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Scenario-Based Distributed Model Predictive Control for Freeway

Networks

Shuai Liu, Anna Sadowska, Hans Hellendoorn, and Bart De Schutter

Abstract— In this paper we develop a scenario-based
Distributed Model Predictive Control (DMPC) approach for
large-scale freeway networks. The uncertainties in a
large-scale freeway network are categorized into global
uncertainties for the overall network and local uncertainties
for subnetworks. A reduced scenario tree is proposed,
consisting of global scenarios and a reduced local scenario
tree. For handling uncertainties in the scenario-based
DMPC problem, a min-max setting is considered. A case
study is implemented for investigating the scenario-based
DMPC approach, and the results show that in the presence
of uncertainties it is effective in improving the control
performance with the queue length constraint being
satisfied.

I. INTRODUCTION

In Model Predictive Control (MPC), the uncertainties

that affect the accuracy of the system predictions for

determining the optimal control actions will affect the

control performance and the satisfaction of constraints.

For handling uncertainties in MPC, some approaches

have been developed according to the literature [1–5]. In

[1], a min-max scheme was considered for handling

uncertainties in nonlinear Robust MPC, i.e. the worst

case of the control objective function among all possible

uncertainties is optimized, with constraints defined for all

possible uncertainties. Based on a min-max scheme and a

linear model for urban networks, Tettamanti et al. [2]

proposed a robust MPC approach with constraints defined

for all possible uncertainties. For a nonlinear system,

Mayne et al. [3] proposed a tube-based MPC approach,

which forces the trajectories of the perturbed system

within a tube around a reference trajectory that is

obtained by a nominal control approach based on

tightened constraints. The scenario approach for robust

control design was proposed by Calafiore and Campi [4]

for systems with linear objective functions and convex

constraints. For the scenario approach in [4], only a

limited number of uncertainty scenarios are considered

for handling the robust control problem; thus the

computational load can be effectively reduced w.r.t. the

case that all possible realizations of uncertainties are

considered. Liu et al. [5] have developed a scenario-based

receding horizon parameterized control approach for

freeway networks with queue length constraints being

penalized in the control objective function.

Considering the computational load, large-scale traffic

networks can be controlled by Distributed Model
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Predictive Control (DMPC), with a large-scale network

being partitioned into subnetworks and controlled by

local agents. In DMPC, in general a local agent needs to

communicate with other local agent about coupling

variables; thus the uncertainties for other local agents

will also affect the control effectiveness. For handling

uncertainties in the DMPC problem, some robust DMPC

approaches are available in the literature [6–8]. Giselsson

et al. [6] proposed a robust DMPC approach for linear

systems by considering the global constraint set as the

Cartesian product of tightened local constraint sets, with

robustness being ensured in the presence of small

disturbances. For continuous-time decoupled nonlinear

subsystems, Li and Shi [7] developed a robust DMPC

approach, with coupling in a global control objective

function being distributed to local control objective

functions; the robustness w.r.t. external bounded

disturbances is ensured by a robustness constraint, which

makes local cost functions (i.e. Lyapunov functions)

decrease. Maestre et al. [8] developed a scenario-based

DMPC approach with uncertainty scenarios being

distributed to local agents; however, the scenario-based

DMPC approach in [8] is not for multiple subsystems,

but for a single system.

Based on the scenario approach for uncertainties, in

this paper, we propose a scenario-based DMPC approach

for a large-scale freeway network, which is divided into

multiple subnetworks. We distinguish uncertainties in a

large-scale networks into global uncertainties for the

overall network and local uncertainties for a single

subnetwork. These uncertainties are assumed to be

described by finite sets of scenarios. For a complete local

scenario tree, all the combinations of the local scenarios

are considered, leading to large computational load. We

propose to construct a reduced scenario tree consisting of

global scenarios and a reduced local scenario tree, in

which the dynamics of a subnetwork depend on the local

scenarios for that subnetwork, not on local scenarios for

other subnetworks. Moreover, we consider an

expected-value setting and a min-max setting for

handling uncertainties in the scenario-based control

problem. The new scenario-based DMPC approach is

developed based on the dual decomposition method and

the augmented Lagrangian relaxation method. The

Alternating Direction Method of Multipliers (ADMM) [9]

is chosen as the illustrative DMPC algorithm in this

paper; however other DMPC algorithms based on the

dual decomposition method can also be used.

