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Abstract: Discrete-event systems occur often in the manufacturing field, but due to the
characteristics of these systems Model Predictive Control (MPC) is not frequently used for
them. This paper approaches MPC of an Automated Storage/Retrieval System (AS/RS) by
using Mixed Logical Dynamical (MLD) modelling. Propositional calculus is used to transform
the non-linear dynamic model equations and constraints of the AS/RS into the MLD form. We
consider a performance index that makes sure that customer demand is satisfied as soon and as
efficiently as possible. The MLD model and performance index are reformulated as an integer
linear programming problem. A case study is performed on a laboratory stacker crane, and the
simulations results illustrate the good performance of the control algorithm.

Keywords: Control applications, Manufacturing systems, Production processes, Warehouse
automation, Self-organising storage, Model-based control, Predictive control, Discrete-event
systems, Integer programming

1. INTRODUCTION

Over the years most industries have become more and
more demanding due to the complexity of production
processes, and tighter rules and regulations. These refined
processes demand accurate control. Model Predictive Con-
trol (MPC) (Camacho and Bordons, 1997) is a control
method widely used in the process industry nowadays
since it has proven itself capable of dealing with complex
systems (Qin and Badgwell, 2003). This is due to the
ability of MPC to enable reformulation of control problems
into optimisation problems, which gives the opportunity
to explicitly add constraints on the control inputs and the
controlled variables.
Nevertheless, model predictive controllers are mostly used
with continuously varying systems and are less frequently
used for discrete-event systems. This is why in the manu-
facturing field, which is often characterised by discrete-
event systems, MPC is barely used. This is quite sur-
prising considering that in the manufacturing field high
performance and efficiency are required (Flegel, 2014).
Some applications of MPC in the manufacturing field have
been investigated by Vargas-Villamil and Rivera (2000),
focusing on the application of MPC in semiconductor
manufacturing lines.
The scarce use of MPC for discrete-event systems can be
explained by the fact that these systems are characterised
by integer or Boolean decision variables (Xi et al., 2013).
For discrete-event systems large combinatorial optimisa-
tion problems often need to be solved on-line because of
these variables, which is seen as a computational bottle-
neck.

One specific type of systems used in the advanced man-
ufacturing field are automated storage/retrieval systems
(AS/RSs) (Lee, 1997). The introduction of AS/RSs im-
proved inventory management and control, increased stor-
age capacity and reliability, and reduced unnecessary
labour costs. One of the main components of an AS/RS
is the storage/retrieval crane, which is used to pick up
and drop off items. Research shows that there are many
ways to address issues with the control of AS/RSs, e.g.
Roodbergen and Vis (2009) mention several methods for
storage assignment, and Bessenouci et al. (2012) focus on
the estimation of the travel time of the crane.
The complexity of control of AS/RSs is related to the
number of depots and the storage policy of the system.
Many papers use a random storage policy, which allows
a pallet to be stored randomly on any available storage
location. Due to the flexibility of such a policy, the number
of possible solutions enlarges, which causes a higher com-
plexity to optimally solve the storage assignment problem.
Many researchers solve this problem with heuristics (Han
et al., 1987; Mahajan et al., 1998; Dooly and Lee, 2008;
Ávila et al., 2015). A solution to problems with a dedicated
storage policy is described by Gharehgozli et al. (2014),
where in contrary to a random storage policy, a dedicated
storage policy predefines a unique storage location for each
storage request. Gharehgozli et al. (2014) show that this
problem can be solved in polynomial time by using the
fact that the crane always returns to a depot.

In this paper a different approach is suggested to control
AS/RSs with a random storage policy. Since MPC has
many advantages it is desirable to use it for the control
of AS/RSs. This paper overcomes the complex application



Fig. 1. Schematic representation of the storage facility

of MPC to AS/RSs by describing the system as a Mixed
Logical Dynamical (MLD) system. The transformation
to an MLD system gives the advantage that the control
problem can be expressed as a mixed integer programming
problem. The combination MLD-MPC has been applied
before (Du et al., 2009; Beccuti et al., 2005; Groot et al.,
2013), but to our best knowledge, only few applications for
discrete-event manufacturing systems have been reported
(Cataldo and Scattolini, 2014; Cataldo et al., 2015), and
never for AS/RSs.

This paper is organised as follows. In Section 2, a descrip-
tion of the stacker crane is given. Next, Section 3 describes
the dynamical model and its constraints, followed by the
MLD-MPC problem in Section 4. Then, Section 5 discusses
the results of a case study with a laboratory stacker crane,
resulting in conclusions and recommendations in Section 6.

