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Multi-Agent Model Predictive Control Based on Resource Allocation Coordination

for a Class of Hybrid Systems with Limited Information Sharing

Renshi Luoa,∗, Romain Bourdaisb, Ton J.J. van den Booma, Bart De Schuttera

aDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
bCentraleSupelec-IETR UMR 6164, Cesson-Sevigne, France

Abstract

We develop a multi-agent model predictive control method for a class of hybrid systems governed by discrete inputs and
subject to global hard constraints. We assume that for each subsystem the local objective function is convex and the
local constraint function is strictly increasing with respect to the local control variable. The proposed multi-agent control
method is based on a distributed resource allocation coordination algorithm and it only requires limited information
sharing among the local agents of the subsystems. Thanks to primal decomposition of the global constraints, the
distributed algorithm can always guarantee global feasibility of the local control decisions, even in the case of premature
termination. Moreover, since the control variables are discrete, a mechanism is developed to branch the overall solution
space based on the outcome of the resource allocation coordination algorithm at each node of the search tree. Finally,
the proposed multi-agent control method is applied to the charging control problem of electric vehicles under constrained
grid conditions. This case study highlights the effectiveness of the proposed method.

Keywords: Multi-agent control, Model predictive control, Limited information sharing, Resource allocation, Discrete
inputs

1. Introduction

1.1. Multi-agent hybrid systems and their control

Multi-agent systems, like transportation systems, man-
ufacturing systems, power systems, financial systems, are
composed of multiple subsystems with interactions (Kan-
tamneni et al., 2015). Multi-agent systems research is fac-
ing a variety of challenges (Leitão, 2009), of which a cru-
cial one is to design mechanisms for coordinating agents
that have limited information sharing with each other in
order to protect confidential information of local subsys-
tems while at the same time still aiming for global perfor-
mance (Dutta et al., 2005). Typical global control goals
for multi-agent systems involve synchronizing motions of
agents, maximizing resource utility, and minimizing con-
trol costs. In order to achieve globally satisfactory per-
formance, given limited information of other subsystems,
the agents need to assist each other to make better de-
cisions about their actions (Cao et al., 2013). Thanks
to its straightforward design procedure, where hard sys-
tem constraints are incorporated directly as inequalities
in the formulation of the control problem, model predic-
tive control has shown to be a promising control strategy
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Email addresses: r.luo@tudelft.nl (Renshi Luo),

Romain.Bourdais@centralesupelec.fr (Romain Bourdais),
a.j.j.vandenboom@tudelft.nl (Ton J.J. van den Boom),
b.deschutter@tudelft.nl (Bart De Schutter)

for multi-agent systems (Camponogara et al., 2002; Dun-
bar and Murray, 2006; Negenborn et al., 2008; Scattolini,
2009).

However, the cooperation among agents is made much
more difficult when the individual agents have to regulate
hybrid subsystems (Christofides et al., 2013) that contain
both continuous components and discrete components, such
as switches and overrides. In fact, this will result in hav-
ing to solve mixed-integer programming problems in a dis-
tributed way, for which there has not yet been a universally
successful algorithm (Frick et al., 2015). Moreover, many
system-theoretic concepts and control strategies, such as
model predictive control and Artificial Intelligence based
control (Cai et al., 2014; Olaru et al., 2004), still require
further examination and research in this setting (Mayne
et al., 2000).

1.2. Multi-agent model predictive control for hybrid sys-

tems with global hard constraints

In this paper, we focus on a class of hybrid systems
that are governed by discrete inputs and that are sub-
ject to global hard constraints. In particular, each subsys-
tem is characterized by a convex objective function and a
strictly increasing constraint function with respect to the
local control variable. Besides, each subsystem only shares
limited information with the external environment. Actu-
ally, such hybrid systems are ubiquitous, and an impor-
tant example are a group of systems with on/off switches
sharing a given amount of resources. More specifically,
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concrete real-life examples include the charging of a fleet
of electric vehicles sharing a given power level provided by
the grid, and the operation of a number of appliances shar-
ing a given amount of energy in smart buildings. We aim
to develop a multi-agent model predictive control method
for such a class of hybrid systems based on a distributed
resource allocation coordination algorithm.

A resource allocation is a plan for using the available
resources to achieve goals for the future. In principle, such
planning may be done by centrally scheduling the actions
of the systems that require resources (Huang et al., 2013).
However, for reasons of scalability and fast computation,
it will not be tractable to schedule the actions of a large
number of systems in a centralized way. Actually, the
scheduling of the actions of the systems that require re-
sources can be done in a distributed way based on the
primal decomposition (Boyd and Vandenberghe, 2004) of
the overall problem. More specifically, in primal decompo-
sition, which is naturally applicable to resource allocation
scenarios, the allocation of resources can be represented
by auxiliary variables and these variables are optimized
using a master problem (Palomar and Chiang, 2006). A
resource allocation coordination algorithm that is based
on the primal decomposition of the overall problem, has
already been developed for continuous optimization prob-
lems with global capacity constraints by Cohen (1978).

In fact, a multi-agent control method based on the pri-
mal decomposition of the overall control problem will al-
ways guarantee the global feasibility of local control deci-
sions. However, since all the control variables are discrete
in the control setting considered in the paper, issues such
as oscillatory behavior of the discrete decision variables
could arise if the resource allocation coordination algo-
rithm is applied directly. As a result, the global optimality
of the algorithm cannot be guaranteed anymore.

In this paper, a smart mechanism based on the branch-
and-bound paradigm (Lawler and Wood, 1966) is devel-
oped to improve the solution found when using the re-
source allocation coordination algorithm only. More specif-
ically, this is achieved by building the search tree according
to the outcome of the resource allocation coordination al-
gorithm at each node and by returning the best solution
found when the overall method stops.

