
Delft University of Technology
Delft Center for Systems and Control

Technical report 17-012

Power scheduling in islanded-mode
microgrids using fuel cell vehicles∗

F. Alavi, N. van de Wouw, and B. De Schutter

If you want to cite this report, please use the following reference instead:
F. Alavi, N. van de Wouw, and B. De Schutter, “Power scheduling in islanded-mode
microgrids using fuel cell vehicles,” Proceedings of the 56th IEEE Conference on
Decision and Control, Melbourne, Australia, pp. 5056–5061, Dec. 2017. doi:10.
1109/CDC.2017.8264408

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/17_012.html

https://doi.org/10.1109/CDC.2017.8264408
https://doi.org/10.1109/CDC.2017.8264408
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/17_012.html


Power Scheduling in Islanded-Mode Microgrids using Fuel Cell Vehicles

Farid Alavi, Nathan van de Wouw, and Bart De Schutter

Abstract— We consider power scheduling in a microgrid
operated in the islanded mode. It is assumed that at any time
all the renewable energy sources are generating the maximum
achievable electrical power based on the weather conditions and
the power balance of the microgrid is exclusively done by a fleet
of fuel cell cars. As a result, the uncertainty in the prediction
of the load will also make the future power generation of the
fuel cell cars uncertain and, hence, a robust control method
should be used to operate the fuel cell cars. We develop a
min-max model predictive control approach to schedule the
power generation profile of the fuel cell cars. Furthermore,
we develop an alternative approach, a min-max disturbance
feedback approach, in order to reduce the conservatism of the
min-max approach. Finally, an illustrative case study shows the
performance of the proposed approaches.

I. INTRODUCTION

A microgrid that includes some loads and renewable
energy sources and that is operated in the islanded mode is a
promising structure for future power grids as the distributed
power generation units can be included in this structure [1].
If the wind and solar energy are the only available sources
of renewable energy, the power balance of a microgrid
cannot be guaranteed solely based on the renewable energy
sources (RES) because the variation in the generated power
is an inherent feature in any wind turbine or solar photo-
voltaic system. Such an islanded-mode microgrid needs a
mechanism to store energy whenever the power generation
of the RESs is higher than the load. In addition, another
mechanism to regenerate electricity from the stored energy is
necessary when the generation of RESs is less than the load.
The ability to store energy and to recover electrical power
from the stored energy can provide the necessary flexibility
to the microgrid.

Fuel cell cars are a new type of vehicles that use hydrogen
as the main source of energy. This type of cars are equipped
with a fuel cell stack, in which the chemical energy of hy-
drogen is converted into electricity. The generated electricity
is used to drive an electrical motor; as such, the fuel cell is
being used for transportation. It is also possible to connect
the fuel cell to the power grid and, consequently, to use
the fuel cell car as an electrical power generation unit. This
is the car as power plant concept [2]. Therefore, a fleet of
fuel cell cars can create part of the required flexibility in
the microgrid. Another part of the required flexibility, i.e.,
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a mechanism to store energy, can be realized by using a
water electrolysis system. The generated hydrogen in an
electrolyzer can then be used by the cars as a fuel for
transportation or for the generation of electricity at a later
time.

In [3], the problem of power scheduling is formulated as
a mixed integer linear programming problem. Herein, the
uncertainty in the prediction of the load is not considered.
To deal with the uncertainty in the microgrid, robust and
stochastic methods have been developed in [4] and [5]. [6]
developed a min-max MPC strategy that is able to deal
with the uncertainty in the prediction of the load. However,
the approach developed in [6] assumes curtailment in the
generation of renewable energy sources. In addition, the
concept of using fuel cell cars and water electrolysis system
is not considered there.

