
Delft University of Technology
Delft Center for Systems and Control

Technical report 17-010

Multi-agent dynamic routing of a fleet of
cybercars∗

R. Luo, T.J.J. van den Boom, and B. De Schutter

If you want to cite this report, please use the following reference instead:
R. Luo, T.J.J. van den Boom, and B. De Schutter, “Multi-agent dynamic routing of a
fleet of cybercars,” IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 5, pp. 1340–1352, May 2018. doi:10.1109/TITS.2017.2710480

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/17_010.html

https://doi.org/10.1109/TITS.2017.2710480
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/17_010.html

1

Multi-Agent Dynamic Routing of a Fleet of

Cybercars
Renshi Luo, Ton J.J. van den Boom, and Bart De Schutter, Senior Member, IEEE

Abstract—Due to the lack of efficient control methods for a fleet
of vehicles throughout a road network, the large-scale application
of cybercars, which are fully automatic road vehicles providing
on-demand and door-to-door transportation service, is still hin-
dered. Although the fleet control problem for cybercars can be
straightforwardly addressed in a centralized control setting, for
reasons of scalability and fast computation, a centralized control
method will not be tractable for the large-scale use of cybercars
in the future. In this paper, we focus on the dynamic routing of
a fleet of cybercars considering minimization of the combined
system cost including the total time spent and the total energy
consumption by all cybercars. We first propose a model of the
dynamics and the energy consumption of a fleet of cybercars
based on a description of the dynamics of every single cybercar
and the states of the road network. After that, we propose several
tractable and scalable multi-agent control methods including
multi-agent model predictive control and parameterized control
for the dynamic routing of cybercars. Finally, experiments by
means of numerical simulations illustrate the performance of
the proposed control methods.

Index Terms—Cybercar, intelligent transportation system,
multi-agent control, model predictive control, parameterized
control

I. INTRODUCTION

TO deal with the problems caused by the increasing use

of private cars, such as frequent congestion, increasing

energy consumption and pollution, etc, a new intelligent

transportation system called cybernetic transportation system,

which is exclusively formed by a fleet of fully automatic

electric vehicles (i.e., cybercars), has been proposed [1]. Due

to the high flexibility and reactivity of cybercars, a cybernetic

transportation system is able to offer better personal mobility

than conventional public transportation systems [2]. Besides,

a cybernetic transportation system is more competitive in

terms of energy consumption than public transportation sys-

tems on a per passenger-km basis [3]. In fact, there have

been many projects, such as the European project CyberCars

[4], CyberCars-2, CyberC3 [5] and CyberMove, dedicated to

developing such a cybernetic transportation system, and there

have been many operational cybernetic transportation systems,

such as GRT (i.e., group rapid transit) at Schiphol Airport in

Amsterdam, PRT (i.e., personal rapid transit) in Masdar City

in the United Arab Emirates, and Ultra (i.e., urban light transit)

at Heathrow Airport in London.

So far, there have been many automated driving technolo-

gies available for individual vehicles [6], such as automated

Manuscript received Month Day, Year; revised Month Day, Year. This work
was supported by the China Scholarship Council under Grant 201207090001.

The authors are with Delft Center for Systems and Control, Delft
University of Technology, Delft, The Netherlands (email: r.luo@tudelft.nl;
a.j.j.vandenboom@tudelft.nl; b.deschutter@tudelft.nl).

lane change [7] and adaptive cruise control [8]. However, there

is still no efficient method for the control of a fleet of vehicles.

Hence, the large-scale application of cybercars is still hindered.

Actually, the fleet control problem for cybercars has been

considered in the literature. More specifically, the problem was

studied in [3] from a conceptual point of view and a central-

ized fleet management system for cybercars was proposed.

However, that paper only focused on the design of the system

architecture without addressing the fleet control problem ex-

plicitly. In [9], a novel open-control concept that merges both

centralized and decentralized control approaches for cybercars

was proposed. However, that paper only focused on demon-

strating how a cybernetic transportation system may benefit

from the open-control concept in dealing with perturbations

caused by the environment, while it did not introduce a specific

algorithm for fleet control. In [10], a specific instance of the

fleet control of cybercars, i.e.,the vehicle routing problem for

an on-demand transportation system, was studied. However,

that paper focused on solving the vehicle routing problem on a

daily basis without considering the real-time conditions of the

network. In contrast, in our research, we explore the dynamic

routing problem of cybercars by considering the dynamics and

the energy consumption of every cybercar according to the

real-time conditions of the road network. We develop efficient

strategies for the dynamic routing of cybercars so that the total

costs for all cybercars, including the total time spent (TTS) and

the total energy consumption (TEC), are minimized.

By directly incorporating system constraints as inequalities

in the control problem formulation, model predictive control

(MPC) has shown to be promising for control of road traffic

networks [11]–[13]. However, for reasons of scalability and

fast computation, centralized MPC will not be tractable for

the control of large-scale cybernetic transportation systems.

Therefore, multi-agent control methods have to be employed.

In multi-agent MPC, the overall control problem is first

divided into a set of subproblems, which are assigned to differ-

ent agents. The agents then determine their control actions by

solving their local subproblems and coordinating with others

[14]. Multi-agent MPC algorithms have been applied to power

generation systems [15], chemical processes [16], and supply

chains [17]. In this paper, the parallel multi-agent MPC scheme

presented in [18] is adapted and applied to the dynamic routing

of cybercars.

Besides, in parameterized control, the control laws are

parameterized and then the parameters are optimized with re-

spect to the overall performance of the system. Parameterized

control methods have been applied to control of freeway traffic

[19], of robotic systems [20], and of baggage handling systems

[21]. In this paper, several computationally fast and scalable

2

multi-agent parameterized control methods are proposed for

the dynamic routing of cybercars.

Actually, in our previous work [22], we have proposed

a model of the dynamics and the energy consumption of

cybercars. However, in [22], we assumed that at any time the

speed of each cybercar is determined by the equilibrium speed

of all cybercars in the segment. In contrast, in this paper, we

propose to use the dynamic speed equation, which is more

accurate in capturing the speed change of a single cybercar in

reality. Besides, the impact of the slope of each segment in the

dynamics and energy consumption of cybercars was missing

in [22] but is considered in the model provided in this paper.

This makes the model provided in this paper more general.

With respect to the literature, the main contributions of this

paper are addressing a specific instance of the fleet control

problem of cybercars, i.e., the dynamic routing of a fleet

of cybercars, providing a more general and more accurate

modeling of the dynamics and the energy consumption of

cybercars, and proposing several tractable and scalable multi-

agent control methods to solve the problem.

This paper is organized as follows. In Section II, we describe

the general dynamic routing problem of cybercars. In Section

III, the model of the dynamics and the energy consumption

of cybercars is presented. In Section IV, the dynamic routing

problem of cybercars is formulated. In Section V and Section

VI, we propose a multi-agent MPC scheme and six different

parameterized control methods for the dynamic routing of

cybercars, respectively. Section VII presents a simulation study

where the performance of all proposed methods is assessed and

compared. Finally, in Section VIII, the main contributions of

this paper are summarized, and some ideas of future work are

presented.

II. PROBLEM DESCRIPTION

We consider a cybernetic transportation network (i.e. only

open to cybercars) consisting of a set of roads and a set

of intersections. For the sake of simplicity, we refer to an

intersection as a ‘node’, and a road section between two

intersections as a ‘link’. Each link is divided into a number of

segments that have typical lengths ranging between 50 m and

100 m. We assume that, at any time, the equilibrium speed1 of

all cybercars in a segment is determined by the traffic density

in that segment, while the actual speed of each cybercar is

determined by its previous speed and its current equilibrium

speed. Note that the equilibrium speed-flow relation (i.e.,

fundamental diagram of traffic flow) exists on a road section in

urban environments [24], and that the average flow dynamics

of cybercars can be modeled in a similar way to that used

for modeling the average flow dynamics of human-driven

vehicles but with different values for the model parameters.

Moreover, we assume each segment has a maximum capacity2

1In macroscopic traffic flow models where the equilibrium speed-flow
relationship of traffic flows is described, the equilibrium speed is an aggregated
traffic variable representing the average speed of vehicles over a time period
or over an area [23].

2We assume that when the maximum capacity of a segment is reached, the
traffic density in the segment is still less than the jam density of the segment.
Therefore, the equilibrium speed of cybercars in a segment will never be 0
m/s.