2. AUTOMATED STORAGE/RETRIEVAL SYSTEM

An AS/RS is used for automated storage of materials. In
general the system consists of two main components: the
storage facility and the crane.
The storage facility can store pallets at different locations,
which can be represented by a set of nodes N , see Figure 1
for an example. One of these nodes can be defined as the
source node, Ns ∈ N , where new pallets arrive for storage.
Another node can be defined as final storage node,Nf ∈ N ,
where the customers can pick up their order. When this
node is filled, temporary storage places can be used to
store the extra delivered pallets. The temporary storage
places are represented by all nodes that are neither the
source node nor the final storage node, resulting in the
subset NT ⊂ N with temporary storage nodes.
For this paper a single-level-deep stationary storage facil-
ity is assumed, which means that the crane can directly
reach the stored pallets. Solutions to multiple-levels-deep
storage problems are discussed by Yu and De Koster
(2012). This paper will focus on single unit-load aisle-
captive AS/RSs. This means that there is one crane per
storage facility that cannot leave its designated aisle, and
that cannot carry more than one pallet at a time (Rood-
bergen and Vis, 2009). The crane can move through three
Cartesian axes to pick up the pallets and to put them
down in storage where needed. The x- and y-axes are used
to move the crane to the right position, the z-axis is used

by a piston to load or unload a pallet. Each event step the
crane can only travel to an adjacent node. Therefore, for
every node Ni a set Si ⊂ N of adjacent nodes is defined,
e.g. S3 = {N2, N4, N6} according the set-up depicted in
Figure 1.
For an AS/RS different types of pallets can be defined as
p ∈ P . We define P as follows: P = {2, · · · , |P |+1}, where
|P | is the number of different pallet types handled by the
system, since the values of 0 and 1 will be used in the
model to define the absence of the crane in front of a node
and the absence of a pallet on the crane, respectively. It is
assumed that every pallet has the same final storage node
Nf ∈ N .

3. DYNAMIC MODEL

In this section the dynamic model of the AS/RS will
be described. First the state and decision variables are
defined, and then the dynamic equations and constraints
are derived.

State variables

For each node Ni ∈ N , with i ∈ {1, . . . , n} (i.e. n = |N |)
two state variables can be defined to describe the system.
The first variable is Pi(k), which represents the state and
the position of the crane (i.e. does the crane carry a pallet
or not, and is the crane in front of node Ni or not). The
second state variable, Gi(k) represents the state of the
nodes (i.e. does node Ni store a pallet or not). These
variables are defined in the following way:

Pi(k) =


p , if the crane is at Ni with a pallet type p

1 , if the crane is at Ni without a pallet

0 , otherwise

Gi(k) =

{
p , if Ni stores a pallet of type p

0 , otherwise

Decision variables

The following decision variables can be defined to rep-
resent, together with the state variables, the dynamical
model of the AS/RS:

uij(k) =

{
1 , the crane moves from Ni to Nj

0 , otherwise

vi(k) =

{
1 , a pallet is loaded from the crane onto Ni

0 , otherwise

wi(k) =

{
1 , a pallet is loaded from Ni onto the crane

0 , otherwise

Dynamic equations

Now, assuming one movement per event step, the following
explicit discrete state space model can be defined, which
represents the states of the system at event step k + 1:

Pi(k + 1) = Pi(k)−
∑
j∈Si

uij(k)Pi(k) +
∑
j∈Si

uji(k)Pj(k)

− vi(k)[Pi(k)− 1] + wi(k)[Gi(k)− 1]
(1)

Gi(k + 1) = Gi(k) + vi(k)Pi(k)− wi(k)Gi(k) (2)



Equation (1) shows that there are four different events that
can change the state Pi(k) of the system to a different state
in the next time step, Pi(k + 1):

• The crane moves from Ni to Nj ,
thus Pi(k) ≥ 1, Pj(k) = 0, and uij(k) = 1.

• The crane moves from Nj to Ni,
thus Pi(k) = 0, Pj(k) ≥ 1, and uji(k) = 1.

• The piston loads a pallet from the crane onto Ni,
thus Pi(k) ≥ 2, and vi(k) = 1.

• The piston loads a pallet from Ni onto the crane,
thus Pi(k) = 1, and wi(k) = 1.