In this paper, we consider a microgrid in the islanded mode
that includes a fleet of fuel cell cars, a water electrolysis
system, and some RES units. This scenario is different from
[7] and [8] because we consider a microgrid in the islanded
mode. As will be shown later, to satisfy the energy balance
of the islanded mode microgrid, the power generation of
fuel cell cars cannot be determined accurately in advance.
Therefore, the future power generation profile of the fuel
cell cars and also the future evolution of the system states
are uncertain. A min-max robust model predictive control
method is developed to tackle this problem. Toward this
goal, a model of the microgrid is developed that considers
different operation modes of the devices. We show that the
proposed control method guarantees the satisfaction of the
system constraints and how it can be used in the energy
management system of the microgrid. Another development
in the control method of this paper compared to that in [7]
is the reduction of the conservatism by getting closer to the
optimal operational cost compared to the min-max approach,
where we propose an alternative method, called the min-
max disturbance feedback approach. Finally, a numerical
simulation is done to indicate the system performance and to
explicate the enhancement that is achieved by the developed
min-max disturbance feedback approach.

II. PROBLEM STATEMENT

A microgrid is considered that contains uncontrollable
loads, renewable energy sources, a water electrolysis system,
and fuel cell cars. It is assumed that the fuel cell cars
are connected to the electrical network of the microgrid
and that they can be used for both power generation and
transportation; a specific car might be used in one of these
two tasks, but not both tasks at the same time. A storage



tank of hydrogen is considered inside the microgrid and it
is assumed that the stored hydrogen in this tank is used to
refill the fuel cell cars. The hydrogen produced by the water
electrolysis system will be added to the storage tank.

Even though the power generation of RES units and some
part of the microgrid’s load can be controlled, in this paper
we assume that only the fleet of fuel cell cars is under control
and that at any time, the RES units generate the maximum
electrical power possible given the weather conditions. It
is assumed that a prediction of the future generation of
RES and the electricity demand of the load is available,
as it is a standard assumption in the literature on MPC for
such applications. Therefore, an estimate of the profile of
the residual load, i.e., the difference between the household
electrical demand and the RES generation, is assumed to be
available. Due to the inaccuracy that exists in such prediction,
the profile of the residual load is considered to be uncertain.

The energy management system is responsible for main-
taining the power balance of the microgrid. The assumption
of an uncontrollable load and the maximum generation of the
RES means that the residual load of the microgrid should be
compensated by the fuel cell cars and the water electrolysis
system. In order to guarantee the power balance condition of
the microgrid, a lower-level controller is embedded in each
fuel cell car. These lower-level controllers aim to maintain
the voltage and the frequency of the grid at the desired set-
points. Note that the design of lower-level controllers in an
islanded mode microgrid is an open issue and the interested
reader is referred to [9] and the references therein for more
information about the challenges in this area. However, the
focus of this paper is on the higher-level control system
and we assume that each fuel cell car is equipped with a
lower-level control system that can guarantee the stability
of the microgrid in short time scales, from milliseconds to
seconds. The presence of lower-level controllers will result
in a deviation between the scheduled and the actual power
generation profile for each fuel cell car. This deviation is due
to the uncertainty that exists in predicting the load and RES
generation inside the microgrid.

Even though the lower-level controllers of the cars are
able to guarantee the stability of the system, the physical
constraints of the fuel cells and the desire to operate the
system with the minimum cost necessitate the use of higher-
level control. This level of control considers the scheduling
of the power generation or demand of every controllable
device inside the microgrid and the outputs of this control
level are the set-points of the lower-level controllers. The
power scheduling should be done in such a way that the
operational cost of the microgrid is minimized, while the
physical constraints of the system are satisfied.

III. MODELING

A. Model of the fuel cell cars

Because the aim of modeling is to describe the system
behavior from the energy point of view, we only consider the
elements of a fuel cell car that influence the power generation
and storage of energy. The level of fuel in the storage tank

of the car number i, xf,i, is considered as a system state.
The fuel cell stack consumes the stored hydrogen in order
to generate electricity. When the fuel cell of car number i is
operated in order to generate electricity, we have [10]:

xf,i(k + 1) = xf,i(k)− (αf,iu
∗
f,i(k) + βf,i)Ts, (1)

where αf,i and βf,i are model parameters. The time step
interval is represented by Ts and the actual power generation
of the fuel cell stack at time step k is assumed to be u∗

f,i(k).
The lower-level controllers will cause a difference,

wf,i(k), between the actual power generation, u∗
f,i(k), and

the scheduled power generation, uf,i(k);

u∗
f,i(k) = uf,i(k) + wf,i(k). (2)