TABLE I
NOMENCLATURE OF THE MATHEMATICAL SYMBOLS

Symbol Definition

T length of the simulation time interval

k discrete-time step counter

Tstart,i starting time of cybercar i

Tstop,i arrive time of cybercar i at its destination

vi(k) speed (measured along the longitudinal direction of a link)
of cybercar i at time kT

li(k) link in which cybercar i is running at time kT

si(k) segment in which cybercar i is running at time kT

xi(k) position (measured along the longitudinal direction of a
link) of cybercar i in li(k) at time kT

lfinal,i final link of cybercar i (the end of lfinal,i is the destination
of cybercar i)

ri(k) selected route of cybercar i at time kT

ui(k) next link of cybercar i at time kT

pstart
m, j position of the starting point of segment m of link j

pend
m, j position of the end point of segment m of link j

vfree,m, j free-flow speed of segment m of link j

Nm, j(k) number of cybercars in segment m of link j at time kT

Lm, j length of segment m of link j

ρm, j(k) traffic density of segment m of link j at time kT

Cm, j maximum capacity of segment m of link j

bm, j(k) binary blocking signal of segment m of link j at time kT

with bm, j(k) = 1 indicating that the segment is blocked

∆m, j(k) change of the number of cybercars in segment m of link l

during one simulation interval at time kT

of cybercars at the same time. More specifically, if the number

of cybercars in a segment reaches or exceeds the maximum

capacity, that segment will be blocked. A blocked segment will

be unblocked immediately when the number of cybercars in

that segment becomes lower than the maximum capacity. At

any time, the energy consumption of a cybercar is a function

of its velocity, its acceleration (or deceleration), as well as

its position (related to its potential-energy change in case of

link with slope). Without loss of generality, we assume the

origins and the destinations of all cybercars are always at

nodes. Besides, we also assume that no cybercar can cover

a distance longer than the length of a segment within one

simulation time interval. Finally, we assume there are higher-

level controllers assigning transport service requests (including

starting time, origin and destination) to each cybercar and we

only focus on solving the dynamic routing problem for all

cybercars with the transport service requests given.

III. DISCRETE-TIME MODELING

A. Definitions

The definitions of the most important mathematical symbols

used in this paper are presented in Table I, where Tstop,i for all

i are initialized with sufficiently large numbers, and ∆m, j(k)
for all m and j are set to be 0 at the start of every simulation

time interval.

B. Network Set-Up

In case of blocked departure links, cybercars are not able to

enter the network even when the times at which they are due

to depart have come. In order to model the queues of cybercars

waiting at the origins due to blocked departure links, to each

departure point, we introduce a virtual link with zero length

3

nodevirtual link segment

link

Cybernetic transportation network

departure point

Fig. 1. Cybernetic transportation network

and infinite capacity. Without loss of generality, the layout

of a cybernetic transportation network can then conceptually

be represented by the graph shown in Figure 1, where a

node is represented by a small solid circle while a link is

represented by a directed line with the arrow indicating the

heading direction.

C. Equilibrium speed-flow relationship considering slope

Vehicles tend to accelerate (decelerate) when going downhill

(uphill). Based on the experimental results of geometric effects

on the speeds of vehicles presented in [25], the impact of the

slope on the free-flow speed of a segment can be modeled as

follows:

vfree,m, j =

vfree,m, j,0

(

1−δup,m, j tan(ϑm, j)
)

, if ϑm, j ≥ 0

vfree,m, j,0

(

1+δdown,m, j tan(ϑm, j)
)

, if ϑm, j < 0

where ϑm, j denotes the angle of inclination of segment m of

link j, vfree,m, j,0 denotes the free-flow speed of vehicles in

segment m of link j if that segment is flat, δup,m, j and δdown,m, j

are relative terms that denote the impact of each 1% downhill

and uphill grade on the free-flow speed of cybercars in segment

m of link j, respectively.

Besides, the critical traffic density of segment m of link j at

which the maximal flow is obtained may also be influenced by

the slope. Also inspired by [25], one possible way to model

this influence is given by

ρcrit,m, j = ρcrit,m, j,0

(

1+αm, j tan(ϑm, j)
)

where

ρcrit,m, j,0 =
1 [veh]

hcon,m, jvfree,m, j,0 +Lveh

is the critical traffic density of segment m of link j if that

segment would be flat [26], hcon,m, j is the constant time

headway of automated vehicles on segment m of link j, Lveh is

the average length of vehicles, and αm, j is a model parameter.

Note that αm, j is a signed variable with a positive or negative

sign depending on whether the slope is uphill or downhill. The

value of αm, j can be determined using identification techniques

[27].

Finally, according to the macroscopic characteristics of

semi-automated traffic presented in [26], the equilibrium

speed-flow relationship of cybercars in a segment with slope

is given by

Vm, j

(

ρm, j(k)
)

=

{

vfree,m, j, if ρm, j(k)≤ ρcrit,m, j
cm, j

ρm, j(k)
+dm, j, if ρm, j(k)> ρcrit,m, j

with

cm, j =
vfree,m, j ·ρcrit,m, j ·ρjam,m, j

ρjam,m, j−ρcrit,m, j

, dm, j =−
vfree,m, j ·ρcrit,m, j

ρjam,m, j−ρcrit,m, j

where ρjam,m, j is the jam traffic density of segment m of link

j, i.e. the density at which the traffic flow is 0 veh/h.

D. Speed Change of a Single Cybercar

In the discrete-time modeling framework, the speed of a

cybercar is assumed to be fixed within one simulation time

interval and is updated only at the end of the simulation time

interval. In this paper, by assuming cybercar i is in segment

m of link j at simulation time step k, the update of the speed

of cybercar i is given by

vi(k+1) = vi(k)+ξi

(

Vm, j

(

ρm, j(k)
)

− vi(k)
)

(1)

where ξi indicates how fast can cybercar i change its speed

based on the difference of its desired speed and its current

speed.. To be more specific, ξi is given by

ξi =
amax,iT

vmax,i
(2)

where vmax,i and amax,i are the maximal speed and maximal

acceleration rate of cybercar i, respectively. Note that the

ordering of cybercars in a segment according to their positions

could have been taken into account in the update of the speed

of each cybercar, but that would cost many extra computations

and there would not be much gain in modeling accuracy since

the typical length of a segment (between 50 m and 100 m) is

not that long.

E. Dynamics of a Single Cybercar

Each cybercar i enters the network at Tstart,i. After that, at

each simulation time step kT , with xi(k), vi(k), li(k), si(k),
ri(k) and Nm, j(k), ρm, j(k), bm, j(k) for all j and m given, the

variables xi(k+1), vi(k+1), li(k+1), and si(k+1) of cybercar

i need to be determined. As cybercar i may go from one

segment (or link) to a different segment (or link) during one

simulation time interval, the change of the number of vehicles

in the segments due to the change of the position of cybercar

i also needs to be captured.

From simulation time step kT to step (k+1)T , the update

of the dynamics of a single cybercar i can be divided into five

cases, which are characterized as follows:

• “same segment, same link”: cybercar i stays in the same

segment and the same link.

• “different segments, same link”: cybercar i goes from

one segment to the next one in the same link.

• “desired link blocked”: cybercar i reaches the end of its

current link, but its desired next link is blocked.

• “different links”: cybercar i goes from its current link to

its desired next link.

4

• “arrival”: cybercar i arrives at its destination.

For the sake of simplicity of notation, in the following, we

assume li(k) = j and si(k) = m when we describe the update

of the dynamics of cybercar i in each of the cases.

First, the conditions for the case of same segment, same

link are:

Tstart,i < (k+1)T

xi(k)+
[

vi(k)+ξi

(

Vm, j

(

ρm, j(k)
)

− vi(k)
)]

T ≤ pend
m, j

where the function Vm, j(·) describes how the equilibrium speed

of cybercars in segment m of link j depends on the traffic

density in that segment. One possible way to define Vm, j(·)
has been given in the Section III-C. The dynamics of cybercar

i are then updated by

vi(k+1)← vi(k)+ξi

(

Vm, j

(

ρm, j(k)
)

− vi(k)
)

xi(k+1)← xi(k)+ vi(k+1)T

li(k+1)← li(k)

si(k+1)← si(k)

For the case of different segments, same link, the follow-

ing conditions must be satisfied:

Tstart,i < (k+1)T

xi(k)+
[

vi(k)+ξi

(

Vm, j

(

ρm, j(k)
)

− vi(k)
)]

T > pend
m, j

bm+1, j(k) = 0

In this case, cybercar i first runs at the speed vaux,i(k) =

vi(k)+ξi

(

Vm, j

(

ρm, j(k)
)

−vi(k)
)

in the current segment. After

reaching the end of the current segment, it enters the next seg-

ment and runs at vaux,i(k)+ξi

(

Vm+1, j

(

ρm+1, j(k)
)

− vaux,i(k)
)

for the rest of the time interval. Then the dynamics of cybercar

i are updated by

vi(k+1)← vaux,i(k)+ξi

(

Vm+1, j

(

ρm+1, j(k)
)

− vaux,i(k)
)

xi(k+1)← pend
m, j + vi(k+1)τi

li(k+1)← li(k)

si(k+1)← si(k)+1

where τi denotes the remaining time during [kT,(k+1)T] after

cybercar i arrives at the end of the current segment m:

τi = T −
pend

m, j− xi(k)

vaux,i(k)

Besides, the changes of the number of cybercars in segment

m and segment m+1 are captured by

∆m, j← ∆m, j−1

∆m+1, j← ∆m+1, j +1

Next, the conditions for the case desired link blocked are

given by

Tstart,i < (k+1)T

xi(k)+
[

vi(k)+ξi

(

Vm, j

(

ρm, j(k)
)

− vi(k)
)]

T > pend
m, j

b1, j∗(k) = 1

where j∗ denotes the desired next link of cybercar i at kT .