The paper is organized as follows. In Section II, we

describe the general DMPC problem. In Section III, we

distinguish global uncertainties for the overall network



from local uncertainties for subnetworks. After that, we

develop a new scenario-based DMPC approach in Section

IV. In Section V, we investigated the effectiveness of the

scenario-based DMPC approach by a case study for a

freeway network. At last, in Section VI we conclude this

paper and give some recommendations for future work.

II. DISTRIBUTED MODEL PREDICTIVE CONTROL

In Model Predictive Control (MPC) [10, 11], for a

given control step the performance of the considered

network is predicted over the prediction period, and the

predicted performance is optimized, leading to a optimal

control input sequence over the control period. Then, the

first element of the optimal control input sequence is

applied to the considered network, and the prediction

period is shifted one step ahead for next control step.

In Distributed Model Predictive Control (DMPC), a

large-scale traffic network is controlled by local

controllers, with the traffic network being divided into

several subnetworks. In this paper, we consider additive

performance criteria, for which the sum of all the local

performance criteria equals to the performance criterion

for the overall network.

Similar to [12], we describe the centralized Model

Predictive Control (MPC) problem as follows:

min
ũ1(k),...,ũNsub

(k)

Nsub

∑
s=1

Js

(

x̃s(k), ỹs(k), ũs(k)
)

(1)

s.t. xs(k+ z+1) = fs

(

xs(k+ z),us(k+ z),Din
s (k+ z),

E in
s (k+ z)

)

for z = 0, . . . ,Np −1 (2)

ys(k+ z) = hs

(

xs(k+ z)
)

for z = 1, . . . ,Np (3)

xs(k) = xk
s (4)

us(k+ z) = us(k+Nc −1) for z = Nc, . . . ,Np −1 (5)

Fs(x̃s(k), ỹs(k), ũs(k))≤ 0 (6)

E in
j,s(k+ z)−Eout

s, j (k+ z) = 0 for j ∈ Snb
s , z = 0, . . . ,Np −1

(7)

for s = 1, . . . ,Nsub

where k is the control time step counter, Np is the

prediction horizon, Nc is the control horizon, s is the

index for subnetworks, Nsub is the number of

subnetworks, Js is the local control objective function of

subnetwork s,

Nsub

∑
s=1

Js

(

x̃s(k), ỹs(k), ũs(k)
)

is the overall

control objective function, xs is the state vector of

subnetwork s, ys is the output vector of subnetwork s, us

is the control input vector for subnetwork s, xk
s is the

measured state vector of subnetwork s at time step k, fs

is the dynamic function of subnetwork s, and x̃s(k), ỹs(k),
and ũs(k) are as follows:

x̃s(k) = [xs
T (k+1), . . . ,xs

T (k+Np)]
T (8)

ỹs(k) = [ys
T (k+1), . . . ,ys

T (k+Np)]
T (9)

ũs(k) = [us
T (k), . . . ,us

T (k+Nc −1)]T (10)

Moreover, hs is the output function of subnetwork s, Fs is

a general constraint function on the states, outputs, and

control inputs for subnetwork s, Snb
s = { js,1, . . . , js,Nnb

s
} is

the set of all the neighbors of subnetwork s, Nnb
s is the

number of the neighbors for subnetwork s, Din
s is the

external uncontrollable input vector for subnetwork s, E in
s

is the interconnecting input vector from all neighbors to

subnetwork s: E in
s (k) = [(E in

js,1,s
(k))T , . . . , (E in

j
s,Nnb

s
,s(k))

T ]T ,

E in
j,s is the interconnecting input vector for subnetwork s

from neighbor j, Eout
s, j is the interconnecting output vector

from neighbor j to subnetwork s, (7) describes the

couplings between subnetwork s and all neighbors,

Eout
s, j (k) = Ks, j[x j

T (k), y j
T (k),u j

T (k)]T , and Ks, j is the

interconnecting output selection matrix from j to s.