The dynamics of the stored hydrogen of car number i during
generation of electricity can be written as:

xf,i(k+1) = xf,i(k)−
(
αf,i(uf,i(k)+wf,i(k))+βf,i

)
Ts. (3)

The mismatch between the prediction and the actual residual
load of the microgrid, w(k), is compensated with the total
unscheduled power generation of fuel cell cars, i.e.,

w(k) =

Nveh∑
i=1

wf,i(k).

A binary control input, sf,i(k), indicates the on/off operat-
ing mode of the fuel cell i. We assume that whenever sf,i(k)
is equal to 0 or 1, the fuel cell i is in the off or on mode,
respectively. Another binary control input, sr,i(k), indicates
the refilling process of fuel cell car i. Whenever sr,i(k) = 1,
the fuel cell is in the refilling mode; during this mode, the
fuel cell car is disconnected from the microgrid and the fuel
tank of the car is filled with an amount Rf,i at each time step.
Therefore, during refilling the dynamics of the fuel level of
the car can be represented by xf,i(k + 1) = xf,i(k) +Rf,i.

A sequence of binary numbers, λf,i(k), λf,i(k + 1), . . . ,
is used to indicate the transportation mode of the car. We
assume that λf,i(k + j) = 1 indicates that at time step k +
j, fuel cell car i is in the transportation mode. Otherwise,
λf,i(k + j) = 0, and the car is ready to be connected to the
microgrid. Considering historical data and the behavior of
each driver, it is possible to predict a time interval that a car
is used for transportation purposes. As a result, it is possible
to determine the sequence of λf,i for the future. The fuel
consumed by car i during a trip that starts from time step k
and ends at time step k + j, is assumed to be hf,i(k + j).

Summarizing, the piecewise affine model of the fuel cell
car i can be written in the following form:

xf,i(k+1) =


xf,i(k) +Rf,i refilling
xf,i(k) no generation
xf,i(k)− (αf,iu

∗
f,i(k) + βf,i)Ts generation

xf,i(k) transportation
xf,i(k)− hf,i(k) arrival.

The interested reader is referred to [7] for more details and
the motivation of this model.

There are several constraints in the operation of a fuel
cell car that are related to either the operation mode or



the physical constraints of the system. The first constraint
is related to the transportation mode of the car: if a car is
used for transportation at time step k, then it cannot be in
the refilling process nor in the generation mode:

if λf,i(k) = 1 then sr,i(k) = 0

if λf,i(k) = 1 then sf,i(k) = 0.

In addition, we assume that a car is disconnected from the
grid during the refilling process, i.e.

if sr,i(k) = 1 then sf,i(k) = 0.

The physical constraints consist of the maximum power gen-
eration of a fuel cell, ūf,i, and the minimum and maximum
level of the fuel tank, xf,i and x̄f,i. We assume that whenever
the fuel level of a car is under the minimum level, the fuel
cell stack is turned off, i.e. if xf,i(k) ≤ xf,i then sf,i(k) = 0.
These constraints can be expressed in the following form:

0 ≤ uf,i(k) ≤ ūf,i

xf,isf,i(k) ≤ xf,i(k) ≤ x̄f,i.

B. Model of the water electrolysis system

The water electrolysis system is used in order to produce
hydrogen and to store it in the hydrogen storage system. It
is assumed that the hydrogen production is exclusively done
via water electrolysis. Therefore, one model is derived for
both the hydrogen storage system and the water electrolysis
system. The level of stored hydrogen, xel, is considered as
the system state and the power demand of the electrolyzer
at time step k, uel(k), is the control input. Following an
approach similar to [7], the piecewise affine model of the
electrolyzer and the hydrogen storage system is:

xel(k + 1) =

 xel(k)−
∑Nveh

i=1 sr,i(k)Rf,i OFF

xel(k)−
∑Nveh

i=1 sr,i(k)Rf,i

+Tsαeluel(k) ON,

where Nveh is the total number of fuel cell cars and αel is
a model parameter. The operating modes of the electrolyzer,
OFF and ON, are determined at each time step k by a
binary control input, sel(k). Whenever sel(k) = 1, the water
electrolysis system is turned on. The hydrogen consumption
of the cars is present in both modes and expressed by the
term