Given that the desired next link is currently blocked, cybercar

i has to wait after arriving at the end of the current link.

Therefore, the update of dynamics of cybercar i is given by

vi(k+1)← 0

xi(k+1)← pend
m, j

li(k+1)← li(k)

si(k+1)← si(k)

The conditions for the case of different links are:

Tstart,i < (k+1)T

xi(k)+
[

vi(k)+ξi

(

Vm, j

(

ρm, j(k)
)

− vi(k)
)]

T > pend
m, j

b1, j∗(k) = 0

In this case, cybercar i enters link j∗, and its dynamics are

updated by

vi(k+1)← vaux,i(k)+ξi

(

V1, j∗
(

ρ1, j∗(k)
)

− vaux,i(k)
)

xi(k+1)← vi(k+1)τ

li(k+1)← ui(k)

si(k+1)← 1

The changes of the number of cybercars in the last segment

of link j and the first segment of link j∗ are then captured by

∆m, j← ∆m, j−1

∆1, j∗ ← ∆1, j∗ +1

Finally, for the case of arrival, the conditions are given by

Tstart,i < (k+1)T

xi(k)+
[

vi(k)+ξi

(

V
(

ρm, j(k)
)

− vi(k)
)]

T ≥ pend
m, j

lfinal,i = j

In this case, cybercar i reaches its destination and its arrival

time Tstop,i is obtained by

Tstop,i = kT +
pend

m, j− xi(k)

vaux,i(k)
(3)

We assume cybercar i leaves the network after arriving at its

destination. Then ∆m, j is updated by

∆m, j← ∆m, j−1

F. Dynamics of the Network

At every simulation time step, after the dynamics of all

cybercars are updated, the states of the whole network are

updated by

Nm, j(k+1) = Nm, j(k)+∆m, j

ρm, j(k+1) =
Nm, j(k+1)

Lm, j

bm, j(k+1) = 1

(

Nm, j(k+1)≥Cm, j

)

where 1(·) is an indicator function defined by

1(a) =

{

1, if a is true

0, else

5

tt

vv

kTkT t1t1

vinit

vinit vnew

vnew

amaxamax

(k+1)T(k+1)T

Fig. 2. Two possible cases of the speed change of a cybercar

G. Energy Consumption of a Single Cybercar

Generally, the energy consumption of a cybercar consists

of five consuming factors [28], i.e., speeding up, air drag,

rolling resistance, going uphill, and energy losses in the

energy-conversion chain. Assuming each cybercar has the

same acceleration and deceleration rate, we use the graphs

in Figure 2 to calculate the first three consuming factors of a

cybercar. For notational convenience, in this section, we drop

the subscript indicating the index of the cybercar for all the

variables. Note that in Figure 2, vinit and vnew respectively

denote the speed of the cybercar at the beginning and the speed

at the end of a simulation interval, and t1 denotes the absolute

time instant at which vnew is reached. According to (1) and

(2), t1 < (k+ 1)T always holds. It should also be noted that

the effects of acceleration and deceleration of a cybercar are

non-negligible in the calculation of its energy consumption.

Therefore, different from Section III-E where the dynamics of

a cybercar are updated assuming a constant speed in every

simulation interval, in this subsection, the acceleration and

deceleration processes of a cybercar are approximated and then

taken into account in the energy consumption calculation. In

fact, acceleration and deceleration could also have been taken

into account in the update of the dynamics of a cybercar in

Section III-E, but the relative effect of that would be much

smaller than for the energy consumption calculation.

According to Figure 2, the cybercar is first accelerating or

decelerating at a rate amax during [kT, t1], which we define as

the acceleration-deceleration period. For the cybercar in this

period, let Evar kin denote the change of kinetic energy, Evar air

the energy consumption needed to overcome the air drag, and

Evar rol the energy consumption needed to overcome the rolling

resistance. Based on [28], we have

Evar kin = M

∫ vnew

vinit

vdv =
1

2
M(v2

new− v2
init) (4)

Evar air =
∫ t1

kT

1

2
ρairAfrontv

3dt =
ρairAfront

∣

∣

∣
v4

new− v4
init

∣

∣

∣

8amax
(5)

Evar rol =

∫ t1

kT
crMgvdt =

crMg

∣

∣

∣
v2

new− v2
init

∣

∣

∣

2amax
(6)

where M and Afront denote respectively the mass and the

effective frontal area of the cybercar, ρair denotes the air

density, cr denotes the rolling resistance coefficient, and g

denotes the gravitational acceleration.

After the acceleration-deceleration period, the cybercar

keeps a constant speed vnew for the rest of the simulation

interval [t1,(k+ 1)T], which we define as the constant-speed

period. In this period, the kinetic energy of the cybercar does

not change. Then by defining Ect air and Ect rol respectively

as the energy consumption of the cybercar to overcome the

air drag and the rolling resistance during the constant-speed

period, we have

Ect air =
1

2
ρairAfrontv

3
new ·

(

T −
|vnew− vinit|

amax

)

(7)

Ect rol = crMgvnew ·

(

T −
|vnew− vinit|

amax

)

(8)

Furthermore, we consider the change of the potential energy

of the cybercar, which is denoted by Epot, during one simula-

tion interval. If the cybercar stays in the same segment m of

the same link j within the simulation interval, given the angle

of inclination ϑm, j of the segment, we have

Epot = Mgsin(ϑm, j) · (xnew− xinit) (9)

where xnew and xinit are the positions of the cybercar in the

link at the beginning and the end of the simulation interval,

respectively. If the cybercar goes from one segment to another

within the simulation interval, we have

Epot = Mg
[

sin(ϑm, j)(pend
m, j− xinit)+ sin(ϑm+1, j)(xnew− pend

m, j)
]

(10)

Moreover, if the cybercar goes from the last segment of the

current link to the first segment of the next link within the

simulation interval, we get

Epot = Mg
[

sin(ϑm, j)(pend
m, j− xinit)+ sin(ϑ1, j∗)xnew

]

(11)

By defining ηmotor as the efficiency of electric motors3,

the actual energy consumption of the cybercar during the

simulation time interval [kT,(k+1)T] becomes

E(vinit,vnew,xinit,xnew,ϑm, j,ϑm+1, j,amax,T) = max

(

Etotal

ηmotor
, 0

)

(12)

where

Etotal = Evar kin +Evar air +Evar rol +Ect air +Ect rol +Epot

(13)

Moreover, if a cybercar uses regenerative braking, it could save

part of the energy lost in braking to recharge its onboard bat-

tery. By letting γrecover denote the round-trip energy recovery

coefficient4 of the regenerative braking system, we have

E(vinit,vnew,xinit,xnew,ϑm, j,ϑm+1, j,amax,T) =

Etotal

ηmotor
, if Etotal ≥ 0

γrecover ·Etotal

ηmotor
, if Etotal < 0

(14)

3According to [28], the maximal efficiency of electric motors is about 85%
to 90%. That means for the best case, only 90% of the electricity consumed
in charging the onboard battery can be used to power the electric vehicle.

4The round-trip energy recovery coefficient (i.e., the ratio between the
amount of electric energy recovered from braking and the amount consumed
in accelerating) of an electric vehicle is around 38% [29].

6

Finally, by defining Ei(k) as the amount of energy consumed

by cybercar i during [kT,(k+1)T], we have

Ei(k) = E
(

vi(k),vi(k+1),xi(k),xi(k+1),ϑsi(k),li(k),

ϑsi(k+1),li(k+1),amax,i,T
)

(15)

IV. MODEL PREDICTIVE DYNAMIC ROUTING

Model predictive control (MPC) has been widely recognized

as a high-performance control approach for complex and

constrained systems [30], [31]. In MPC, the control actions

over a certain time span in the future are determined by solving

a constrained optimization problem that includes the model of

the system, the operational constraints, and the goal of control

explicitly, in a receding horizon fashion. Since the dynamics of

cybercars are highly complex and subject to many constraints,

based on the discrete-time model presented in Section III,

we adopt an MPC scheme to formulate the dynamic routing

problem of cybercars.

