 0. That means these com-
binations of control variables correspond to infeasible train orders. So by simply
determining the matrix powers, which has to be done to determine the explicit
model anyway, and looking at the diagonal elements the infeasible combinations
of control variables can be found. These combinations of control variables can be
removed by replacing u1(k)⊗ u2(k)⊗ u3(k) and u1(k)⊗ u2(k)⊗ u3(k) with ε.

To ensure the MILP does not use this combination of control variables con-
straints corresponding to the following max-plus-linear inequalities are added to
the explicit MILP problem formulation:

u1(k)⊗ u2(k)⊗ u3(k) ≤ ε

u1(k)⊗ u2(k)⊗ u3(k) ≤ ε

A.3 Switching Between Tracks

As an example consider two parallel tracks, track 1 and 2, with two trains on each
of the tracks. Trains 1 and 2 traverse track 1 and trains 3 and 4 traverse track 2.
All trains are running in the same cycle. The timetable period is 1 hour, and the

timetable vector is r(0) =
[
0 30 5 35 15 50 20 55

]⊤
. We can define the following

sets and vectors based on this example:

T1 =
[
1 2
]⊤

T2 =
[
3 4
]⊤

T̃1 =
[
1 2 3 4

]⊤

H1 = ∅ H2 = {1} H3 = ∅ H4 = {3}

Using these sets, vectors and (47) we can determine the entries of Ãµ,4,d,1. Since
all trains are in the same cycle only µ = 0 needs to be considered. The first
if-condition of (47) results in the following non-ε elements of Ã0,4,d,1:

[Ã0,4,d,1]1,2 = τh,d,1,2(k)⊗ u1,2(k)⊗
(
w1(k)⊗ w2(k)⊕ w1(k)⊗ w2(k)

)

[Ã0,4,d,1]3,4 = τh,d,3,4(k)⊗ u3,4(k)⊗
(
w3(k)⊗ w4(k)⊕ w3(k)⊗ w4(k)

)

and the second if-condition results in the following non-ε elements of Ã0,4,d,1:

[Ã0,4,d,1]2,1 = τh,d,2,1(k)⊗ u1,2(k)⊗
(
w1(k)⊗ w2(k)⊕ w1(k)⊗ w2(k)

)

[Ã0,4,d,1]4,3 = τh,d,4,3(k)⊗ u3,4(k)⊗
(
w3(k)⊗ w4(k)⊕ w3(k)⊗ w4(k)

)
.

The first two if-conditions result in the headway times between departure events
of the trains, that traverse the same track during nominal operation, with the
addition of the control variables for track selection. The third if-condition results
in the following non-ε elements Ã0,4,d,1:

[Ã0,4,d,1]1,3 = τh,d,1,3(k)⊗ u1,3(k)⊗
(
w1(k)⊗ w3(k)⊕ w1(k)⊗ w3(k)

)

[Ã0,4,d,1]1,4 = τh,d,1,4(k)⊗ u1,4(k)⊗
(
w1(k)⊗ w4(k)⊕ w1(k)⊗ w4(k)

)

[Ã0,4,d,1]2,4 = τh,d,2,4(k)⊗ u2,4(k)⊗
(
w2(k)⊗ w4(k)⊕ w2(k)⊗ w4(k)

)

[Ã0,4,d,1]3,2 = τh,d,3,2(k)⊗ u3,2(k)⊗
(
w3(k)⊗ w2(k)⊕ w3(k)⊗ w2(k)

)
,

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 41

and the fourth if-condition results in the final non-ε elements Ã0,4,d,1:

[Ã0,4,d,1]3,1 = τh,d,3,1(k)⊗ u1,3(k)⊗
(
w1(k)⊗ w3(k)⊕ w1(k)⊗ w3(k)

)

[Ã0,4,d,1]4,1 = τh,d,4,1(k)⊗ u1,4(k)⊗
(
w1(k)⊗ w4(k)⊕ w1(k)⊗ w4(k)

)

[Ã0,4,d,1]4,2 = τh,d,4,2(k)⊗ u2,4(k)⊗
(
w2(k)⊗ w4(k)⊕ w2(k)⊗ w4(k)

)

[Ã0,4,d,1]2,3 = τh,d,2,3(k)⊗ u3,2(k)⊗
(
w3(k)⊗ w2(k)⊕ w3(k)⊗ w2(k)

)
.