The correctness of (1) can be illustrated as follows. If at
event step k the crane stays where it is and a pallet is
loaded from the crane onto node Ni, (1) will reduce to
Pi(k+1) = Pi(k)−vi(k)[Pi(k)−1] since all the other terms
of the dynamic equation are equal to zero. As the crane
is in front of Ni and holds a pallet of type p, Pi(k) = p.
Moving the pallet onto the node requires vi(k) = 1, which,
according to the dynamic equation, results in the next
state Pi(k+1) = 1. This means that at event step k+1 the
crane is still in front of node Ni but does not hold a pallet,
which is in line with the definition of Pi(k) given at the
start of Section 3. Equation (2) is influenced in a similar
way. If the crane moves and the piston does not, the state
of the nodes do not change: Gi(k + 1) = Gi(k). However,
if the piston moves the state of the node changes.

Deliveries and demands

For the source node, and final storage node dynamic equa-
tion (2) applies, but some extra rules need to be regarded.
The arrivals of new pallets at the source node are pre-
defined e.g. with a uniform distribution. Per event step
maximal one pallet arrives. When node Ns is empty, i.e.
G1(k) = 0, a new pallet arrives at Ns and G1(k + 1) = p,
depending on the type of pallet. WhenG1(k) ̸= 0, dynamic
equation (2) applies to determine G1(k + 1).
The customer demand, D, which is chosen uniformly dis-
tributed over P , influences the final storage node, Nf .
When the demand is satisfied the state of final storage
node Nf at even step k is Gf(k) = D(k), next, the pal-
let will be removed from the final storage node by the
customer, and thus Gf(k + 1) = 0. When the customer
demand is not satisfied Gf will be calculated according to
dynamic equation (2).

Constraints

The following constraints, describe the restrictions of the
system, and apply to every Ni ∈ N :

• Only one event per time step k may occur:∑
j∈Si

uij(k) +
∑
j∈Si

uji(k) + vi(k) + wi(k) ≤ 1 (3)

• If the crane is not at node Ni, the crane cannot move
from a node Ni to node Nj :

Pi(k) = 0 →
∑
j∈Si

uij(k) = 0 (4)

• A pallet cannot be loaded from the crane onto node
Ni if the crane is not positioned in front of Ni, carries
no pallet, or the node carries already a pallet:

(Pi(k) ≤ 1) ∨ (Gi(k) ≥ 1) → vi(k) = 0 (5)

where ∨ denotes the disjunction.
• A pallet cannot be loaded from node Ni onto the

crane, if the crane is not front of Ni, already carries
a pallet, or Ni carries no pallet:

(Pi(k) ̸= 1) ∨ (Gi(k) = 0) → wi(k) = 0 (6)

Note that (4), (5), and (6) result in non-linear constraints.
However, these constraints can be reformulated in a linear
way by the use of propositional calculus (Raman and
Grossmann, 1992; Cavalier et al., 1999). For this extra
auxiliary variables are created, as will be illustrated next.

Example. By adding Boolean auxiliary variables to the
model, δi(k), (4) is reformulated, resulting in the following
expressions:

Pi(k) = 0 → δi(k) = 1

δi(k) = 1 →
∑
j∈Si

uij(k) = 0

For the ease of reading from now on, in this example,∑
j∈Si

uij(k) = Ui(k).

The following two proposition rules are used to translate
the constraints (Bemporad and Morari, 1999).

Proposition 1 Assuming that x ∈ X, where X is a given
bounded set, m = min

x∈X
f(x), and ϵ a very small positive

number, leads to the following statement:
[f(x) ≤ 0] → [δ = 1] if and only if f(x) ≥ ϵ+ (m− ϵ)δ.
Let a literal Xi represent a statement which is either true
or false, e.g. x ≥ 1. One can associate to a literal Xi

a Boolean (auxiliary) variable δi ∈ {0, 1}. If Xi is true,
δi = 1, and δi = 0 otherwise.

Proposition 2 The following expressions and linear con-
straint can be seen to be equivalent:
X1 → X2 is equivalent to δ1 − δ2 ≤ 0.
Since min

k
Pi(k) = 0, Pi(k) = 0 → δi(k) = 1 is equivalent

to Pi(k) ≤ 0 → δi(k) = 1. Note that the latter formulation
is now in the right form to use with the propositional rule
of Proposition 1. This results in the first set of constraints
that need to be added to the model:

Pi(k) ≥ ϵ− ϵδi(k)

Note that m = 0.
Next, the rule of Proposition 2 is used to add δi(k) =
1 → Ui(k) = 0 to the model. This results in the following
constraint:

δi(k) + Ui(k) ≤ 1

It is left to the interested reader to derive the other
constraints with the use of propositional calculus.