A. Overall control problem

During [kT,(k +Np)T], the total time spent and the total

energy consumption by all cybercars are given by

JTTS(k) = ∑
i∈I(k,Np)

min
(

(k+Np)T −Tstart,i, Tstop,i− kT,

Tstop,i−Tstart,i, NpT
)

+ Jend
TTS(k) (16)

JTEC(k) =
Np

∑
h=1

∑
i∈I(k,Np)

Ei(k+h) + Jend
TEC(k) (17)

where Np denotes the prediction horizon and I(k,Np) denotes

the set of cybercars in the network during [kT,(k + Np)T],
Jend

TTS(k) and Jend
TEC(k) denote respectively estimates of the ex-

pected remaining total time spent and the expected remaining

total energy consumption by the cybercars still in the network

at t = (k+Np)T from their positions at t = (k+Np)T to their

destinations. One possible way to obtain Jend
TTS(k) and Jend

TEC(k)
is by using the speeds of the cybercars still in the network

at t = (k+Np)T and considering the shortest time routes for

those cybercars computed using e.g. Dijkstra’s algorithm [32]

based on their speeds at t = (k+Np)T .

In order to properly balance JTTS(k) and JTEC(k), who have

possibly different units and different orders of magnitude, the

overall objective function is designed as

J(k) = w1
JTTS(k)

JTTS,typical

+w2
JTEC(k)

JTEC,typical

(18)

where JTTS,typical and JTEC,typical denote typical values5 of the

total time spent and the total energy consumption by all cy-

bercars in one prediction period while w1,w2 are nonnegative

weights. Note that the control variable ri(k) for each cybercar

i with i ∈ I(k,Np) is the route to be selected from a finite

5These values could e.g., be the averaged total time spent and the averaged
total energy consumption of cybercars over all prediction periods in a
simulation where the routes of cybercars are predefined or a simple routing
strategy (e.g., shortest time route) is used.

set Ri(k) of possible routes6 from its current position to its

destination. Once the route ri(k)∈Ri(k) is determined, the link

sequence following ri(k) can be determined and then used as

input for the model presented Section III.

Since the dynamics of cybercars are nonlinear and the

control variables are discrete, this results in a Nonlinear

Integer Programming problem. Although there are several al-

gorithms, such as genetic algorithm [34], simulated annealing

[34] and DIRECT [35], available for solving this problem, in

general, this problem is computationally very hard to solve,

especially when the number of cybercars is large. For reasons

of scalability and fast computation, a major challenge of

achieving dynamic routing for a large fleet of cybercars is to

find efficient approximate solution methods. In the next two

sections, we propose efficient approximate solution methods

for the dynamic routing of cybercars.

V. MULTI-AGENT MODEL PREDICTIVE DYNAMIC

ROUTING

In this section, we propose a multi-agent model predictive

control method for the dynamic routing of cybercars according

to standard multi-agent MPC methods from literature. Given

the similarities between the cybernetic transportation network

considered in this paper and the transportation networks con-

sidered in [18], we adapt the parallel multi-agent MPC scheme

presented in [18].

A. Decomposing the overall network

The whole network is divided into a set G of subnetworks7.

To each subnetwork, an agent is assigned. At every control

step, for each cybercar i, the sequence of subnetworks that

will be visited by a cybercar i is first extracted from the

shortest-time route from its current position to its destination

computed by a shortest path algorithm based on the current

traffic condition. After that, the exact route of the cybercar

through each subnetwork is determined by the corresponding

agent.

For each subnetwork g with a set of neighboring subnet-

works Pg = {pg,1, ..., pg,ng}, we define:

• Xg(k): local state at time kT including positions, speeds,

links and segments of cybercars in the local subnetwork

g as well as the traffic densities and the blocking signals

of all the links in the local subnetwork

• Ug(k): local control variables i.e., routes of cybercars in

the local subnetwork g

• ωin,g(k) = [ωT
in,pg,1,g

(k), ...,ωT
in,pg,ng ,g

(k)]T: external inputs

from neighboring subnetworks pg,1, ...pg,ng including the

indices, entering points, entering times of the cybercars

from neighboring subnetworks to the local subnetwork

• ωout,g(k) = [ωT
out,pg,1,g

(k), ...,ωT
out,pg,ng ,g

(k)]T: outputs to

neighboring subnetworks including the indices, exit

6This set of routes could be obtained using a K-shortest path algorithm
[33] to find a fixed a number of possible routes from the end of the current
link of cybercar i to its destination.

7Note that dividing a network into subnetworks, for which an efficient
algorithm has been proposed by [36], is outside the scope of our work. We
assume that the network and its division are given, and we only focus on the
design of the multi-agent model predictive dynamic routing method.

7

points, and exit times of the cybercars from the local

subnetwork to its neighboring subnetworks

B. MPC of a single subnetwork

We assume that at time kT , agent g has full knowledge of

the current state of its own subnetwork and of the cybercars in

its own subnetwork. Then, given the external inputs ωin,g(k)
from neighboring subnetworks, agent g predicts the future

local states using a local model. Given the predicted future

local states, we define the following local objective function

for agent g at time kT :

JTTS,g(k) = ∑
i∈Ωg(k)∪Ωg,in(k)

min
(

(k+Np)T −Tstart,g,i, NpT,

Tstop,i−Tstart,g,i, Tstop,i− kT, Tcross,g,i−Tstart,g,i,

Tcross,g,i− kT
)

+ Jleave
TTS,g(k) (19)

JTEC,g(k) =
Np

∑
h=1

∑
i∈Ωg(k)∪Ωg,in(k)

Ei(k+h) + Jleave
TEC,g(k) (20)

Jg(k) = w1

JTTS,g(k)

JTTS,typical

+w2

JTEC,g(k)

JTEC,typical

(21)

where Ωg(k) denotes the set of cybercars in subnetwork g

at time kT , Ωg,in(k) denotes the set of cybercars entering

subnetwork g from neighboring subnetworks during [kT,(k+
Np)T]. More specifically, Ωg,in(k) is extracted from ωin,g(k).
Furthermore, Tcross,g,i denotes the time when car i leaves

the subnetwork of agent g and enters another subnetwork,

Jleave
TTS,g(k) and Jleave

TEC,g(k) are estimates of the expected remaining

total time spent and the expected remaining total energy

consumption by the cybercars still in subnetwork g at time

(k +Np)T , from (k +Np)T to the time they leave the local

subnetwork.

Finally, the following local control problem is solved by

agent g:

min
{ri(k)|i∈Ωg(k)∪Ωg,in(k)}

Jg(k) (22)

s.t.

ri(k) ∈ Ri,g(k) (23)

where Ri,g(k) is a finite set of possible routes for cybercar i

to go through subnetwork g.

C. Multi-agent model predictive dynamic routing method

Considering the interconnections among subnetworks and

given the formulation of the local control problem of every

subnetwork, we adapt the parallel multi-agent MPC scheme

presented in [18] and apply it to the dynamic routing of cyber-

cars. More specifically, the interconnecting constraints among

subnetworks are removed from the constraint set and added to

the objective function in the form of additional penalties based

on an augmented Lagrangian formulation of the overall control

problem. By using such an approach, the formulated problem

becomes separable and can then be distributed over the agents.

At each control step, the agents solve their local problems

iteratively for fixed Lagrange multipliers, followed by updating

the Lagrange multipliers using local solutions. The iterations

stop when the Lagrange multipliers do not change anymore or

the maximum allowed number of iterations is reached. After

that, the agents implement the control actions until the next

control step, after which the whole procedure is repeated.

VI. PARAMETERIZED DYNAMIC ROUTING

Determining the routes for all cybercars by solving an

online optimization problem requires a huge computational

effort. Therefore, in order to obtain a balanced trade-off

between control performance and computational effort, we

propose the use of parameterized control methods. The main

idea of parameterized control is to parameterize the control

decision-making process and to optimize the parameters of the

control law by solving an optimization problem considering

the performance of the control method, see [20] and [21].

After that, the control input are determined by using the

parameterized control method with the optimized parameters.

In parameterized dynamic routing of cybercars, the selection

process for cybercars is described using a parameterized

control law that is a function of the state of the network.