By defining an augmented Lagrangian function L, (7)

can be incorporated into the overall control objective

function [12, 13]:

L
(

x̃1(k), ỹ1(k), ũ1(k), . . . , x̃Nsub
(k), ỹNsub

(k), ũNsub
(k), Λ̃in(k)

)

=
Nsub

∑
s=1

(

Js

(

x̃s(k), ỹs(k), ũs(k)
)

+ ∑
j∈Snb

s

(

(λ̃ in
j,s(k))

T
(

Ẽ in
j,s(k)−

Ẽout
s, j (k)

)

+
c

2

∥

∥

∥
Ẽ in

j,s(k)− Ẽout
s, j (k)

∥

∥

∥

2

2

))

(11)

with c a positive constant, λ in
j,s the Lagrange multiplier

vector determined by agent s for (7), and Λin(k) =
[(λ in

j1,1,1
(k))T , . . . ,(λ in

j
Nsub,N

nb
Nsub

, Nsub
(k))T ]T . In addition,

Λ̃in(k), λ̃ in
j,s(k), Ẽ in

j,s(k), and Ẽout
s, j (k) are defined similarly

to x̃s(k) over control steps k+ z, z = 0, . . . ,Np −1.

On the basis of duality theory [12–14], the dual problem

for the original problem ((1)-(7)) is defined as follows:

max
Λ̃in(k)

min
ũ1(k),...,ũNsub

(k)
L
(

x̃1(k), ỹ1(k), ũ1(k), . . . ,

x̃Nsub
(k), ỹNsub

(k), ũNsub
(k), Λ̃in(k)

)

(12)

s.t. (2)− (6) for s = 1, . . . ,Nsub

For the original problem with convex local control

objective functions and inequality constraints and affine

equality constraints, the solutions can be obtained by

iteratively solving the dual problem [12, 13, 15]. To solve

the dual problem, the Lagrange multipliers are fixed

within one iteration, and are estimated based on the

solution for the previous iteration for a given iteration.

According to [9, 12, 16], some approaches are

available for decomposing the quadratic terms in (11),

such as auxiliary problem principle (e.g. [16]), block

coordinate descent (e.g. [12]), and dual ascent (e.g. [9]).

By means of these approaches, the overall control

problem can be decomposed into subproblems:

min
ũs(k)

Ẽ in
js,1 ,s

(k), . . . , Ẽ in
j
s,Nnb

s
,s(k)

Ẽout
js,1 ,s

(k), . . . , Ẽout
j
s,Nnb

s
,s(k)

(

Js

(

x̃s(k), ỹs(k), ũs(k)
)

+ ∑
j∈Snb

s

Jinter
s

(

λ̃ in
j,s(k),

λ̃ out
j,s (k), Ẽ

in
j,s(k), Ẽ

out
j,s (k)

)

)

(13)

s.t. (2)− (6) for s = 1, . . . ,Nsub

where λ out
j,s is the Lagrange multiplier vector

corresponding to the outputs from subnetwork s to

neighbor j, Eout
j,s is the interconnecting output vector from

subnetwork s to neighbor j, and Jinter
s is the function

dealing with the interconnecting variables determined by

agent s. In addition, λ̃ out
j,s (k) is defined similarly to x̃s(k)

over control steps k+ z, z = 0, . . . ,Np −1.



III. GLOBAL AND LOCAL UNCERTAINTIES FOR

LARGE-SCALE FREEWAY NETWORKS

Uncertainties in freeway networks can be introduced

via traffic measurements, uncontrollable inputs, and

model parameters, etc. These uncertainties can e.g. be

described by bounded sets including all the possible

values of the uncertainties, or by a library of the possible

uncertainty scenarios with the scenario possibilities being

estimated. In this paper, we assume that the uncertainties

are described by a library of the possible uncertainty

scenarios.