4. MLD-MPC

The dynamic model of the AS/RSs, described in the pre-
vious section, can be translated into a Mixed Logical Dy-
namic (MLD) formulation using propositional calculus as
explained above. The MLD formulation has the following
form:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) (7)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) (8)

E1x(k) + E2u(k) + E3δ(k) + E4z(k) ≤ g5 (9)



where x(k) is the vector of state variables, u(k) the vector
of control actions, with elements uij(k), δ(k) is the vector
of Boolean auxiliary variables, and z(k) is a vector of
continuous auxiliary variables.

Objective function

The performance index J is defined at event step k as:

J(k) = α1Jnode(k)+α2Jcrane(k)+α3Jpenalty(k)+α4Jpallet(k)
(10)

where α1, α2, α3, and α4 are weight factors. The objective
function consists of the following parts:

• Jnode can be used to give certain nodes priority over
others to load or unload them faster, e.g. it is desired
to keep the source node empty for new pallets that
arrive.

• Jcrane is used to reduce the total time the crane is
carrying a pallet. This is to avoid the system storing
a pallet on the crane instead of loading it into the
node.

• Jpenalty penalises unnecessary crane movements.
• Jpallet tries to satisfy the customer demand as soon

as possible.

The performance index (10) must be minimised under the
constraints (3)-(6). Once the sequence of optimal control
actions has been computed over a prediction horizon Np,
according to the receding horizon approach, only the
values of the first event step are applied. The overall
procedure is repeated at the next event step.
Objective Jnode can be used to define preferences for
certain nodes. To do so, the following Boolean auxiliary
variable is used:

γi(k) =

{
1 , if a pallet is present in node Ni

0 , otherwise

By multiplying this variable by a weight factor, the system
will try to store pallets in nodes with a lower weight factor
rather than a higher weight factor, when minimising the
performance index. This formulation is represented by:

Jnode(k) =

Np∑
t=1

n∑
i=1

qiγi(k + t− 1),

where qi is the weight factor corresponding to node Ni.
As described before, Jcrane is used to unload a pallet
from a node instead of keeping it stored on the crane. By
defining η(k), a Boolean auxiliary variable, considering the
presence of a pallet on the crane:

η(k) =

{
1 , if the crane holds a pallet

0 , otherwise

this results in

Jcrane(k) =

Np∑
t=1

η(k + t− 1)

To save energy it is desired to minimise the total amount of
crane movements. This is represented by Jpenalty. Defining
a penalty of qc and qp for movements of the crane and
piston respectively, results in:

Jpenalty(k) =

Np∑
t=1

[
qc

∑
(i,j)∈N×N

uij(k + t− 1)+

qp

n∑
i=1

(
vi(k + t− 1) + wi(k + t− 1)

)]
The definition of the customer satisfaction in Jpallet will
be elaborated next. It is desired to satisfy the customer
demand as soon as possible. If the pallet type present
in final storage node Nf is equal to the requested pallet
type by the customer, D(k), we set the Boolean auxiliary
variable ς(k) = 1:

ς(k) =

{
1 , if D(k) = Gf(k)

0 , otherwise

This can be transformed into a linear form using propo-
sitional calculus. The following objective function for the
customer satisfaction is proposed:

Jpallet(k) = −
Np∑
t=1

ς(k + t− 1)

It is desired to satisfy the customer as soon as possible,

which means that we want to maximise
∑Np

t=1 ς(k + t −
1). Since the total objective function Jpallet(k) will be
minimised, the objective function is described by the
negative sum of ς(k).
The objective function and MLD model of the system have
now been transformed into a integer linear programming
problem, which can be optimised using adequate solvers.

5. CASE STUDY

A case study is performed on a laboratory stacker crane
to test the MLD-MPC application on an AS/RS. This
section first describes the system used and then discusses
the simulation results.

Laboratory stacker crane

The crane is located in the laboratory of the Electron-
ics, Automation, and Bioengineering department of the
Politecnico di Milano, Italy. It is a scale model of a real
stacker crane.
The storage facility can store pallets on three different lev-
els, where each level has four places available for storage.
This means that the whole storage facility can take up to
twelve pallets (i.e. n = 12), see Figure 1. Here N1 is the
source node where the pallets, that need to be stored, are
delivered. Node N4 is defined as the final storage node,
where customers can come to pick up their order. There
are three different types of pallets used, so P = {2, 3, 4}.
The temporary storage places are represented by all
nodes that are not the source node nor the final stor-
age node. This results in: Ns = N1 is the source
node, Nf = N4 is the final storage node, and NT =
{N2, N3, N5, N6, N7, N8, N9, N10, N11, N12} is the set with
temporary storage nodes.