In the literature, a mechanism has been proposed by
Bourdais et al. (2012) to deal with the oscillatory behavior
of the discrete decision variables. That mechanism is also
based on the branch-and-bound paradigm but it uses a dis-
tributed algorithm based on the dual decomposition of the
overall problem. Since in the dual decomposition approach
constraints are relaxed and accounted for in the objective
by using penalties for violations, it cannot be guaranteed
that the constraints are always satisfied during iterations.
Moreover, a general framework of embedded optimization
based on the branch-and-bound paradigm has been pre-
sented by Frick et al. (2015) for model predictive control
of hybrid systems, which includes the class of hybrid sys-
tems considered in this paper. However, that paper focuses

on building a problem-specific branch-and-bound search
tree by pre-processing heuristics. So, to the authors’ best
knowledge, an online and problem-independent algorithm
for the control of the class of hybrid systems considered
here has not yet been proposed in the literature.

In our previous work (Luo et al., 2015a), we have in-
tegrated the resource allocation coordination method into
the branch-and-bound paradigm. However, in (Luo et al.,
2015a), we assumed the solver to have full information of
the overall problem, and we did not consider protecting the
confidential information of the local subproblems. In the
contrast, the main contribution of this paper consists in
reducing information sharing among local control agents,
which helps protecting the confidential information of the
local subproblems.

With respect to the literature, the multi-agent control
method proposed in this paper only requires limited infor-
mation sharing among local control agents. In addition, it
guarantees the global feasibility of local control decisions
and it is also able to efficiently search the overall solution
space online by making use of the outcome of the resource
allocation coordination algorithm at each node of the tree.

1.3. Outline

This paper is organized as follows. In Section 2, the
considered class of hybrid systems with subsystems gov-
erned by discrete inputs and subject to global hard con-
straints is formalized. In Section 3, the resource allocation
coordination algorithm based on a projected subgradient
method is presented. In Section 4, we present the overall
proposed multi-agent model predictive control method. In
Section 5, we consider charging control of a fleet of electric
vehicles as an application example of the proposed method
and assess the performance of the proposed method in a
simulation study. Section 6 summarizes the results of this
paper and presents some ideas for future work.

2. Model predictive control for a class of hybrid

systems

In this section, we focus on the control problem formu-
lation of hybrid systems governed by discrete inputs and
subject to global hard constraints. Assume that a large-
scale hybrid system consists of N subsystems such that:

• each subsystem is controlled by a control agent

• each control agent has a dynamical model of its sub-
system

• each control agent has to solve its local problem

• each agent does not have any information of the
models and the local control problems of other sub-
systems

• subsystems together have to satisfy global hard con-
straints

2



2.1. Model of subsystem dynamics

Let the dynamics of subsystem i be given by the follow-
ing deterministic discrete-time model with discrete inputs:

xi,k+1 = Aixi,k +Biui,k (1)

yi,k = Cixi,k +Diui,k (2)

where at time step k, for subsystem i, xi,k ∈ R
ni,x is the

local continuous state, yi,k ∈ R
ni,y the local continuous

output, ui,k ∈ Ui,k ⊂ R
ni,u the local discrete input with

ui,k,v ∈ Ui,k,v, Ui,k,v ⊂ R a finite set of scalar values,
and Ui,k = Ui,k,1×Ui,k,2, ..., Ui,k,ni,u

, and Ai ∈ R
ni,x×ni,x ,

Bi ∈ R
ni,x×ni,u , Ci ∈ R

ni,y×ni,x and Di ∈ R
ni,y×ni,u .

2.2. Model predictive control of a single subsystem

In model predictive control, at each control cycle, the
control agent determines its local control input by com-
puting the optimal control input sequence over a finite
prediction horizon of Np steps according to an objective
function describing the control goals, subject to a model
of the subsystem and operational constraints. After that,
the control agent applies the first control input in that se-
quence to its subsystem and waits until the next control
cycle starts. For the sake of simplicity of notation, in the
following, a bold variable is used to denote the compact
expression of variables over the prediction horizon, e.g.,
xi,k = [ xT

i,k xT
i,k+1 ... xT

i,k+Np−1 ]T.
Assume that the maximum amount of resources θi,k+l ∈

R available to subsystem i for l = 0, ..., Np − 1 is given.
Then control agent i makes a measurement of the local
state xi,k of its subsystem at time step k. After elimina-
tion of xi,k+l and yi,k+l for l = 1, 2, ..., Np, the following
optimization problem is then solved by control agent i:

min
ui,k

Np−1
∑

l=0

Ji(ui,k+l, xi,k) (3)

subject to Gi(ui,k+l) ≤ θi,k+l

ui,k+l ∈ Ui,k+l

for l = 0, ..., Np − 1

where Ji : Ui,k × R
ni,x → R is assumed to be a convex

function w.r.t. ui,k+l for a given xi,k that gives the cost
per prediction step and Gi : Ui,k → R is assumed to be
a monotonic strictly increasing function w.r.t. ui,k+l that
gives the amount of resources consumed by subsystem i
per prediction step.

2.3. Global constraints

Let rk+l denote the total amount of resources available
for all the subsystems at time step k + l. Then the global
constraints over the prediction horizon are given by

N
∑

i=1

θi,k+l = rk+l, for l = 0, ..., Np − 1 (4)

2.4. Combined overall control problem

We aim to achieve global optimal system performance.
Therefore, we define the combined overall control problem
by aggregating the local control problems and including
the global constraints (4), i.e.,

min
uk,θk

N
∑

i=1

Np−1
∑

l=0

Ji(ui,k+l, xi,k) (5)

subject to Gi(ui,k+l) ≤ θi,k+l

ui,k+l ∈ Ui,k+l

N
∑

i=1

θi,k+l = rk+l

for i = 1, ..., N and l = 0, ..., Np − 1

where uk = [uT
1,k u

T
2,k ... u

T
N,k]

T and θk = [θT
1,k θ

T
2,k ... -

θ
T
N,k]

T.
Since each local agent does not have information of the

local models and the local control problems of other agents,
none of the agents has full information of the overall prob-
lem. Therefore, it is not possible to solve the combined
overall control problem (5) in a centralized way. To deal
with this issue, in the following sections, we will develop a
multi-agent control method to solve the combined overall
control problem by introducing a resource allocation coor-
dinator that only requires very limited information from
the local agents.