For a large-scale network, we divide the uncertainties

into global uncertainties for the overall network (e.g.

weather condition) and local uncertainties for

subnetworks (e.g. local demands at origins). The set of

all the global scenarios is denoted as Ωglob, and the set of

all the local scenarios for a subnetwork s is denoted as

Ωloc
s . Compared to the case with all the uncertainties

being considered in the same way, the size of the

scenario tree can be reduced by distinguishing global

scenarios from local scenarios. More specifically, there

will be Nglob
Nsub ∏s=1,...,Nsub

Nloc
s combinations of

uncertainty scenarios when global scenarios and local

scenarios are considered in the same way. Note that,

Nglob represents the number of all the possible global

scenarios, and Nloc
s is the number of all the possible local

scenarios for subnetwork s. However, when global

scenarios are considered to be the same for the overall

network, there will be Nglob ∏s=1,...,Nsub
Nloc

s combinations

of uncertainty scenarios.

IV. SCENARIO-BASED DMPC WITH GLOBAL AND

LOCAL UNCERTAINTIES

In this section, we propose a new scenario-based

DMPC approach on the basis of global uncertainties and

local uncertainties. First, we merge global uncertainties

into the control problem. Then, we include local

uncertainties into the control problem by proposing a

reduced scenario tree. Moreover, we consider a min-max

setting for handling uncertainties in scenario-based

DMPC.

In the reminder of this paper, xs,g, ys,g, Js,g, fs,g, Fs,g,

Jinter
s,g , Din

s,g, E in
s,g, E in

j,s,g, Eout
s, j,g, Eout

j,s,g, Λin
g , λ in

j,s,g(k), and

λ out
j,s,g describes quantities for the case with global

uncertainties, and xs,g,l , ys,g,l , Js,g,l , fs,g,l , Fs,g,l , Din
s,g,l , and

Eout
j,s,g,l describes quantities for the case with both global

uncertainties and local uncertainties. Note that all the

above variables have similar meanings to the

corresponding variables without subscripts g and l in

Section II. Additionally, x̃s,g(k), ỹs,g(k), x̃s,g,l(k), and

ỹs,g,l(k) are defined similarly to x̃s(k) over the control

steps k + z, z = 1, . . . ,Np; Ẽ in
j,s,g(k), Ẽout

s, j,g(k), Ẽout
j,s,g(k),

Λ̃in
g (k), λ̃ in

j,s,g(k), λ̃ out
j,s,g(k), and Ẽout

j,s,g,l(k) are defined in a

similar way to x̃s(k) over the control steps k + z,

z = 0, . . . ,Np −1.

A. Scenario-Based DMPC with Global Uncertainties

On the basis of a min-max setting, the centralized

scenario-based MPC problem with global uncertainties

can be described as follows:

min
ũ1(k),...,ũNsub

(k)
max

g=1...Nglob

Nsub

∑
s=1

Js,g

(

x̃s,g(k), ỹs,g(k), ũs(k)
)

(14)

s.t. xs,g(k+ z+1) = fs,g

(

xs,g(k+ z),us(k+ z),Din
s,g(k+ z),

E in
s,g(k+ z),ωg(k+ z)

)

for z = 0, . . . ,Np −1 (15)

ys,g(k+ z) = hs

(

xs,g(k+ z)
)

for z = 1, . . . ,Np (16)

xs,g(k) = xk
s (17)

ωg(k+ z) ∈ Ωglob(k+ z) for z = 0, . . . ,Np −1 (18)

Fs,g

(

x̃s,g(k), ỹs,g(k), ũs(k)
)

≤ 0 (19)

E in
j,s,g(k+ z)−Eout

s, j,g(k+ z) = 0 (20)

for j ∈ Snb
s , z = 0, . . . ,Np −1

Equation (5)

for s = 1, . . . ,Nsub, and g = 1, . . . ,Nglob

where g is the index for global uncertainty scenarios, ωg

describes scenario g for global uncertainties, and

max
g=1...Nglob

Nsub

∑
s=1

Js,g

(

x̃s,g(k), ỹs,g(k), ũs(k)
)

is the overall

control objective function for the case with global

uncertainties.