The parameters are optimized so as to optimize the routing

performance including the total time spent and the total energy

consumption of cybercars. After that, at each control cycle, the

route of each cybercar is updated by selecting a route from a

limited set of possible routes from its current position to its

destination. Note that in different subnetworks, different values

of the parameters or even different parameterized control laws

may be used. For each parameterized dynamic routing method

in this paper, we consider that the same parameterized control

law is used but with different values of the parameters in

different subnetworks.

At any time, a finite set of possible routes for each cybercar

from its current position to its destination can be generated by

using the current state of the network and by using shortest-

route algorithms. More specifically, before a shortest-route

algorithm is called to generate the limited sets of possible

routes for cybercars, the estimated cost on each link j based

on the current state of the network is determined by:

c j = λ1

Llink, j

Llink,ave

+λ2
1

Tlink,ave

Msegment(j)

∑
m=1

Lm, j

Vm, j

(

ρm, j(k)
) (24)

where Llink, j denotes the length of link j, Llink,ave denotes the

average of Llink, j over all links, Tlink,ave denotes the average

link travel time over all links, Msegment(j) denotes the number

of segments in link j, λ1 and λ2 are given constants. One way

to determine Tlink,ave is given by:

v̄free =
∑

Mlink
j=1 ∑

Msegment(j)
m=1 vfree,m, j

∑
Mlink
j=1 Msegment(j)

(25)

Tlink,ave =
Llink,ave

γ · v̄free

(26)

where Mlink denotes the number of links in the network, v̄free

represents the average free-flow speed over all segments in all

links, and γ is a model parameter.

8

A. Parameterized control method 1

We define Ri(k) as the limited set of possible routes of

cybercar i generated at time kT . After that, for each r ∈ Ri(k),
we define Lroute(r) as the length of route r, Troute(r,k) as

the estimated travel time on route r, and Nroute(r,k) as the

estimated number of cybercars on route r.

Since the length of each link is fixed, the length of the route

r can be easily calculated by summing up of the lengths of

all the links belonging to route r. However, even if a route r

is given, the travel time and the number of cybercars on that

route are still time-dependent. Therefore, at any time when

Troute(r,k) and Nroute(r,k) are used, they have to be calculated

based on the current states of all cybercars and of the network.

In this paper, we propose three approaches to estimate

Troute(r,k) and Nroute(r,k):

• Approach 1: Only use the current state of the network:

Troute(r,k) = ∑
j∈r

Msegment(j)

∑
m=1

Lm, j

Vm, j

(

ρm, j(k)
) (27)

Nroute(r,k) = ∑
j∈r

Msegment(j)

∑
m=1

Nm, j(k) (28)

• Approach 2: Predict the future states of the network

assuming all cybercars follow the current routes and using

the simulation model:

ρ̄m, j(k) =
Np

∑
l=1

ρm, j(k+ l)

Np
(29)

Troute(r,k) = ∑
j∈r

Msegment(j)

∑
m=1

Lm, j

Vm, j

(

ρ̄m, j(k)
) (30)

Nroute(r,k) = ∑
j∈r

Msegment(j)

∑
m=1

Np

∑
l=1

Nm, j(k+ l)

Np
(31)

where ρ̄m, j(k) denotes the average traffic density in seg-

ment m of link j over [kT,(k+Np)T].
• Approach 3: Predict the future states of the network

assuming all cybercars follow the current routes. In this

approach, Nroute(r,k) is estimated in the same way as in

approach 2. However, different from approach 2, in this

approach, Troute(r,k) is estimated by

Troute(r,k) = ∑
j∈r

Msegment(j)

∑
m=1

Np

∑
l=1

Lm, j

Vm, j

(

ρm, j(k+ l)
)

1

Np
(32)

Next, at time step k, for each cybercar i in subnetwork g∈G

, we define a function for each r ∈ Ri(k):

ϕi

(

r,θg,k
)

= θg,1 ·
Lroute(r,k)

Lroute,ave,i(k)
+θg,2 ·

Troute(r,k)

Troute,ave,i(k)
+

+θg,3 ·
Nroute(r,k)

Nroute,ave,i(k)+κ
(33)

where θg,1, θg,2, and θg,3 are the parameters for subnetwork

g and Lroute,ave,i(k), Troute,ave,i(k), and Nroute,ave,i(k) are respec-

tively the average of Lroute(r,k), Troute(r,k), and Nroute(r,k) over

all r ∈ Ri(k) for cybercar i, and κ is a small positive number

added to the denominator to prevent division by 0. The route

of each cybercar i in subnetwork g at kT is then selected as

r∗i = arg min
r∈Ri(k)

ϕi

(

r,θg,k
)

(34)

where θg =
[

θg,1 θg,2 θg,3

]T
.

B. Parameterized control method 2

In this method, we first define Hn as the set of outgoing

links from node n and Rn,d(k) as the limited set of possible

routes from node n to node d generated at time kT . After

that, for each j ∈ Hn, we define L j as the length of link

j, and Tlink(j,k) and Nlink(j,k) as the estimated travel time

and estimated number of cybercars on link j at time kT ,

respectively.

We propose three approaches to estimate Tlink(j,k) and

Nlink(j,k). More specifically, at time step k, given the current

states of all cybercars and the current conditions of the

network, Tlink(j,k) and Nlink(j,k) are estimated as follows:

• Approach 1:

Tlink(j,k) =
Msegment(j)

∑
m=1

Lm, j

Vm, j

(

ρm, j(k)
) (35)

Nlink(j,k) =
Msegment(j)

∑
m=1

Nm, j(k) (36)

• Approach 2:

Tlink(j,k) =
Msegment(j)

∑
m=1

Lm, j

Vm, j

(

ρ̄m, j(k)
) (37)

Nlink(j,k) =
Msegment(j)

∑
m=1

Np

∑
l=1

Nm, j(k+ l)

Np
(38)

• Approach 3:

Tlink(j,k) =
Msegment(j)

∑
m=1

Np

∑
l=1

Lm, j

Vm, j

(

ρm, j(k+ l)
)

1

Np
(39)

Next, for each j ∈ Hn, we define r̃ j,di
as the shortest-time

route from the end of link j to the destination node di. After

that, for each cybercar i in an incoming link of node n with

the link in subnetwork g, we define the following function:

ϕi,n

(

j,θg,k
)

= θg,1 ·
Llink, j +Lroute(r̃ j,di

,k)

Lave,n,di
(k)

+θg,2 ·
Tlink(j,k)+Troute(r̃ j,di

,k)

Tave,n,di
(k)

+θg,3 ·
Nlink(j,k)+Nroute(r̃ j,di

,k)

Nave,n,di(k)+κ
(40)

where di denotes the destination of cybercar i, θg,1, θg,2, and

θg,3 are parameters for subnetwork g, and Lave,n,di
, Tave,n,di

, and

Nave,n,di
are respectively the average of Lroute(r,k), Troute(r,k),

and Nroute(r,k) over all r ∈ Rn,di
(k).

Finally, the route of each cybercar i in an incoming link of

node n and in subnetwork g is selected as follows:

9

• select the outgoing link from node n as

j∗ = arg min
j∈Hn

ϕi,n

(

j,θg,k
)

(41)

where θg =
[

θg,1 θg,2 θg,3

]T
.

• the entire route of cybercar i from node n to its destination

di is selected as:

r∗i = { j∗}∪ r̃ j∗,di
(42)

C. Parameterized control method 3

Extended from method 1, parameterized control method 3

determines the route for each cybercar in a sequential way with

updated network information (i.e., updated travel time and

updated number of cybercars on a route) taking the updated

routes of cybercars in the subnetwork into account.

In this method, we define Mn,d(k) as the number of cyber-

cars in the incoming links of node n at step k and heading to

destination d, and Sn,d(k) as the ordered set of the cybercars

ordered according to their predicted arrival times at node n

(e.g, based on their current speeds and the distance from their

current positions to node n). After that, the Mn,d(k) cybercars

for every n and every d update their routes in the following

sequential way:

i) for each r ∈ Rn,d(k), calculate Lroute(r,k), Troute(r,k) and

Nroute(r,k) .

ii) Let z = 1

a) for the z-th cybercar in Sn,d(k), update it route by

r∗i(z) = arg min
r∈Rn,d(k)

ϕi(z)

(

r,θg,k
)

where i(z) is the global cybercar index that corre-

sponds to the z-th cybercar in Sn,d(k).
b) update Troute

(

r∗
i(z),k

)

and Nroute

(

r∗
i(z),k

)

by

Troute

(

r∗i(z),k
)

← Troute

(

r∗i(z),k
)

·
(

1+
1 [m]

Lroute

(

r∗
i(z)

)

)

Nroute

(

r∗,k
)

← Nroute

(

r∗i(z),k
)

+1

iii) if z < Mn,d(k), update z ← z + 1 and go back to a);

otherwise, stop the procedure.