3. Resource allocation coordination

Before presenting the overall multi-agent model predic-
tive control method, in the section, we first describe the
resource allocation coordination algorithm on which the
overall control method will be based. In the resource al-
location coordination algorithm, the maximum amount of
resources allocated to each subproblem is represented by
an auxiliary variable and then the coordination is achieved
by solving a master problem that optimizes all the auxil-
iary variables (Palomar and Chiang, 2006).

3.1. Primal decomposition

By dropping xi,k and the time step k and l, problem
(5) can be simplified as

min
u,θ

N
∑

i=1

Ji(ui) (6)

subject to Gi(ui) ≤ θi, i = 1, ..., N

ui ∈ Ui, i = 1, ..., N

N
∑

i=1

θi = r

Now, let us define

pi(θi) = min
ui∈Ui, Gi(ui)≤θi

Ji(ui) (7)

3



Then, problem (6) can be written (Boyd and Vanden-
berghe, 2004) as

min
θ

N
∑

i=1

pi(θi) (8)

subject to
N
∑

i=1

θi = r

Problem (8) is called the master problem.

3.2. Optimization algorithm

Actually, if all optimization variables ui are continuous,
the master problem (8) can be solved efficiently by using a
subgradient method, which is a simple iterative method for
solving convex optimization problems (Shor, 2012). More
specifically, given a convex problem with decision variable
u, classical subgradient methods search for the solution to
the problem by using the following iteration:

u(z+1) = Π
(

u(z) − ζ(z)h
(

u(z)
)

)

where z denotes the iteration step, h
(

u(z)
)

denotes a sub-

gradient of the objective function of the problem at u(z),
ζ(z) denotes the step size at step z, and Π(·) denotes the
projection onto the constrained solution space.

It can be derived that in problem (7), a subgradient
of pi(θi) at θi is given by −λi, with λi the corresponding
Lagrange multiplier to the constraint Gi(ui) ≤ θi (Bert-
sekas, 1999, Chapter 6.4.2). In particular, the projected
subgradient method is given in (Cohen, 1978) as

θ
(z+1)
i = θ

(z)
i + ξ(z)

(

λ
(z)
i −

1

N

N
∑

j=1

λ
(z)
j

)

(9)

where ξ(z) is a diminishing step size that satisfies

ξ(z) > 0,
+∞
∑

z=1

ξ(z) = +∞,
+∞
∑

z=1

(ξ(z))2 < +∞ (10)

Note that in (9), −λ
(z)
i is used as the subgradient of pi(·)

at θ
(z)
i and a projection is used to guarantee that the con-

straint
∑N

i=1 θ
(z)
i = r is satisfied for all iterations.

In fact, the corresponding λi to the constraint Gi(ui) ≤
θi in problem (7) can in general be computed by

λi =







−
dT
i,J·di,G

dT
i,G

·di,G
, if −

dT
i,J·di,G

dT
i,G

·di,G
> 0

0, otherwise
(11)

where di,J and di,G are respectively the derivatives of Ji(·)
and Gi(·) w.r.t. u

∗
i with

u∗
i = argmin

ui∈Ui, Gi(ui)≤θi

Ji(ui)

The proof of (11) is given in Appendix A. Finally, the ex-
plicit modified resource allocation coordination algorithm
for problems with discrete optimization variables is pre-
sented in Algorithm 1.

Inputs: r, N , ξ and Ji, Gi, Ui for all i

i) Initialize θ
(1)
i for all i and set z = 1.

ii) At iteration z, each agent i solves its local
problem

u
∗,(z)
i = argmin

ui∈Ui, Gi(ui)≤θ
(z)
i

Ji(ui)

and obtains λ
(z)
i using (11). Note that Ui is a set

of discrete values.
iii) Update θ

(z+1)
i for all i using (9).

iv) Stop if
∣

∣θ
(z+1)
i − θ

(z)
i

∣

∣ ≤ ǫ for all i or if the
maximum number of iterations is reached;
otherwise set z ← z + 1 and go back to step ii).

Outputs: u
∗,(z)
i and θ

(z)
i

Algorithm 1: Modified resource allocation coordina-
tion algorithm for problems with discrete optimization
variables

3.3. Problems arising when applied to optimization prob-

lems with discrete decision variables

Actually, if the problem (6) is strictly convex, the global
optimum is always attained by using the resource alloca-
tion coordination algorithm presented above. However,
even if Ji(·) and Gi(·) are strictly convex functions, the
overall problem is still not convex if ui is a discrete vari-
able. In fact, in that case, if the resource allocation coor-
dination algorithm is directly applied to the problem, the
discrete decision variables may exhibit oscillatory behav-
ior (i.e. the computed optimal values oscillate from one
iteration to the next), and hence the global optimum may
not be attained. To be more specific, a simple numerical
example is given next to show the problem of directly ap-
plying the resource allocation coordination algorithm to
an optimization problem with discrete decision variables.

Consider the following resource allocation problem:

min
u1,u2

(u1 − 3)2 + 2(u2 − 2)2

subject to u1 ∈ {−1.5, 1.2, 2.4, 3.4, 4.5}

u2 ∈ {−1, 0.6, 2.5, 3.8, 4.2}

u1 + u2 ≤ 4.5

The global optimum to this problem is u∗
1 = 1.2 and

u∗
2 = 2.5. Figure 1 shows the behavior of the values of the

discrete decision variables when the resource allocation co-
ordination algorithm is directly applied to this simple ex-
ample. It is clearly shown that the value of u1 converges
to 1.2 during the iterations while that of u2 oscillates be-
tween 0.6 and 2.5. Therefore, the global optimum is only
part of the oscillation.