In order to deal with uncertainties in constraints on the

states, outputs, and control inputs, we merged (19) into

the local control objective functions by means of penalty

terms. Based on the DMPC approach in Section II, we

define local control problems of subnetworks for the case

with global uncertainties as follows:

min
ũs(k)

Ẽ in
js,1 ,s,g

(k), . . . , Ẽ in
j
s,Nnb

s
,s,g(k)

Ẽout
js,1 ,s,g

(k), . . . , Ẽout
j
s,Nnb

s
,s,g(k)

max
g=1...Nglob

(

Js,g

(

x̃s,g(k), ỹs,g(k), ũs(k)
)

+ γ max
(

Fs,g(x̃s,g(k), ỹs,g(k), ũs(k)),0
)

+ ∑
j∈Snb

s

Jinter
s,g

(

λ̃ in
j,s,g(k), λ̃

out
j,s,g(k),

Ẽ in
j,s,g(k), Ẽ

out
j,s,g(k)

)

)

(21)

s.t. (5),(15)− (18)

where γ is a positive weight that makes the constraint

penalty term for subnetwork s (i.e. the second term of

(21)) dominate when (19) is violated.

B. Scenario-Based DMPC with Global Uncertainties and

Local Uncertainties

Traffic variables of subnetwork s are affected by

interconnecting inputs from neighboring subnetworks,

which are affected by local scenarios of the neighboring

subnetworks. For a complete local scenario tree, all the

combinations of the local scenarios for all subnetworks

are considered, and the number of these combinations is

Ncom = ∏s=1,...,Nsub
Nloc

s . Aiming at reducing the

computational load w.r.t. that for the complete local

scenario tree, we propose a reduced local scenario tree

by assuming that the interconnecting inputs for a

subnetwork from its neighbors are independent of the

local scenarios of its neighbors, i.e. the interconnecting

inputs from a neighboring subnetwork are combined for

all the local scenarios of that neighboring subnetwork.

Note that for a given subnetwork, the interconnecting

inputs from a neighbor are equivalent to the



interconnecting outputs for that neighbor to the given

subnetwork.

The reduced scenario tree is defined as a scenario tree

consisting of the combinations of all global scenarios and

the reduced local scenario tree, and the complete

scenario tree is defined as a scenario tree consisting of

the combinations of all global scenarios and the complete

local scenario tree. For the reduced scenario tree, the

number of combinations of global and local scenarios is

NglobNloc
s , and this is smaller than that for the complete

scenario: NglobNcom. Accordingly, using the reduced

scenario tree can reduce the computational load w.r.t.

using the complete scenario tree.

Based on the min-max setting, we combine the

interconnecting outputs for a subnetwork as follows:

Ẽout
j,s,g(k) = max

l=ls,1,...,ls,Nloc
s

∥

∥

∥
Ẽout

j,s,g,l(k)− Ẽ in
s, j,g(k)

∥

∥

∥

2

2
(22)

where l is the index for local scenarios, and Ẽout
j,s,g is the

maximum distance between Ẽout
j,s,g,l(k) and Ẽ in

s, j,g(k) for all

local scenarios of subnetwork s.

On the basis of the reduced scenario tree, we formulate

the scenario-based DMPC problem for the case with global

and local uncertainties as follows:

min
ũs(k)

Ẽ in
js,1 ,s,g

(k), . . . , Ẽ in
j
s,Nnb

s
,s,g(k)

Ẽout
js,1 ,s,g

(k), . . . , Ẽout
j
s,Nnb

s
,s,g(k)

max
g=1,...,Nglob

(

max
l=ls,1,...,ls,Nloc

s

(

Js,g,l

(

x̃s,g,l(k),

ỹs,g,l(k), ũs(k)
)

+ γ max
(

Fs,g,l(x̃s,g,l(k), ỹs,g,l(k), ũs(k)),0
)

)

+ ∑
j∈Snb

s

Jinter
s,g

(

λ̃ in
j,s,g(k), λ̃

out
j,s,g(k), Ẽ

in
j,s,g(k), Ẽ

out
j,s,g(k)

)

)

(23)

s.t. xs,g,l(k+ z+1) = fs,g,l

(

xs,g,l(k+ z),us(k+ z),

Din
s,g,l(k+ z),E in

s,g(k+ z),ωg(k+ z),ωs,l(k+ z)
)

(24)

for z = 0, . . . ,Np −1

ys,g,l(k+ z) = hs

(

xs,g,l(k+ z)
)

for z = 1, . . . ,Np (25)

xs,g,l(k) = xk
s (26)

ωs,l(k+ z) ∈ Ωloc
s (k+ z) for z = 0, . . . ,Np −1 (27)

Equations (5) and (18)

for g = 1, . . . ,Nglob and l = 1, . . . ,Nloc
s

where ωs,l is local uncertainty scenario l for subnetwork

s.