∑Nveh

i=1 sr,i(k)Rf,i.
The physical constraints of the hydrogen storage system

impose a minimum and a maximum limit on the level of
stored hydrogen, xel and x̄el, respectively. In addition, there
is a maximum power demand for the water electrolysis
system. These constraints can be written as:

0 ≤ uel(k) ≤ ūel (4)
xel ≤ xel(k) ≤ x̄el. (5)

The definition of the binary control input sel(k) implies that
whenever sel(k) = 0, the power demand of the electrolyzer
should be equal to zero. Using (4), this can be expressed as:

if sel(k) = 0 then uel(k) ≤ 0. (6)

C. Total model of the system

The piecewise affine models developed in Sections III-A
and III-B can be converted into a mixed logical dynamical
(MLD) model [11] using standard techniques [12]. There-
fore, the overall system model can be written as:

x(k + 1) = x(k) +B1(w(k))u(k) +B3(k)z(k) +B4(k),
(7)

where x, u, and z are defined as:

x =
[
xf,1 . . . xf,Nveh

xel

]T
(8)

u = [ uf,1 sr,1 sf,1 . . . uf,Nveh
sr,Nveh

sf,Nveh
uel sel ]

T

z =
[
zf,1 . . . zf,Nveh

zel
]T

.

The variables zf,i := sf,iuf,i and zel := seluel are continuous
auxiliary variables and B1(k), B3(k), and B4(k) are:

B1(k) =

[
blkdiag

(
b11(k), . . . , b

Nveh
1 (k)

)
0[

b12 . . . bNveh
2

]
0

]

B3(k) =

[
blkdiag

(
b13(k), . . . , b

Nveh
3 (k)

)
0

0 bel3 (k)

]
B4(k) = [ −λf,1(k)h1(k) . . . − λf,Nveh

(k)hNveh
(k) 0]

T
,

where blkdiag{.} indicates a block diagonal matrix with the
arguments as diagonal blocks. For all i ∈ {1, . . . , Nveh},
bi1(k) =

[
0 Rf,i −λf,i(k)Ts(βf,i + αf,iwf,i(k))

]
, bi2 =[

0 −Rf,i 0
]
, bi3(k) = −λf,i(k)Tsαf,i, and bel3 (k) =

αelTs.
All the mentioned constraints of the system at time step

k can be written as one inequality of the form:

E1u(k) + E4x(k) + E5(k) ≥ E3z(k). (9)

IV. CONTROL ALGORITHM

To schedule the power generation of the fuel cell cars and
the power demand of the water electrolysis system, an MPC
algorithm is designed. Assuming that predictions about the
household loads and the renewable energy generation are
available, the power scheduling of the other devices is done
via minimizing the operational cost of the system, subject to
all the operational constraints. To deal with the uncertainty
that exists in the cost function and in the constraints, two
approaches, namely a min-max approach and a min-max
disturbance feedback approach, are developed in this section.

Three important factors define the operational cost [7]: the
cost of power generation or power demand of the devices,
the switching cost of the devices, and the cost of stabilizing
actions done by the low-level controllers of the fuel cell cars.

Switching the operation mode of the fuel cells and the
electrolyzer will decrease their lifetime [13] and, hence, it is
considered as the first factor influencing the operational cost.
The first line of (10) represents this part of the cost function.

The second factor is related to the cost of power generation
of fuel cell cars and power demand of water electrolysis
system. This part of the cost originates from two sources.
The first source is the degradation of the devices during the
usage. It is assumed that one part of the degradation of the



device is related to the generated or consumed power. The
second source is the price of the hydrogen consumed in the
fuel cell cars or produced in the water electrolysis system.
Considering the linear relation between the consumed hy-
drogen and the generated electricity in the fuel cell cars, and
between the produced hydrogen and electricity consumed in
the electrolyzer, one may express the price of consumed or
produced hydrogen in terms of the generated or consumed
electricity. The second line of (10) represents this factor.