4
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Figure 1: Example of oscillatory behavior in the case of discrete
optimization variables
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Figure 2: Communication structure of the multi-agent model predic-
tive control method

4. Multi-agent model predictive control method

based on resource allocation coordination

Although the values of the control decision variables
may oscillate when the resource allocation coordination
algorithm is applied to the combined overall control prob-
lem (5), the oscillations of the values of the control decision
variables can be used as a guideline for branching the over-
all solution space. In this section, we develop a multi-agent
control method for the combined overall control problem
(5) by integrating the resource allocation coordination al-
gorithm into a search tree building mechanism for the over-
all solution space. The communication structure used in
the method is shown in Figure 2.

4.1. Resource allocation coordinator

The resource allocation coordinator is in charge of al-
locating the resource to subsystems. More specifically, re-

ceiving λ
(z)
i,k for all i from local agents at iteration z, the

resource allocation coordinator updates the amount of re-
source allocated to a subsystem i by

θ
(z+1)
i,k = θ

(z)
i,k + ξ(z)

(

λ
(z)
i,k −

1

N

N
∑

j=1

λ
(z)
j,k

)

, for i = 1, ..., N

(12)

with diminishing step size ξ(z) satisfying (10).

4.2. Local agent

Each local agent focuses on solving its local control
problem and communicating the Lagrange multiplier asso-
ciated with the local constraint to the coordinator. More
specifically, given the allocated maximal amount θ

(z)
i,k of

resources from the resource allocation coordinator, each
local agent i solves its local control problem (3) to obtain

u
∗,(z)
i,k and then calculates

λ
(z)
i,k+l =







−
dT
i,k+l,J·di,k+l,G

dT
i,k+l,G

·di,k+l,G
, if −

dT
i,k+l,J·di,k+l,G

dT
i,k+l,G

·di,k+l,G
> 0

0, otherwise

(13)

where di,k+l,J and di,k+l,G for l = 0, ..., Np − 1 are re-
spectively the derivatives of Ji(·) and Gi(·) w.r.t ui,k+l at

u
∗,(z)
i,k+l.

4.3. Multi-agent control procedure

The overall multi-agent control framework can be con-
sidered as a two-level control hierarchy, consisting of:

• the lower-level resource allocation coordination sub-
procedure

• the higher-level subprocedure to branch the solution
space and to improve the current best solution to the
overall control problem

More specifically, the overall procedure of the multi-agent
control method is shown in Figure 3.

4.3.1. Lower-level subprocedure

The resource allocation coordination subprocedure (in-
volving the coordinator and the local agents), the schematic
representation of which is shown in Figure 2, can be ex-
plicitly described as follows:

i) The coordinator proposes an initial plan for allocat-
ing resources to local agents and communicates the

corresponding proposed amount θ
(1)
i,k of resources to

each local agent i.

ii) At iteration z, each local agent i receives a proposed

value θ
(z)
i,k from the coordinator and evaluates it by

solving its local control problem (3). After that,

agent i determines λ
(z)
i,k using (13) and then commu-

nicates it to the coordinator, indicating how much
the agent would benefit from extra resources.

iii) At iteration z, based on the proposed value θ
(z)
i,k com-

municated to each local agent i and λ
(z)
i,k received

from each local agent i, the coordinator proposes

an updated plan of resource allocation θ
(z+1)
i,k for all

agents using (12) and communicates it to the local
agents.

5



iv) During the iterations, the evolution of local control
decisions is checked (by the local agents). Depending
on whether local control decisions oscillate, two cases
can occur:

– In the case where oscillation of local control
decisions is detected (see Remark 1), stop the
lower-level subprocedure and return:

∗ the best proposal of resource allocation (with
the lowest sum of the cost functions of local
agents) so far

∗ the index of the local control decision vari-
able for which oscillation is detected

∗ the discrete values between which the given
control decision variable oscillates

– In the case where no oscillation of local control
decisions is detected:

∗ if the allowed maximum number of itera-
tions is reached or

∣

∣θ
(z+1)
i,k+l −θ

(z)
i,k+l

∣

∣ ≤ ǫ holds
for all i and for all l, stop the subprocedure
and return the best proposal of resource al-
location (with the lowest sum of the cost
functions of local agents) so far

∗ otherwise, set z ← z + 1 and go to step ii)

Remark 1.

The oscillation of a discrete decision variable ui,k+l,v

is characterized by the following condition, the proof
of which can be found in the technical report (Luo
et al., 2015b):

u
∗,(z+1)
i,k+l,v 6= u

∗,(z)
i,k+l,v, sgn

(

∆θ
(z+1)
i,k+l

)

6= sgn
(

∆θ
(z)
i,k+l

)

(14)

where ∆θ
(z+1)
i,k+l = θ

(z+1)
i,k+l −θ

(z)
i,k+l and ∆θ

(z)
i,k+l = θ

(z)
i,k+l−

θ
(z−1)
i,k+l . Therefore, we diagnose the oscillation of dis-
crete decision variables by detecting the condition
(14) for each i, l and v.