Note that ϕi(·) in this method is the same as (33).

D. Parameterized control method 4

Also extended from method 1, parameterized control

method 4 determines the splitting rates of the group of

cybercars over a limited set of possible routes.

In this method, for all r∈Rn,d(k), we first define Lmax
n,d,route(k)

as the length of the longest route, T max
n,d,route(k) as the longest

estimated travel time following a route, and Nmax
n,d,route(k) as the

largest number of cybercars on a route. Then we define

∆Lroute(r,k) = Lmax
n,d,route(k)−Lroute(r,k)

∆Troute(r,k) = T max
n,d,route(k)−Troute(r,k)

∆Nroute(r,k) = Nmax
n,d,route(k)−Nroute(r,k)

After that, we define a function φn,d

(

·
)

as

φn,d

(

r,θg,k
)

= θg,1 ·
∆Lroute(r,k)

Lave,n,d(k)
+θg,2 ·

∆Troute(r,k)

Tave,n,d(k)
+

+θg,3 ·
∆Nroute(r,k)

Nave,n,d(k)
(43)

where θg,1, θg,2, and θg,3 are parameters for subnetwork g.

Further, the percentage of the Mn,d(k) cybercars choosing

route r ∈ Rn,d(k) is determined by

Pn,d

(

r,θg,k
)

=
φn,d

(

r,θg,k
)

∑y∈Rn,d(k)
φn,d

(

y,θg,k
) (44)

Finally, the routes of cybercars in Sn,d(k) are updated as

follows:

i) the first round
(

Pn,d

(

rfirst,θg

)

· Mn,d(k)
)

cybercars in

Sn,d(k) select the first route rfirst in Rn,d(k).

ii) after that, the following round
(

Pn,d

(

rsecond,θg

)

·Mn,d(k)
)

cybercars in Sn,d(k) select the second route rsecond in

Rn,d(k).
iii) ...

ii) the remaining cybercars in Sn,d(k) select the last route

rlast in Rn,d(k).

Note that after Rn,d(k) is generated by using (24) and by

using a shortest route algorithm, all the routes in Rn,d(k) are

ordered in an increasing sequence based on their costs. Here,

{rfirst, ...,rlast} is the explicit representation of Rn,d(k).

E. Parameterized control method 5

Parameterized control method 5 is extended from method 2

as in the same way method 3 is extended from method 1.

In this method, the Mn,d(k) cybercars for every n and every

d update their routes in the following sequential way:

i) for each j ∈ Hn, calculate Llink(j,k) and Lroute(r̃ j,di
,k),

Tlink(j,k) and Troute(r̃ j,di
,k), Nlink(j,k) and Nroute(r̃ j,di

,k).
ii) Let z = 1

a) for the z-th cybercar in Sn,d(k), update its route by

first selecting the outgoing link from node n as:

j∗ = arg min
j∈Hn

ϕi(z),n

(

j,θg,k
)

and then set the entire route r∗
i(z) = { j∗}∪ r̃ j∗,di

.

b) update Troute

(

r∗
i(z),k

)

and Nroute

(

r∗
i(z),k

)

by

Troute

(

r∗i(z),k
)

← Troute

(

r∗i(z),k
)

·
(

1+
1 [m]

Lroute

(

r∗
i(z)

)

)

Nroute

(

r∗i(z),k
)

← Nroute

(

r∗i(z),k
)

+1

iii) if z < Mn,d(k), update z ← z + 1 and go back to a);

otherwise, stop the procedure.

Note that ϕi,n(·) in this method is the same as (40).

10

F. Parameterized control method 6

Finally, parameterized control method 6 is extended from

method 2 as in the same way method 4 is extended from

method 1.

Based on the definition of Lmax
n,d,route(k), T max

n,d,route(k) and

Nmax
n,d,route(k) in method 4, for each j ∈ Hn, we first define

ψn,d

(

j,θg,k
)

= θg,1 ·
Lmax

n,d,route(k)−
(

Llink, j +Lroute(r̃ j,d)
)

Lave,n,d

+θg,2 ·
T max

n,d,route(k)−
(

Tlink(j,k)+Troute(r̃ j,d)
)

Tave,n,d

+θg,3 ·
Nmax

n,d,route(k)−
(

Nlink(j,k)+Nroute(r̃ j,d)
)

Nave,n,d

(45)

where θg,1, θg,2, and θg,3 are parameters for subnetwork g.

After that, the percentage of the Mn,d(k) cybercars choosing

route { j}∪ r̃ j,d is determined by

Pn,d

(

j,θg,k
)

=
ψn,d

(

j,θg,k
)

∑y∈Hn
ψn,d

(

y,θg,k
) (46)

Finally, given Pn,d

(

j,θg,k
)

for all j ∈ Hn, all cybercars in

Sn,d(k) update their routes in the way same as in method 4.

G. Tuning the parameters for parameterized control methods

To tune the parameters of the proposed parameterized

control methods, we proceed as follows. We define a scenario

as a case where the transport service requests including the

starting times, the origins and the destinations of all cybercars,

are given. Then, the performance of a parameterized control

method on a specific scenario of the dynamic routing of

cybercars is evaluated by

Jo(θθθ) = w1 ·
JTTS,o

JTTS,typical,scenario

+w2 ·
JTEC,o

JTEC,typical,scenario

(47)

where o is the index of the scenario, θθθ =
[

θ T
1 θ T

2 ...
]T

,

JTTS,o and JTEC,o respectively denote the total time

spent and the total energy consumption by all cybercars,

JTTS,typical,scenario and JTEC,typical,scenario respectively denote the

typical values8 of the total time spent and the total energy

consumption by all cybercars in a representative scenario.

Finally, given a number Nscenario of representative scenarios,

the parameters θθθ of the parameterized control method are

tuned by minimizing the sum of Jo(θθθ) over the representative

scenarios. More specifically, the parameters θθθ are tuned by

solving the following nonlinear programming problem:

min
θθθ

Nscenario

∑
o=1

Jo(θθθ) (48)

s.t. model equations

8These values are e.g., the values of total time spent and total energy
consumption of all cybercars in a numerical simulation where the routes of
all cybercars are fixed or a simple route control strategy (e.g., fastest route)
is used.

1 2 3

5 6

8 9 10

2 5

11

3

7

6

10

4

7

11

8 9

1 4

12

13 14

15

16 17

18

subnetwork 1 subnetwork 2 subnetwork 3

Fig. 3. Road network used in the case study

TABLE II
FLOW DIVISION OF CYBERCARS IN EVERY SCENARIO

Flows able to update routes Flows with fixed routes
Index O - D Percentage Index O - D Percentage

1 5 - 7 40% 6 2 - 3 20%

2 1 - 10 15% 7 9 - 10 20%

3 8 - 3 15% 8 2 - 10 30%

4 2 - 11 15% 9 9 - 3 30%

5 9 - 4 15%

which is nonconvex and can be solved by using multiple runs

of nonconvex optimization algorithms, e.g. genetic algorithm,

simulated annealing, pattern search, or sequential quadratic

programming [37].

VII. SIMULATION STUDY

In this section, we perform simulation experiments to

compare and assess the performance of the proposed control

methods for dynamic routing of cybercars. We consider the

network shown in Figure 3, where there are 11 nodes and 18

links. Each link is 200 meters long and has 4 segments, with

each segment 50 meters long. In the simulations, we generated

30 scenarios, of which 20 are used for tuning the parameters

of the proposed control methods and the other 10 are used for

evaluating the performance of the proposed control methods.

For every scenario o, we set a number Ncar,enabled of cybercars

that are allowed to update routes and generate a random

number Ncar,fixed of cybercars with fixed routes. This is done

for the reason of considering more cybercars in the network

without dramatically increasing the computational complexity

of the control problem for centralized MPC and multi-agent

MPC. More specifically, for every scenario o, Ncar,enabled is

determined by

Ncar,enabled,o = 200+15×
(⌈o

3

⌉

−1
)

and Ncar,fixed is a random integer uniformly distributed in the

interval [100,200]. After Ncar,enabled and Ncar,fixed are set, the

cybercars are divided into 9 flows, which are summarized

in Table II. Note that for every three consecutive scenarios

starting from o = 1, we use the first two for tuning the

parameters of the proposed parameterized control methods and

use the third one for testing the control performance.