Weight factors

Next we will describe what values for the weight factors
in the objective function are used. It is desired to remove



a pallet from the source node, N1 as soon as possible, and
therefore q1 is set higher than the other qi weight factors of
the temporary storage nodes. Next to that, it is preferable
to keep the final destination node, N4, empty as long as an
order cannot be satisfied. Therefore it is decided to give q1
and q4 a value of 1, and to use a value of 0 for qi, i ∈ NT,
since there is no preference in loading or unloading certain
temporary storage.
Since the crane movements consume significantly more
energy than the piston movements, the weight factor of
the crane movement should be set higher than the other,
and therefore qc = 2 and qp = 1 are chosen.
The weight factors α1, α2, α3, α4 are set according to
importance of the different objectives. Since customer
satisfaction had priority number one, α4 has a higher
value than the other factors. Second most important is
satisfaction of Jnode, and on a shared third place come
Jcrane and Jpenalty. The chosen values for the weight factors
are α1 = 1, α2 = 0.12, α3 = 0.1, and α4 = 10. The
prediction horizon Np has been set to 10.

Simulation results

To be able to better understand the simulation results, an
example result is given next.

Example. A basic example of the evolution of the system
over time is given in Figure 2. For the ease of understand-
ing, here only 4 nodes of the whole system are depicted,
including source node N1 and final storage node N4. At
event step k = 1 the customer at nodeN4 demands a pallet
of type 4, i.e. D(1) = 4. At this time the variable ς(1) = 0
since node N4 is empty, and thus the performance index
can be optimised by making ς(k) = 1 with k as small as
possible. At the same moment, i.e. k = 1, there is a pallet
of the demanded type available at the source node, N1, so
the optimised control input sequence allows managing the
pallet movement step by step over time to final storage
node N4, so that the customer can pick up his order. Note
that the crane first moves one node per time step, and
then the piston moves to place the pallet in the storage
facility (i.e. v4(4) = 1).
Different from the example of Figure 1, if a pallet type p
requested from the customer is already stored in a tempo-
rary storage node, the MLD-MPC algorithm will control
its movement towards the final node N4. Moreover, in case
a pallet p type is requested by the customer and two pallets
of the same type are stored in a temporary storage node
and in the source node N1 respectively, then the MLD-
MPC algorithm will pick up the pallet from node N1 since
the weight q1 = 1 and the weight related to temporary
storage node Ni, qi = 0. By picking up the pallet from
the source node the final performance index value will be
optimised.
Finally, if no pallet is available to satisfy the customer
demand, neither in the source node nor in any tempo-
rary storage node, then the MLD-MPC algorithm will not
implement any pallet movement even if the performance
index value increases over time due to the unsatisfied
customer demand at final node N4. In such a case, as soon
as a pallet of the requested type p is placed into the source
node, the control will manage its movement as previously
discussed.

Fig. 2. Example of state transitions

Fig. 3. Simulation results: movement of the pallets

The MLD model together with the objective function are
translated into an integer linear programming problem.
The control problem is implemented in the YALMIP
(Löfberg, 2004) modelling language, and simulations have
been performed.
Figure 3 shows the pallet movements conducted from
simulation. The horizontal axis shows the events steps,
and the vertical axis represents all the node numbers. The
graph shows for every event step in which node a pallet is
present. By connecting the positions of a pallet over time,
the lines in the graph are created. Note that when a pallet
is moved from one node to another, a linear line is depicted
in the graph, even though the crane does not necessarily
travel in a linear line. Each pallet type is represented by a
different colour.
The graphs shows that at event step k = 0 there are



pallets present in nodes N1, N2, N3, N5, N6, N8, and N9.
The first pallet movement takes place from node N3 to
N4, to satisfy the customer demand. It can also be noted
that after a pallet is removed from source node N1, this
node is soon refilled with a new pallet that arrives from
outside the system. Based on the type of pallet demanded
by the customer at node N4, the pallets present in the
system, and the objective function, the control algorithm
finds the optimal movements of the pallets through the
system.

6. CONCLUSIONS

To control an AS/RS this work has proposed to use MLD
modelling and propositional calculus to form an integer
programming problem, which can be combined with MPC.
To the best of our knowledge, the MLD-MPC method has
never been applied before on an AS/RS. The case study
shows that this control method works well for the labo-
ratory stacker crane. A topic for future work involves im-
proving the way of modelling by reducing the complexity of
the model and decreasing the required computation time.
The focus hereby should be on reduction of the number
of integer variables, since these determine the complexity
of an integer linear programming problem. The current
model can easily be extended, e.g. to a form with multiple
final storage nodes.
Next to these improvements and extensions it would be
interesting to compare the MLD-MPC method to other
control methods using MPC, such as time instant optimi-
sation MPC (van Ekeren et al., 2013), and heuristics.
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