4.3.2. Higher-level subprocedure

The procedure to improve the current best solution,
the schematic diagram of which is shown in Figure 3, is
given by:

a) call the lower-level subprocedure

b) update the best solution to the overall problem found
so far by comparing the corresponding values of ob-
jective function to the current best solution and the
newly found solution by the lower-level subprocedure

c) depending on whether local control decisions oscil-
late

– if ui,k+l,v is found to oscillate between α ∈
Ui,k+l,v and β ∈ Ui,k+l,v, separate Ui,k+l,v into
two sets:

overall solution space

subspace

update current 

best solution

oscillation flag

...

 resource allocation

coordination 

(lower-level sub-procedure)

subspace

update current 

best solution

oscillation flag

 resource allocation

coordination 

(lower-level sub-procedure)

Figure 3: Schematic diagram of the higher-level subprocedure

Table 1: Nomenclature of the mathematical symbols

Symbol Definition
N number of subsystems
Np prediction horizon
xi,k local continuous state of subsystem i
ui,k local discrete input of subsystem i
yi,k local continuous output of subsystem i
θi,k amount of resources assigned to subsystem i
rk amount of resources available to the overall

system
Ui finite set of admissible control actions of

subsystem i
Ji local objective function of subsystem i
Gi local constraint function of subsystem i
λi Lagrange multiplier corresponding to local

constraint
z iteration step counter in the resource

allocation coordination algorithm

ξ(z) diminishing step size in the iteration of the
resource allocation coordination algorithm

∗ set U
(1)
i,k+l,v ← Ui,k+l,v\{γ | γ ∈ Ui,k+l,v, γ ≤

α}

∗ set U
(2)
i,k+l,v ← Ui,k+l,v\{γ | γ ∈ Ui,k+l,v, γ >

α}

and solve the two branches in parallel

– if no oscillation of local discrete decision vari-
ables is detected, stop and return the best so-
lution found so far

d) when the computation time or number of informa-
tion exchanges between the coordinator and the local
agents reaches a predefined upper bound or Ui,k+l,v

for all i, l, v in all calls of the lower-level sub-procedure
has only one single element, stop the procedure.

Note that all important symbols used in the multi-
agent model predictive control method have been listed
in Table 1.
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5. Charging control of electric vehicles

As an application example of the developed multi-agent
model predictive control method, in this section we address
the charging control of a fleet of electric vehicles under
constrained grid conditions.

Due to their higher energy efficiency and lower emis-
sion of pollutants, electric vehicles are used more and more.
Charging this increasing number of electric vehicles will in-
evitably cause additional load to the electrical power dis-
tribution grid (Fernández et al., 2011; Hu et al., 2015).
Therefore, a smart charging control strategy that balances
the charging demands of electric vehicles is highly pre-
ferred by the distribution grid operators. So far, intel-
ligent charging control of electric vehicles have been the
topic of many researches (Mal et al., 2013; Nguyen et al.,
2015; Saber and Venayagamoorthy, 2009) and have been
addressed by using distributed integer linear optimization
(Vujanic et al., 2016), sequential quadratic programming
(Clement-Nyns et al., 2010; Hajimiragha et al., 2010), dy-
namic programming (Han et al., 2010), and heuristic meth-
ods (Saber and Venayagamoorthy, 2011). In this section,
we assume that each electric vehicle is equipped with a
charging controller and each controller only shares limited
information with the external environment, and apply the
developed multi-agent model predictive control method to
the charging of a fleet of electric vehicles under constrained
grid conditions.

We focus on the optimal charging control of a fleet of
electric vehicles at a charging station within a given time
period, e.g. a day. We assume that there is a charging
point for each vehicle in the station. Given the profile of
the electricity price, the arrival and the departure times of
all electric vehicles at the charging station, and the maxi-
mum power limit provided by the grid, we aim to charge all
electric vehicles up to the required levels while minimizing
the total cost of electricity use.

5.1. Definitions

We define k as the discrete-time step counter, T as the
length of the simulation time interval, with a typical value
of 15 minutes, and kd as the last step of the overall charg-
ing period. Then define Nv as the total number of electric
vehicles under consideration. Define Ti,arrival, Ti,departure

as the arrival time and the departure time of electric ve-
hicle i at the charging station, respectively. Without loss
of generality, we assume Ti,arrival and Ti,departure are inte-
ger multiples1 of T . Define si,k as the state of charge of
electric vehicle i at time kT and sreqi as the required state
of charge of electric vehicle i before departing from the
charging station. . Define Cp

i as the capacity of the bat-
tery of electric vehicle i and di,tol as the allowed tolerance

1If an electric vehicle arrives earlier or departs later than a sam-
pling time instant, it will not be charging in the partial time slot
within which it arrives or departs.

si,k

pi,k

si,critical

pi,k = F
(

si,k
)

Figure 4: Electric vehicle charging using the CPCV option. With
this option, the vehicle is first charging with constant power until the
critical state of charge scritical is reached. After that, it is charged
with constant voltage until its battery is fully charged.

on the difference between the state of charge of electric ve-
hicle i at its departure time and sreqi . Besides, we assume
the charging power of each electric vehicle within a simu-
lation interval is constant and define pi,k as the amount of
power consumed by electric vehicle i in the time interval
[

kT, (k+1)T
)

. Finally, we define ui,k as the binary control
variable indicating whether electric vehicle i is charging in
the time interval

[

kT, (k + 1)T
)

.

5.2. Model of the charging of an individual electric vehicle

First, the amount of power consumed by an electric
vehicle i within the time interval

[

kT, (k + 1)T
)

is given
by

pi,k =

{

F
(

si,k
)

, if ui,k = 1

0, if ui,k = 0
(15)

where the function F (·) describes how the amount of power
consumed by electric vehicle i depends on its state of
charge.

Next, the state of charge of electric vehicle i is updated
by

pi,k = F
(

si,k
)

· ui,k (16)

si,k+1 = si,k +
pi,k · T

Cp
i

(17)

There are in general two charging options available for
electric vehicle chargers (Marra et al., 2012), namely Con-
stant Current-Constant Voltage (CCCV) and Constant
Power-Constant Voltage (CPCV). In this paper, we as-
sume all electric vehicles are charged using the CPCV op-
tion. More specifically, the profile of the function F (·) for
the CPCV option is shown in Figure 4. Moreover, in or-
der to make the model of the charging of an electric vehicle
clearer, Figure 5 shows the dynamics of the state of charge
of an electric vehicle under charging control.