The third factor is related to the compensation of the effort
made by the low-level controllers of the fuel cell cars. The
low-level controllers of the fuel cell cars are responsible
for stabilizing the voltage and frequency of the microgrid.
The effort of fuel cell cars in stabilizing the voltage and
frequency of the microgrid is measured by the deviation
between the actual and scheduled power generation and it
should be rewarded. In the current set-up of the microgrid,
the resulting rewards for the fuel cell cars can be considered
as an extra part of the operational cost, which is represented
by the third line of (10).

The definition of the cost function is then as follows:

J(k) =

Np−1∑
j=0

[Nveh∑
i=1

Wsf |∆sf,i(k + j)|+Wsel|∆sel(k + j)|

+

Nveh∑
i=1

Wpfuf,i(k + j) +Wpeluel(k + j)

+ Ce(k + j)w(k + j)
]
, (10)

where Np and Nveh represent the prediction horizon and the
number of vehicles, respectively and where ∆s(j) = s(j)−
s(j−1). The weights Wsf , Wsel, Wpf , and Wpel indicate the
influence of the switching and the power generation or power
demand cost of the devices in the total operational cost. The
total reward that is paid to the fuel cell cars for stabilizing the
microgrid is equal to the total unscheduled power generation,
w(k), multiplied by an electricity tariff Ce(k) at time step
k. Therefore, the term Ce(k)w(k) represents a part of the
operational cost that is related to the reward for fuel cell
cars. Here, the total mismatch between the scheduled power
generation and the actual power generation is equal to the
total unscheduled power generation of all the fuel cell cars,
i.e. w(k) =

∑Nveh

i=1 wf,i(k).
The operational cost can be written as:

J(k) = Wv(k)Ṽ (k) +Wd(k)w̃(k). (11)

The vector Ṽ (k) in (11) contains all the optimization vari-
ables; i.e. Ṽ (k) =

[
ũ(k)T z̃(k)T

]T
, where the tilde

notation indicates a vector containing the value of its operand
from time step k to k + Np − 1. Therefore, w̃(k) =[
w(k) . . . w(k +Np − 1)

]T
.

It is easy to verify that the system constraints for all the
time steps in the prediction horizon can be written as:

F1(w̃(k))Ṽ (k) ≤ F2(k) + F3(k)x(k). (12)

A. Min-max approach

In the min-max approach, the optimization problem that
should be solved at each time step k in the model predictive
controller is as follows:

min
Ṽ (k)

max
w̃(k)

Wv(k)Ṽ (k) +Wd(k)w̃(k) (13)

subject to (12), for all w̃(k).

The presence of a maximum over all possible realizations of
the uncertain parameter w(k) in the cost function (11) and
the necessity to satisfy the constraint (12) for any realization
of w̃(k) make the optimization problem (13) hard to solve.
However, using the following assumption and Lemma 1
below will result in a simpler problem formulation.

Assumption 1: The uncertainty in the prediction of the
residual load of the microgrid is bounded for all k, i.e., w ≤
w(k) ≤ w̄.

Lemma 1: Defining w̃1 =
[
w̄ w̄ . . . w̄

]T
1×Np

,

w̃2 =
[
w̄ w̄ . . . w

]T
1×Np

, . . . , w̃N =[
w w . . . w

]T
1×Np

, the inequality (12) holds for
all possible disturbances w(k) satisfying Assumption 1 if
the following N = 2Np inequalities hold:

F1(w̃1)Ṽ (k) ≤ F2(k) + F3(k)x(k) (14)
...

F1(w̃N )Ṽ (k) ≤ F2(k) + F3(k)x(k).