For every scenario, we define the departure times of cyber-

cars for each O-D flow as follows. For each of the flows 1,

2 and 3, the departure time of the first cybercar is a random

11

number uniformly distributed in [0.8,1.6] s. In order to create

congestion we let the first cybercar of flows 4 and 5 depart later

than that of flows 1, 2, and 3 by adding an offset of 40 s. So the

first cybercar in each of the flows 4 and 5 departs at (40+a) s,

where a is a random number uniformly distributed in [0.8,1.6].
For the subsequent cybercars in flows 1 to 5 the time interval

between the departure times of two consecutive cybercars is

a random number uniformly distributed in [0.8,1.6]. Besides,

for each flow of cybercars with fixed routes, the first cybercar

departs at (1.2+b) s, where is b a random number uniformly

distributed in [10,20]. After that, the time interval between the

departure times of two consecutive cybercars is 1.2 s.

The other parameters used in the simulations are: T = 1s,

w1 = 0.7, w2 = 0.3, Np = 20, JTTS,typical,scenario = 73202 s and

JTEC,typical,scenario = 11.68 kWh, Lveh = 3.2 m, ηmotor = 0.85,

γrecover = 0.38, vfree,m, j = 60 km/h for all m and all j, the mass

of each cybercar is M = 1000 kg, the time interval between

two consecutive control steps is Tc = 20 s. The simulations

are performed using Matlab 2015a on a cluster computer

consisting of 4 blades with 2 eight-core E5-2643 processors,

and 3.3 GHz clock rate and 64 GiB memory per blade.

We tuned the parameters for the six proposed parameterized

control methods with three different approaches for estimating

the travel time and the number of cybercars on a route. For

tuning the parameters of each of the 18 combinations, we

run the solver fmincon of the Matlab Optimization Toolbox

with the sequential quadratic programming (SQP) algorithm

60 times using random starting points to solve the nonlinear

programming problem (48). For simplicity of representation,

we refer to the six proposed parameterized dynamic routing

methods with their three different estimation approaches as

PCx-y, where x is the index of the parameterized dynamic rout-

ing method and y is the index of the estimation approach, e.g.,

PC4-3 presents the parameterized dynamic routing method 4

with estimation approach 3. The CPU times for tuning the

parameters for the proposed parameterized control methods

are in the range of 0.97 ·105 to 1.61 ·105 seconds.

After tuning the parameters, we evaluate the performance of

the parameterized control methods on the 10 different testing

scenarios. In order to show the effectiveness of the proposed

parameterized control methods, we compare the performance

of the proposed parameterized control methods on the testing

scenarios with those of centralized model predictive control,

multi-agent model predictive control, and three greedy control

methods using Dijkstra’s Algorithm. We refer to centralized

model predictive control, multi-agent model predictive control,

and greedy control methods in the following way:

• C-MPC: centralized MPC using multiple runs of the

genetic algorithm with a limited total computation time

(i.e., for all runs together) of 3600 s at each control step

• MA-MPC: multi-agent MPC with each agent solving

its local problem using bilevel optimization with the

following procedure:

– fix the binary variables and next solve the problem

to obtain the real decisions using fmincon/SQP

– solve the binary optimization problem using the

genetic algorithm

TABLE III
AVERAGE ONLINE COMPUTATION TIMES (S) OF THE CONTROL METHODS

Control methods Average online computation times (s)

Centralized MPC 69586

Multi-agent MPC 66502

Greedy control 0.07 - 0.14

Parameterized control 0.37 - 4.02

with a limited total computation time of 3600 s at each

control step

• GC1: greedy control method 1, i.e. shortest distance

routing method, using Dijkstra’s algorithm based on (24)

with λ1 = 1 and λ2 = 0

• GC2: greedy control method 2, i.e. shortest time routing

method, using Dijkstra’s algorithm based on (24) with

λ1 = 0 and λ2 = 1

• GC3: greedy control method 3, i.e. combined distance and

time routing method, using Dijkstra’s algorithm based on

(24) with λ1 = 0.3 and λ2 = 0.7

The average online computation times of all control methods

over the testing scenarios are summarized in Table III. For

the sake of compactness, only the ranges of average online

computation times of the greedy control (GC) methods and

the parameterized control (PC) methods are provided.

Since GC3 has the best performance among all the greedy

control methods, we use GC3 as the benchmark and calculate

the performance improvement of the other control methods

for the testing scenarios. More specifically, the performance

improvement of a routing method on a specific scenario o

compared with that of GC3 on the same scenario is given by

Pim,o =
JGC3,o− Jo

JGC3,o
×100%

The average performance improvement and the standard devi-

ation of the performance improvement of the routing control

methods compared with GC3 over all the testing scenarios

are summarized in Table IV. Note that in the second column,

a positive number in a cell indicates that the corresponding

control method performs better than GC3 on the average

over all the testing scenarios. We found that parameterized

control method 4 with estimation approach 1 (i.e. PC4-1, the-

flow-splitting-rate-based parameterized control method) has

the best performance among all the proposed parameterized

control methods and it has an average performance improve-

ment of 5.04% on the testing scenarios compared with GC3.

Therefore, PC4-1 is selected as the representative of the

proposed parameterized control methods to compare further

with centralized MPC, multi-agent MPC, and GC3 on all

the testing scenarios. More specifically, Figure 4 shows the

performance of centralized MPC, multi-agent MPC, GC3, and

PC4-1 for all the testing scenarios.

Actually, we are performing state feedback routing control

of cybercars with the proposed parameterized control methods.

Different from the prediction of future state of the network

in model predictive control where the decision variables are

free, in estimation approach 2 and approach 3, the future

state of the network are estimated assuming the routes of all

12

TABLE IV
AVERAGE PERFORMANCE IMPROVEMENT OF THE OTHER CONTROL

METHODS WITH RESPECT TO GC3 FOR ALL TESTING SCENARIOS, WHERE

A POSITIVE NUMBER INDICATES A BETTER PERFORMANCE

Control method Performance improvement Standard deviation

C-MPC 6.36% 4.4%

MA-MPC 1.45% 1.4%

GC1 -4.20% 3.7%

GC2 -0.71% 2.3%

PC1-1 2.67% 7.7%

PC1-2 4.46% 8.7%

PC1-3 3.45% 7.9%

PC2-1 1.99% 7.5%

PC2-2 2.92% 7.7%

PC2-3 3.29% 8.6%

PC3-1 3.89% 7.7%

PC3-2 2.86% 8.8%

PC3-3 4.26% 8.4%

PC4-1 5.04% 8.1%

PC4-2 3.46% 8.4%

PC4-3 2.95% 8.3%

PC5-1 1.45% 8.3%

PC5-2 3.24% 7.4%

PC5-3 3.18% 7.2%

PC6-1 3.90% 8.3%

PC6-2 1.87% 8.1%

PC6-3 1.36% 8.9%

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

scenario index

J

GC3

C−MPC

MA−MPC

PC4−1

Fig. 4. Performance of GC3, centralized MPC, multi-agent MPC and PC4-1
for all testing scenarios

cybercars are fixed. If the updated routes of the cybercars are

very different from the fixed ones for estimating the future

state of the network, then the actual state of the network after

the control step could be very different from the estimated

states obtained by estimation approach 2 and approach 3.

Therefore, even though only the current state of the network

are used in estimation approach 1, there is no guarantee that

estimation approach 2 and approach 3 perform better than

estimation approach 1 in estimating the travel time and the

number of cybercars on the routes in the network. Hence,

there is no guarantee that a proposed parameterized control

method with estimation approach 2 or approach 3 would have

better performance in routing control of cybercars than that

with estimation approach 1.

Further, it is seen from Table IV that the centralized

MPC performs the best on the testing scenarios with an

average performance improvement of 6.36% compared with

GC3. However, this is achieved by consuming much more

computational power, see Table III. For the multi-agent MPC,

since the overall problem is a mixed integer nonlinear pro-

gramming problem, there is no guarantee of convergence of

interconnecting variables among subnetworks. In fact, even if

given the same computational budget as that of the centralized

MPC, the multi-agent MPC does not obtain a performance

that is comparable to that of centralized MPC. In contrast,

the proposed parameterized control method PC4-1 provides

a comparable average performance to that of the centralized

MPC on the testing scenarios with much less online compu-

tation time, also see Table III. For the standard deviations of

the performance improvement compared with GC3, those of

the centralized MPC and the multi-agent MPC are smaller

than those of the parameterized control methods. That is

because the centralized MPC and the multi-agent MPC use

online optimization for every scenario while the parameters

of the parameterized control methods are tuned based on

representative scenarios and then fixed for online use.

Finally, it is seen from Figure 4 that PC4-1 performs better

than GC3 on 9 of the 10 testing scenarios and performs

better than the multi-agent MPC on 7 of the testing scenarios.