5.3. Global constraints

At any time, the total amount of power consumed by
all electric vehicles must not exceed the maximum amount

7



time

not charging

charging

0 T 2T

si,k

pi,k

Figure 5: Charging profile of an electric vehicle under charging con-
trol

of power that can be provided by the grid. Therefore,
the constraints imposed by the capacity of the grid on all
electric vehicles are given by

Nv
∑

i=1

pi,k ≤ Pk,max, k = 1, ..., kd (18)

where Pk,max denotes the maximum power limit provided
by the grid, which can be steady or time-variant.

5.4. Charging cost

If the profile of the price of electricity is given, the total
cost of charging all electric vehicles is given by:

J =

Nv
∑

i=1

ki,departure−1
∑

k=ki,arrival

pi,k · T · ck (19)

where ck denotes the price of electricity in the time interval
[

kT, (k + 1)T
)

and

ki,arrival =
Ti,arrival

T
, ki,departure =

Ti,departure

T

5.5. Problem formulation

Normally, the state of charge of a battery is limited
to the interval [0.2, 0.9] (Marra et al., 2012). This mainly
relates to battery life time aspects: charging the remain-
ing 10%-20% before fully charged has shown to result in
quicker battery degradation (Marra et al., 2012). Accord-
ing to (Marra et al., 2012), if the CPCV option is used,
an electric vehicle can be charged with constant power up
to more than 90% of the capacity of its onboard battery.
As we adopt the CPCV option, if we define si,critical as the
critical state of charge of electric vehicle i, according to
(Marra et al., 2012), we have si,critical > 0.9 for all i. In
order to make the life time of a battery longer, the state
of charge of the battery should be limited at most to 0.9.
Therefore, we assume that the user always selects sreqi such

that sreqi ≤ 0.9. Hence, assuming sreqi is sufficiently smaller
than si,critical and T is not too large, we can assume that

si,k ≤ si,critical (20)

holds for all k and for all i. Then, the function F (·) with
the CPCV option can be simplified as

F
(

si,k
)

=

{

pi,constant, if si,k ≤ si,critical

0, otherwise

The charging model (16)-(17) of an electric vehicle can
then be simplified to

si,ki,departure
= si,ki,arrival

+

ki,departure−1
∑

k=ki,arrival

pi,constant · ui,k · T

Cp
i

and the constraint si,ki,departure
≥ sreqi −di,tol, which presents

the charging requirement for each electric vehicle i, can be
written as

sreqi − si,ki,arrival
− di,tol

pi,constant · T
· Cp

i ≤

ki,departure−1
∑

k=ki,arrival

ui,k (21)

Further, since all the control variables are all binary values,
the constraint (21) can be rewritten as

ki,departure−1
∑

k=ki,arrival

ui,k ≥ mi (22)

where mi is an integer constant given by

mi = ceiling

(

sreqi − si,ki,arrival
− di,tol

pi,constant · T
· Cp

i

)

Finally, including for all i the constraint (22) via penalty
term to the objective function with a sufficiently large
weight βi and a normalization factor 1/(ki,departure−ki,arrival),
the optimal charging control problem of a fleet of electric
vehicles under constrained grid conditions can be formu-
lated as

min
u

Nv
∑

i=1

(

1

Ji,cost,typical

ki,departure−1
∑

k=ki,arrival

pi,constant · T · ck · ui,k

+
βi

ki,departure − ki,arrival

∣

∣

∣

∣

mi −

ki,departure−1
∑

k=ki,arrival

ui,k

∣

∣

∣

∣

)

(23)

subject to

Nv
∑

i=1

pi,constant · ui,k ≤ Pk,max, k = 1, ..., kd

where u = [uT
1 u

T
2 ... uT

Nv
]T with ui = [ui,ki,arrival

... -

ui,ki,departure−1]
T, and Ji,cost,typical is the typical value for

the charging cost of electric vehicle i, which is used to
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Table 2: Data for 5 electric vehicles charging with Pmax = 8kW in
Case 1. The unit of CP is kWh and the unit of pconstant is kW.

i karrival kdeparture sinitial sreq CP pconstant
1 3 6 0.60 0.80 9 3.5
2 1 4 0.35 0.45 7.1 2.5
3 2 5 0.40 0.60 8 3
4 5 10 0.60 0.90 8.5 2.7
5 4 8 0.50 0.70 7.5 3.2

normalize the real charging cost of electric vehicle i. Al-
ternatively, Ji,cost,typical can be given by cost related to
the average or maximum number of steps needed to charge
from the current state of charge to the required level. Note
that problem (23) is a specific case of the general combined
control problem (5). Therefore, the proposed multi-agent
control method is applicable to the optimal charging con-
trol problem of electric vehicles.

5.6. Numerical simulation study

We will now apply the proposed multi-agent control
method to the charging control problem (23) of electric
vehicles. In this simulation study, we consider two cases
where respectively 5 and 20 electric vehicles need to be
charged. With the simpler Case 1, we aim to show that
the proposed multi-agent control method finds the globally
optimal solution while with the more complicated Case 2,
we aim to show the flexibility and effectiveness of the pro-
posed method when limiting the computation and commu-
nication budget. The information of all vehicles in both
cases is summarized in Tables 2 and 3, respectively.

The total number of binary control variables in Case 1
is
∑5

i=1(ki,departure − ki,arrival) = 18 while in Case 2 it is
∑20

i=1(ki,departure − ki,arrival) = 89. The parameters used
in the simulations are T = 15 min, di,tol = 0.02, and
βi = 200 for all i. Besides, for each electric vehicle i,

Ji,cost,typical =
(

ki,departure−ki,arrival

)

·T · c̄ ·pi,constant with

c̄ denoting the average price of electricity for the simulated
period; the maximum number of iterations in the resource
allocation coordination algorithm is set to 1000 and ǫ =
0.001; the simulated period is 165 minutes and the profiles
of the electricity price for Case 1 and Case 2 are shown
in Figures 6 and 7. The simulations are performed using
Matlab 2013b on a cluster computer consisting of 4 blades
with 2 eight-core 3.3 GHz E5-2643 processors, and 64 GiB
memory per blade.