These headway times define the order of the trains if a train from track 1 switches
to track 2 or the other way around. For the headway times between arrival events
only τh,d,i,j(k) needs to be replaced with τh,a,i,j(k).

A.4 Matrix Multiplication Using Graph Theory

Consider the matrix A0

A0 =

[
Aa Ab

Ac Ad

]

,

and its graph G(A0) given in Figure 10. According to graph theory [A⊗m

]i,j cor-

1 2

A b

A c

A a A d

Fig. 10 Graph G(A0)

responds to the maximum weight of all paths of length m from node j to node i

in the precedence graph of A. If we apply this to matrix A0 for element [A⊗2

0]1,1,
then we should look at all paths of length 2 in the graph that start and end at
node 1. There are two paths of length 2 from node 1 to node 1. One consists of
taking the edge from node 1 to node 1 twice resulting in a weight of A⊗2

a . The
other path of length two consists of taking the edge from node 1 to node 2 and
the edge from node 2 to node, resulting in a path weight of Ab ⊗Ac. The value of

[A⊗2

0]1,1 is the maximum of the weight of both paths: [A⊗2

0]1,1 = A⊗2
a ⊕Ab ⊗Ac.

For the other elements of A⊗2
a this results in:

[A⊗2

0]1,2 = Aa ⊗Ab ⊕Ab ⊗Ad

[A⊗2

0]2,1 = Ac ⊗Aa ⊕Ad ⊗Ac

[A⊗2

0]2,2 = A⊗2
d ⊕Ac ⊗Ab

For the elements of A⊗3

0 we should look at all paths of length 3. There are four
path of length 3 starting at node 1 and ending at node 1

– Take the edge from node 1 to node 1 three times. This path has a weight of
A⊗3

a .

42 Bart Kersbergen et al.

– Take the edge from node 1 to node 1 a single time and then go to node 2 and
back. This path has a weight of Aa ⊗Ab ⊗Ac.

– First go to node 2 and back, then take the edge from 1 node to node 1. This
path has a weight of Ab ⊗Ac ⊗Aa.

– Take the edge from node 1 to node 2, then the edge from node 2 to node 2, and
finally the edge from node 2 to node 1. This path has a weight of Ab⊗Ad⊗Ac.

This can also be done for the other elements and for all elements of all other matrix
powers. By looking at the graph of A0 and the relation between paths in the graph
and elements of the matrix powers of the matrix, it is clear only a limited number
of paths is possible and that there is a clear structure in these paths. For paths
starting and ending in node 1, if the edge from node 1 to node 2 is taken, the edge
from node 2 to node 1 must also be in the path. If the edge from node 2 to node
2 is in the path then the edges from node 1 to node 2 and from node 2 to node 1
must also be in the path. The edge from node 1 to node 1 can only be in the path
before the edge from node 1 to node 2, after the edge from node 2 to node 1, and
before and after itself. And the number of edges is equal to the matrix power. Such
rules can be set up for all four of the elements and result in (59–62) in Section 4.

References

Baccelli F, Cohen G, Olsder G, Quadrat J (1992) Synchronization and Linearity: An Algebra
for Discrete Event Systems. Wiley, New York

Braker JG (1991) Max-algebra modelling and analysis of time-dependent transportation net-
works. In: Proceedings of the 1st European Control Conference, Grenoble, France, pp
1831–1836

Braker JG (1993) An extended algorithm for performance evaluation of timed event graphs.
In: Proceedings of the 2nd European Control Conference, Groningen, The Netherlands,
pp 524–529

Caimi G, Fuchsberger M, Laumanns M, Lüthi M (2012) A model predictive control approach
for discrete-time rescheduling in complex central railway station areas. Computers and
Operations Research 39(11):2578–2593

Corman F, D’Ariano A, Pacciarelli D, Pranzo M (2012) Bi-objective conflict detection and
resolution in railway traffic management. Transportation Research Part C: Emerging Tech-
nologies 20(1):79–94