V. CASE STUDY

In this section, we compare the scenario-based DMPC

approach with nominal DMPC by a case study. A

macroscopic traffic flow model METANET [17, 18] is

used as both the process model and the prediction model.

Since the METANET model is nonlinear and nonconvex,

the optimization problem for DMPC is nonlinear and

nonconvex. In the case study, the parameters for

METANET are taken from [18]. The performance

criterion considered in the case study is the Total Time

Spent (TTS), which represents the time that all vehicles

spent in the considered network. The Alternating

Direction Method of Multipliers (ADMM) algorithm

stated in Chapter 7.2 of [9] is chosen as the algorithm for

solving the DMPC problem.

A. Network

For the case study, we consider a freeway network as

shown in Fig. 1. More specifically, this freeway network

consists of 10 double-lane links, 1 origin (O0), 1

destination (D0), 2 single-lane on-ramps (O1 and O2),

and 2 single-lane off-ramps (O3 and O4). The links are

divided into 18 segments with equal length (Lm=1 km).

The destination and the off-ramps are unrestricted, while

the queue lengths at on-ramps are restricted within 100

veh for avoiding spillback. The turning fractions for

off-ramps are considered to be constant: 5% of the

mainstream flow. The network is decomposed into 3

subnetworks, which are controlled by variable speed

limits and ramp metering.

The weights γ is chosen as 100. The simulation time

step is T = 10 s, and the control time step is Tc = 180 s.

We choose the prediction horizon to be Np = 3,

corresponding the average time needed for a vehicle to

go through the network. We set the control horizon to be

smaller than Np for reducing the computational load:

Nc = 2. The simulation period is 2.5 h, and the nominal

demands are shown in Figure 2.

B. Uncertainty Scenarios

1) Uncertainty Scenarios for the Simulations: As an

illustration, global uncertainties are considered to be

uncertainties in weather condition: sunny (the probability

is 0.8) or rainy (the probability is 0.2). In particular, for

sunny days the model parameters τ and the free-flow

speed for METANET are considered to be nominal

values. For rainy days τ is 5% smaller than the nominal

value, and the free-flow speed is 5% larger than the

nominal value.

Uncertainties in demands for the origins and on-ramps

are considered as local uncertainties. For constructing

simulation scenarios, three base scenarios are considered,

i.e. base scenario 1: nominal demands with a probability

of 0.7, base scenario 2: 90% of nominal demands with a

probability of 0.1, and base scenario 3: 110% of nominal

demands with a probability of 0.2.

In total, 10 demand scenarios are considered for

simulations, with the sampling interval equal to the

control sampling interval. Each simulation scenario is

constructed by randomly setting the demand for each

origin to be one of the base scenarios with the

corresponding probabilities (0.7, 0.1, or 0.2) at every

sampling step.

2) Uncertainty scenarios for scenario-based DMPC:

For applying scenario-based DMPC, global scenarios are

considered to be sunny days and rainy days, and local

demand scenarios are developed based on the above base

scenarios. For a given control step, there are

(3 base scenarios)Np = 27 demand scenarios over the

prediction period for each origin. With the demand

scenarios with probabilities smaller that 0.02 being

ignored, there are 10 demand scenarios over the



Fig. 1: The freeway network used for the case study
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Fig. 2: Nominal demands for the mainstream origin and on-ramps

prediction period left for each origin, and the total

probability of the 10 demand scenarios is 0.868.

Therefore the number of scenarios for scenario-based

DMPC is obviously reduced, while the total probability

is large.

C. Control Approaches

Two control approaches are considered for comparison,

i.e. nominal DMPC based on nominal parameters and

nominal demands, and scenario-based DMPC based on

the reduced scenario tree and the min-max setting.