In the simulation for Case 1, no limit is imposed on
the maximum computation time or on the maximum num-
ber of information exchanges between the coordinator and
the local control agents. The simulation results are sum-
marized in Table 4. Note that the overall problem is a
mixed integer linear programming problem and therefore
it can be solved efficiently in a centralized way by using
state-of-the-art solvers like CPLEX, GUROBI, MOSEK

Table 3: Data for 20 electric vehicles charging with Pmax = 36kW
in Case 2. The unit of CP is kWh and the unit of pconstant is kW.

i karrival kdeparture sinitial sreq Cp pconstant
1 3 6 0.60 0.80 9 3.5
2 1 4 0.35 0.45 7.1 2.5
3 2 5 0.40 0.60 8 3
4 5 10 0.60 0.90 8.5 2.7
5 4 8 0.50 0.70 7.5 3.2
6 3 9 0.30 0.50 7.8 3.5
7 2 7 0.45 0.75 8.3 2.9
8 1 5 0.60 0.80 8.6 3.1
9 2 6 0.40 0.65 7.7 3.4
10 6 10 0.50 0.75 8.8 3.7
11 4 8 0.65 0.85 8.6 3.2
12 2 6 0.43 0.63 7.5 2.4
13 1 5 0.38 0.58 8.2 3.1
14 2 7 0.55 0.85 8.8 2.8
15 2 6 0.40 0.60 7.6 3.1
16 1 9 0.45 0.65 7.9 3.3
17 3 9 0.50 0.80 8.4 2.8
18 3 8 0.60 0.85 8.5 3
19 2 6 0.55 0.70 7.6 3.1
20 7 11 0.60 0.85 8.7 3.3
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Figure 6: Profile of the electricity price for Case 1
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Figure 7: Profile of the electricity price for Case 2

Table 4: Simulation results for Case 1

CPLEX proposed multi-agent control method
Jopt 2.3907 2.3907
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Figure 8: Charging dynamics of the 5 electric vehicles with the pro-
posed multi-agent charging control method in Case 1
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Figure 9: Total power consumption the 5 electric vehicles with the
proposed multi-agent charging control method in Case 1

and XPRESS, which yield the globally optimal solution,
provided the overall problem would be fully known by a
single control agent. However, in the control setting con-
sidered in this paper, local control agents only share lim-
ited information with the coordinator. Therefore, neither
the coordinator nor any of the local control agents have
full information of the overall problem. In Table 4, the
solution found by using CPLEX for this case is included
to validate the solution found by the proposed multi-agent
control method. In fact, from Table 4, it is clearly seen
that the proposed multi-agent control method finds the
globally optimal solution for Case 1. Besides, the com-
putation time of the proposed method is 68.76 seconds.
Finally, the charging dynamics and the total power con-
sumption of the 5 electric vehicles with the proposed multi-
agent charging control in this case are shown in Figures 8
and 9, respectively. It is clearly seen that the electric vehi-
cles are charged up to the required level without exceeding
the maximum power limit provided by the grid, and that
they are charged as much as possible when the price of
electricity is low.

In the simulations for Case 2, the proposed method
without limiting the computation time or the number of
information exchanges between the coordinator and the
local control agents takes too much computation time.
Therefore, we decided to use four alternatives that gen-
erate feasible solutions in a limited time:

• Alternative 1 (A1): Mmax = 300000; tmax = ∞;
depth-first search

Table 5: Simulation results for Case 2

CPLEX A1 A2 A3 A4
Jopt 9.1946 75.9733 9.6983 75.9733 9.6983
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Figure 10: Evolution of Jopt as a function of the number of nodes
visited in the search tree for the alternatives for Case 2

• Alternative 2 (A2): Mmax = 300000; tmax = ∞;
breadth-first search

• Alternative 3 (A3): tmax = 60000 s; Mmax = ∞;
depth-first search

• Alternative 4 (A4): tmax = 60000 s; Mmax = ∞;
breadth-first search

where tmax denotes the maximum computation time (in
seconds) andMmax denotes the maximum number of infor-
mation exchanges between the coordinator and local con-
trol agents. Note that in the depth-first search approach,
the search tree is explored as far as possible along each
branch before backtracking, while in breadth-first search,
the search tree is explored as widely as possible on each
level of nodes before moving to the next level.

The simulation results of using all the four variants of
the proposed method are summarized in Table 5. Note
that the result found by using CPLEX for this case is also
included in Table 5 to help indicate how far the solutions
found by the four alternatives are from the globally op-
timal one. Besides, Figure 10 shows the evolution of the
values of the overall objective function as a function of the
number of nodes that have been visited in the search tree
for each of the alternatives. It can be seen from Table 5
that although the solutions found by the variants of the
proposed multi-agent control method are not the same as
the globally optimal solution, the best values of the overall
objective function found by the second and the fourth al-
ternatives are close to the globally optimal one. Moreover,
given the same computation and communication budget,
in the proposed multi-agent control method, breadth-first
search generates better results than depth-first search.