Besides, the centralized MPC only performs better than PC4-

1 on 6 of the testing scenarios while on the other 4 it is

outperformed by PC4-1. Moreover, it has to be noted that the

average online computation time of PC4-1 for all the testing

scenarios is only 0.42 s. Therefore, the parameterized control

method PC4-1 is an efficient method for the dynamic routing

of a fleet of cybercars.

VIII. CONCLUSIONS

We have addressed the dynamic routing problem of a fleet of

cybercars considering the dynamics and the energy consump-

tion of every cybercar according to the real-time conditions of

the road network. To minimize the total cost for all cybercars,

i.e. a combination of the total time spent and the total energy

consumption, we have developed tractable and scalable multi-

agent control methods including multi-agent model predictive

control and parameterized control. Numerical simulation re-

sults indicate that the flow splitting rate based parameterized

control method shows comparable control performance to that

of centralized model predictive control while requiring much

less online computation time. Besides, the-flow-splitting-rate-

based parameterized control method can be easily applied to

road networks with arbitrary topology. Therefore, the flow-

splitting-rate-based parameterized control method is effective

in solving the dynamic routing problem of a fleet of cybercars.

In our future work, we will first focus on increasing the

computation efficiency of the proposed dynamic routing meth-

ods by investigating different levels of model aggregation. We

will also perform more detailed case studies for extensive as-

sessment of the performance and the efficiency of the proposed

multi-agent dynamic routing methods including more complex

scenarios with larger-scale road networks. In addition, we

will consider the scenarios where conventional vehicles and

cybercars coexist in the network and address the joint dynamic

routing of conventional vehicles and cybercars. Furthermore,

we will validate the proposed model of the dynamics of

cybercars and the proposed dynamic routing methods using

actual data.

13

REFERENCES

[1] M. Parent and P. Texier. A public transport system based on light electric
cars. In Proceedings of 4th International Conference on Automated

People Movers, pages 154–161, Irving, USA, March 1993.

[2] M. Parent. Cybercars for sustainable urban mobility - A European
collaborative approach. SAE International Journal of Passenger Cars-

Electronic and Electrical Systems, 3(2):220–223, 2010.

[3] A. Awasthi, S. S. Chuanhan, M. Parent, and J. M. Proth. Centralized
fleet management system for cybernetic transportation. Expert Systems

with Applications, 38(4):3710–3717, 2011.

[4] M. Parent, G. Gallais, A. Alessandrini, and T. Chanard. Cybercars:
Review of first projects. In Proceedings of 9th International Conference

on Automated People Movers, Singapore, September 2003.

[5] M. Yang, C. Wang, R. Yang, and M. Parent. Cyberc3: Cybercars
automated vehicles in China. In Proceedings of Transportation Research

Board Annual Meeting, Washington, D.C., USA, January 2006.

[6] L. Vlacic, M. Parent, and F. Harashima. Intelligent vehicle technologies:

theory and applications. Butterworth-Heinemann, 2001.

[7] C. Hatipoglu, U. Ozguner, and K. Redmill. Automated lane change
controller design. IEEE Transactions on Intelligent Transportation

Systems, 4(1):13–22, 2003.

[8] D. Corona and B. De Schutter. Adaptive cruise control for a smart
car: A comparison benchmark for MPC-PWA control methods. IEEE

Transactions on Control Systems Technology, 16(2):365–372, 2008.

[9] T. Berger, Y. Sallez, S. Raileanu, C. Tahon, D. Trentesaux, and T. Bo-
rangiu. Personal rapid transit in an open-control framework. Computer

& Industrial Engineering, 61(2):300–312, 2011.

[10] T. Garaix, C. Artigues, D. Feillet, and D. Josselin. Vehicle routing prob-
lems with alternative paths: An application to on-demand transportation.
European Journal of Operational Research, 204(1):62–75, 2010.

[11] A. Hegyi, B. De Schutter, and J. Hellendoorn. Optimal coordination of
variable speed limits to suppress shock waves. IEEE Transactions on

Intelligent Transportation Systems, 6(1):102–112, 2005.

[12] A. Kotsialos, I. Papamichail, I. Margonis, and M. Papageorgiou. Hier-
archical nonlinear model-predictive ramp metering control for freeway
networks. In Proceedings of the 11th IFAC Symposium on Control in

Transportation Systems, pages 124–129, Delft, The Netherlands, 2006.

[13] J. R. D. Frejo and E. F. Camacho. Global versus local MPC algorithms
in freeway traffic control with ramp metering and variable speed limits.
IEEE Transactions on Intelligent Transportation Systems, 13(4):1556–
1565, 2012.

[14] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar. Distributed
model predictive control. IEEE Control Systems Magazine, 22(1):44–
52, 2002.

[15] A. N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright. Distributed
MPC strategies with application to power system automatic generation
control. IEEE Transactions on Control Systems Technology, 16(6):1192–
1206, 2008.

[16] B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G. Pan-
nocchia. Cooperative distributed model predictive control. Systems &

Control Letters, 59(8):460–469, 2010.

[17] J. M. Maestre, D. Muñoz de la Peña, and E. F. Camacho. Distributed
model predictive control based on a cooperative game. Optimal Control

Applications and Methods, 32(5):153–176, 2011.

[18] R. R. Negenborn, B. De Schutter, and J. Hellendoorn. Multi-agent model
predictive control for transportation networks: Serial versus parallel
schemes. Engineering Applications of Artificial Intelligence, 21(3):353–
366, 2008.

[19] S. K. Zegeye, B. De Schutter, J. Hellendoorn, E. A. Breunesse, and
A. Hegyi. A predictive traffic controller for sustainable mobility
using parameterized control policies. IEEE Transactions on Intelligent

Transportation Systems, 13(3):1420–1429, 2012.

[20] R. Oung, M. P. Cruz, and R. D’Andrea. A parameterized control
methodology for a modular flying vehicle. In Proceedings of the 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 532–538, Algarve, Portugal, 2012.

[21] A.N. Tarău, B. De Schutter, and J. Hellendoorn. Model-based control for
route choice in automated baggage handling systems. IEEE Transactions

on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
40(3):341–351, 2010.

[22] R. Luo, T.J.J. van den Boom, and B. De Schutter. Modeling of the
dynamics and the energy consumption of a fleet of cybercars. In
Proceedings of the 2014 European Control Conference, pages 720–725,
Strasbourg, France, June 2014.

[23] M. Treiber and A. Kesting. Traffic Flow Dynamics: Data, Models and

Simulation. Springer-Verlag, 2010.

[24] D. Helbing. Derivation of a fundamental diagram for urban traffic flow.
The European Physical Journal B, 70(2):229–241, 2009.

[25] S. Yagar and M. Van Aerde. Geometric and environmental effects on
speeds of 2-lane highways. Transportation Research Part A: General,
17(4):315–325, 1983.

[26] A. Bose and P. Ioannou. Mixed manual/semi-automated traffic: a
macroscopic analysis. Transportation Research Part C: Emerging

Technologies, 11(6):439–462, 2003.
[27] G. Dervisoglu, G. Gomes, J. Kwon, R. Horowitz, and P. Varaiya. Auto-

matic calibration of the fundamental diagram and empirical observations
on capacity. In Proceedings of Transportation Research Board Annual

Meeting, Washington, D.C., USA, January 2009.
[28] D. MacKay. Sustainable Energy-Without the Hot Air. UIT Cambridge,

2008.
[29] L. Rambaldi, E. Bocci, and F. Orecchini. Preliminary experimental

evaluation of a four wheel motors, batteries plus ultracapacitors and
series hybrid powertrain. Applied Energy, 88(2):442–448, 2011.

[30] E. F. Camacho and C. Bordons. Model Predictive Control in Process

Industry. Springer-Verlag, Berlin, Germany, 1995.
[31] J. M. Maciejowski. Predictive Control with Constraints. Prentice-Hall,

Harlow, England, 2002.
[32] E. W. Dijkstra. A note on two problems in connection with graphs.

Numerische Mathematik, 1(1):269–271, 1959.
[33] D. Eppstein. Finding the K shortest paths. SIAM Journal on Computing,

28(2):652–673, 1998.
[34] P. M. Pardalos and M. G. C. Resende, editors. Handbook of Applied

Optimization. Oxford University Press, Oxford, UK, 2002.
[35] D. R. Jones. DIRECT global optimization algorithm. In Encyclopedia

of Optimization, pages 431–440. Springer, 2001.
[36] C. A. Farrell, D. H. Kieronska, and M. Schulze. Genetic algorithms for

network division problem. In Proceedings of the 1st IEEE Conference

on Evolutionary Computation, pages 422–427, 1994.
[37] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