We implement nominal DMPC and scenario-based

DMPC in a serial scheme, see e.g. [12]. Within one

negotiation iteration, one after another each local

controller solves a local optimization problem, using the

latest information of neighbors. The METANET model is

coded in C, and the optimization problems are solved by

a multi-start sequential quadratic programming, i.e.

“fmincon” (“active-set” algorithm [19]) in MATLAB. For

a given control step, the number of negotiation iterations

is fixed as 10, and the number of starting points for

“fmincon” is fixed as 20.

D. Results and Analysis

For different random starting points of “fmincon”, the

simulation with control is repeated 10 times for a given

simulation scenario, and the average of the 10 repeated

simulations with control is seen as the results for the given

simulation scenario.

The averages and the standard deviations of the results

for all simulation scenarios are listed in Table I. The

symbol J
imp
TTS describes the relative improvement in TTS

over the entire simulation period (denoted as TTStotal)

w.r.t. the no-control case. The symbol Jpen describes the

maximum relative queue constraint violation over the

entire simulation period, which is defined as

max
o∈{O1,O2}

max

(

max
k=1,...,kend

(wo(k)/wmax
o −1) ,0

)

, with kend

the last simulation time step, wo the queue length for

on-ramp o, and wmax
o the maximum permitted queue

length for on-ramp o. The total performance over the

TABLE I: Simulation results of nominal DMPC and scenario-
based DMPC

Approaches Nominal
DMPC

Scenario-based
DMPC

Average
J

imp
TTS 4.3% 3.3%

Jpen 10.9% 0%

J
imp
tot -36.7% 3.3%

Standard
deviation

J
imp
TTS 0.8% 0.5%

Jpen 4.6% 0%

J
imp
tot 17.4% 0.5%

entire simulation period is defined as

Jtot =
TTStotal
TTSnom

+ γJpen, with TTSnom a predefined nominal

TTS value. The symbol J
imp
tot describes the relative

improvement of Jtot w.r.t. the no-control case.

Based on Table I, it is shown that the nominal DMPC

approach leads to a worse total performance w.r.t. the

no-control case. However, the scenario-based DMPC

approach improves the total performance by 3.3%

compared to the no-control case. In particular, the TTS is

improved by both the nominal DMPC approach and the

scenario-based DMPC approach. The queue length

constrains are violated for the nominal DMPC approach,

but are satisfied for the scenario-based DMPC approach.

For the nominal DMPC approach, the queue length

constraint violations result in a worse total performance

in comparison with the no-control case. Note, however,

that there is a sacrifice in the improvement for the TTS

for scenario-based DMPC w.r.t. nominal DMPC.

For scenario-based DMPC, the standard deviations of

J
imp
TTS, Jpen, and J

imp
tot are small, showing that scenario-based

DMPC can lead to a stable total performance. For nominal

DMPC, the standard deviations of J
imp
tot is large, showing

that the total performance for nominal DMPC is less stable

than that for scenario-based DMPC.

VI. CONCLUSIONS

A scenario-based DMPC approach has been developed

in this paper, and in this new approach global

uncertainties for the overall network are distinguished

from local uncertainties for subnetworks. For a complete

scenario tree, all the combinations of the local scenarios

for all subnetworks are considered. For reducing the

computational load w.r.t. the complete scenario tree, we

have proposed a reduced scenario tree, where the

dynamics of a subnetwork are considered to be

independent of local uncertainty scenarios for other

subnetworks. The scenario-based DMPC approach is

based on the reduced scenario tree and a min-max

setting. Particularly, a local controller optimizes the worst

case of the sum of the control performance index, the

constraint violation penalty, and the interconnecting term



of the corresponding subnetwork for all the considered

uncertainty scenarios. We have showed by a case study

for freeway networks that scenario-based DMPC can

improve the total performance compared to the no-control

case, but nominal DMPC cannot improve the total

performance due to queue length constraint violations.

For future research, multiple layouts and traffic

scenarios, and uncertainties with different skewness and

distributions can be considered for further investigating

the effectiveness of the scenario-based DMPC approach.

In addition, other schemes can be considered for

handling uncertainties in the scenario-based control

problem, such as an expected value scheme based on a

probabilistic setting.
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