Next, in order to show the effectiveness of the pro-
posed multi-agent control method in balancing the qual-
ity of solution and the computation time, we conducted
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Figure 11: Evolution of Jopt as a function of the number of nodes
visited in the search tree for Case 2 using breadth-first search with
tmax = 1200s and Mmax = ∞

another simulation for Case 2 using breadth-first search,
Mmax = ∞ and a lower value for tmax of tmax = 1200 s
(i.e. 20 minutes). The evolution of the values of the over-
all objective function in this simulation is shown in Figure
11. More precisely, the best value of the overall objective
function found using breadth-first search in the given 20
minutes of computation time is 9.7270 and the correspond-
ing charging dynamics and total power consumption of the
20 electric vehicles are shown in Figures 12 and 13, respec-
tively. Note that in order to assess how far the behavior of
the proposed controller is from optimality, we have com-
pared the total power consumption of the electric vehicles
with the proposed control method and with centralized
optimal control using CPLEX in Figure 13. It is seen that
the proposed multi-agent controllers show a behavior that
is similar to the one of the centralized optimal controller
with only slight differences. Besides, the best value of the
overall objective function found using breadth-first search
in 20 minutes of computation time is close to the globally
optimal one and the electric vehicles are all charged up to
the required levels without exceeding the maximum power
limit imposed by the grid. Therefore, although each con-
trol agent only communicates very limited information (i.e.
only the Lagrange multiplier associated with the charging
power constraint) to the coordinator and only limited com-
putation time is available, the proposed multi-agent con-
trol method can still find effectively balance the solution
quality and the computation time.

Finally, as a first step to investigate the robustness of
the proposed multi-agent control method, we consider that
the power supply provided by the grid is disturbed and
perform a closed-loop receding horizon control simulation
for Case 2. More specifically, we consider the power supply
predicted by the controllers is constantly P predicted

k,max = 36
kW while the actual power supply at each step k is given
by

P actual
k,max = 36 + ω [kW]

where ω is a normally distributed pseudorandom number
with mean 0 and standard deviation 5. The resulting
power consumption of all electric vehicles with the pro-
posed multi-agent charging control method, the predicted
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Figure 12: Charging dynamics of the 20 electric vehicles with the
proposed multi-agent charging control method in Case 2 given 20
minutes of computation time
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Figure 13: Total power consumption the 20 electric vehicles with the
proposed multi-agent control method given 20 minutes of computa-
tion time and with centralized optimal control for Case 2

power supply, and the actual power supply are plotted in
Figure 14. In order to highlight the effect of the distur-
bance on the actual power consumption of the vehicles, we
also plot the power consumption of vehicles (indicated by
red dashed line) in the undisturbed case. It is seen that
when the actual power supply is higher than the level that
is needed for the control action to be implemented, the ve-
hicles are charged with the control action of the proposed
method fully implemented. When the actual power sup-
ply is lower than the needed level, the control action of
the proposed method is not fully implemented in order to
respect the actual charging constraints. In that case, the
control action of the proposed method is implemented in a
way that the vehicles with higher charging-emergency-rate
have higher priority to change. Note that in this simula-
tion, the charging-emergency-rate ̺i,k of a vehicle i at a
simulation step k is defined by

̺i,k =
remaining state of charge

remaining charging time
=

sreqi − si,k
ki,departure − k

In this way, the actual power consumption is always lower
than the actual power supply provided by the grid. Ac-
tually, the vehicles that are not charged due to insuffi-
cient power supply at certain time steps are charged at
later time steps under the control of the proposed method.
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Figure 14: Power consumption of the 20 electric vehicles with the
proposed multi-agent control method given 20 minutes of computa-
tion time in Case 2 when the power supply is disturbed

Besides, the value of the cost function for the disturbed
case is 9.6948, which corresponds to a small performance
drop of about 3.3% compared with the value 9.3865 of
the cost function for the undisturbed case. Therefore, the
proposed multi-agent control method is still working ade-
quately when the power supply is disturbed.

6. Conclusions and future work

We have considered multi-agent model predictive con-
trol for a class of hybrid systems governed by discrete in-
puts and subject to global hard constraints where each
subsystem has a local convex objective function and a
strictly increasing constraint function. We focused on the
scenario where each subsystem only shares limited infor-
mation with the external environment, and we developed a
novel multi-agent model predictive control method by in-
tegrating a distributed resource allocation coordination al-
gorithm into a solution space branching mechanism. With
the distributed resource allocation algorithm, the global
feasibility of the local control decisions is always guaran-
teed. With the solution space branching mechanism, the
search tree for the overall solution space is built smartly
based on the outcome of the distributed resource allocation
coordination algorithm. Results for the charging control
of a fleet of electric vehicles in a simulation study show
that the proposed multi-agent control method effectively
balances the solution quality, the computation time, and
the communication burden.

In our future work, we will focus on developing a dis-
tributed algorithm to compute the global lower bound
of the overall objective function, and then combine that
algorithm with the search tree building mechanism pro-
posed in this paper. We will also perform more com-
plex and more challenging case studies considering coor-
dinating both charging-to-vehicle (G2V) and discharging-
to-grid (V2G) of electric vehicles. In addition, we will

perform an extensive assessment including the stability
and the robustness of the developed multi-agent control
method.
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Appendix A. Calculation of the Lagrange multi-

plier given the primal solution

If a problem is given by

min
ui∈Ui

Ji(ui)

subject to Gi(xi) ≤ θi

with Gi(·) a scalar function, then by introducing a La-
grange multiplier λi associated with the constraintGi(ui) ≤
θi, its dual problem is given by

max
λi≥0

min
ui∈Ui

Ji(ui) + λi

(

Gi(ui)− θi

)

Letting u∗
i and λ∗

i be the solution to the dual problem and
di,J and di,G be respectively the derivatives of Ji(·) and
Gi(·) at u

∗
i , then λ∗

i , di,J and di,G have to satisfy

di,J + λ∗
i · di,G = 0

or equivalently

dTi,J + λ∗
i · d

T
i,G = 0 (A.1)

Solving equation (A.1) and considering dual feasibility of
λ∗
i yields

λ∗
i =







−
dT
i,J·di,G

dT
i,G

·di,G
, if −

dT
i,J·di,G

dT
i,G

·di,G
> 0

0, otherwise

Note that the dual variable λi is dual feasible if λi ≥ 0
(Palomar and Chiang, 2006).
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