Cuninghame-Green R (1979) Minimax Algebra, Lecture Notes in Economics and Mathematical
Systems, vol 166. Springer-Verlag, Berlin, Germany

D’Ariano A, Pacciarelli D, Pranzo M (2007) A branch and bound algorithm for scheduling
trains in a railway network. European Journal of Operational Research 183(2):643–657

De Schutter B, van den Boom T, Hegyi A (2002) A model predictive control approach for
recovery from delays in railway systems. Transportation Research Record 1793:15–20

GLPK (2014) Gnu linear programming kit. URL http://www.gnu.org/software/glpk/

Goverde RMP (2007) Railway timetable stability analysis using max-plus system theory. Trans-
portation Research Part B: Methodological 41(2):179 – 201

Goverde RMP (2010) A delay propagation algorithm for large-scale railway traffic networks.
Transportation Research Part C: Emerging Technologies 18(3):269 – 287

Gurobi (2014) Gurobi optimizer reference manual. URL http://www.gurobi.com

Hansen IA, Pachl J (2008) Railway Timetable & Traffic: Analysis - Modelling - Simulation.
Eurailpress, Hamburg, Germany

Heidergott B, Vries R (2001) Towards a (max,+) control theory for public transportation
networks. Discrete Event Dynamic Systems 11(4):371–398

Heidergott B, Olsder GJ, van der Woude J (2006) Max Plus at Work: Modeling and Analysis
of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications. Princeton
Series in Applied Mathematics, Princeton University Press, Princeton, United States of
America

Towards Railway Traffic Management Using Switching Max-Plus-Linear Systems 43

Kecman P, Corman F, D’Ariano A, Goverde RM (2013) Rescheduling models for railway traffic
management in large-scale networks. Public Transport 5(1-2):95–123

Kersbergen B, van den Boom TJJ, De Schutter B (2013a) On implicit versus explicit max-
plus modeling for the rescheduling of trains. In: 5th International Seminar on Railway
Operations Modelling and Analysis (RailCopenhagen), Copenhagen, Denmark

Kersbergen B, van den Boom TJJ, De Schutter B (2013b) Reducing the time needed to solve
the global rescheduling problem for railway networks. In: 16th International IEEE Con-
ference on Intelligent Transportation Systems (ITSC2013), The Hague, The Netherlands

Kroon LG, Peeters LWP (2003) A variable trip time model for cyclic railway timetabling.
Transportation Science 37(2):198–212

Minciardi R, Paolucci M, Pesenti R (1995) Generating optimal schedules for an underground
railway line. In: Proceedings of the 34th IEEE Conference on Decision and Control, New
Orleans, Louisiana, pp 4082–4085

TOMLAB (2014) Tomlab optimization environment. URL http://tomopt.com/tomlab/

Törnquist Krasemann J (2012) Design of an effective algorithm for fast response to the re-
scheduling of railway traffic during disturbances. Transportation Research Part C: Emerg-
ing Technologies 20(1):62–78

van den Boom TJJ, De Schutter B (2006) Modelling and control of discrete event systems
using switching max-plus-linear systems. Control Engineering Practice 14(10):1199–1211

van den Boom TJJ, Weiss N, Leune W, Goverde RMP, De Schutter B (2011) A permutation-
based algorithm to optimally reschedule trains in a railway traffic network. In: Proceedings
of the 18th IFAC World Congress, Milan, Italy, pp 9537–9542

van den Boom TJJ, Kersbergen B, De Schutter B (2012) Structured modeling, analysis, and
control of complex railway operations. In: Proceedings of the 51st IEEE Conference on
Decision and Control, Maui, Hawaii, pp 7366–7371

de Vries R, De Schutter B, De Moor B (1998) On max-algebraic models for transportation
networks. In: Proceedings of the 4th International Workshop on Discrete Event Systems
(WODES’98), Cagliari, Italy, pp 457–462

de Waal P, Overkamp A, van Schuppen JH (1997) Control of railway traffic on a single line.
In: Proceedings of the European Control Conference (ECC’97), Brussels, Belgium, paper
230