Proof : Considering the structure of F1(w̃(k)), F2(k), and
F3(k), each row of inequality (12) can be written in the form:

γ1w(k) + γ2w(k + 1) + · · ·+ γNp
w(k +Np − 1) ≤ a,

(15)

where a, γi ∈ R for all i. The maximum value
of the left-hand side of (15) will be realized at
a specific realization of the uncertainty w̃∗(k) =[
w∗(k) . . . w∗(k +Np − 1)

]T
. Considering that the

left-hand side of (15) is linear with respect to w and also
that w ≤ w(k+ j) ≤ w̄ for all j, the value of w̃∗(k) will be
equal to one of the w̃i defined in Lemma 1. Based on (14),
we know that (15) holds for all w̃i. Therefore, (15) holds for
any realization of w̃(k) that satisfies Assumption 1.

Equation (12) consists of several rows, all in the form of
(15) and we have shown that (14) is a sufficient condition for
the validity of (15). Therefore, the satisfaction of (14) implies
the satisfaction of (12). □

As a result of Lemma 1 and using a similar reasoning
for the maximum in the objective function of (13), the
optimization problem (13) can be simplified and expressed
in the following form:

minṼ (k) max{ Wv(k)Ṽ (k) +Wd(k)w̃1(k), . . .

Wv(k)Ṽ (k) +Wd(k)w̃N (k)}
(16)

subject to (14).

Note that if the Assumption 1 holds, the optimization prob-
lems (13) and (16) are equivalent and no conservatism is



added with respect to the original problem in (13). Opti-
mization problem (16) consists of N mixed integer linear
programming (MILP) problems.

B. Min-max disturbance feedback approach
The min-max optimization problem introduced in Section

IV-A is based on a worst-case scenario. However, in reality
the worst-case scenario will be realized rarely and, hence,
such conservatism is a disadvantage of the min-max ap-
proach. In this section, an alternative method, called min-
max disturbance feedback, is developed based on [14]. Even
though the realized value of the disturbance is unknown to
the controller, the presence of a disturbance feedback mech-
anism prevents the expansion of possible state trajectories in
the prediction horizon. As a result, the min-max disturbance
feedback controller will act less conservatively compared to
the regular min-max controller of Section IV-A.

In the min-max disturbance feedback approach, a control
law is considered for the sequence of future control inputs
of fuel cell cars. For each time step k+ j, the control input
of fuel cell car i is determined as follows:

uf,i(k + j) = vf,i(k + j) +Kf(k + j)wf,i(k + j − 1),
(17)

where vf,i is a real number determined by MPC controller
and represents the scheduled power generation of fuel cell
car i. The first part of the control input, vf,i, and the feed-
back gain, Kf , are determined via solving an optimization
problem. The value of wf,i(k+ j − 1) is an uncertainty and
it can be only determined after time step k + j.

Using (17), the actual power generation of fuel cell cars
can be still represented by (2). In addition, the model of fuel
cell cars and water electrolysis system will remain the same.
However, the matrices B1 in (7) and E1 in (9) will become
a function of wf,i(k − 1). The resulting MLD model is:
x(k + 1) = x(k) +B1(w(k))u(k) +B3(w(k − 1))z(k) +B4(k)

E1(w(k − 1))u(k) + E4x(k) + E5(k) ≥ E3z(k), (18)

where the definition of x remains the same as in (8). The
new definition of u and z is as follows:

u = [uf,1 sr,1 sf,1 . . . uf,Nveh
sr,Nveh

sf,Nveh
Kf uel sel ]

T

z =
[
zf,1zkf,1 . . . zf,Nveh

zkf,Nveh
zel

]T
.

The variable Kf represents the disturbance feedback gain
for all the fuel cell cars and the new auxiliary variables
are defined as zkf,i := Kfsf,i. By extending the inequality
constraints in (18) over the prediction horizon we have:

F df
1 (w̃(k))Ṽ (k) ≤ F df

2 (k) + F df
3 (k)x(k). (19)

The matrices F df
1 , F df

2 , and F df
3 are different from the min-

max approach, but the format given in (15) still applies
to it. As a result, Lemma 1 holds also for the current
approach. Therefore, the inequality (19) will be satisfied if
the following inequalities are satisfied:

F df
1 (w̃1(k))Ṽ (k) ≤ F df

2 (k) + F df
3 (k)x(k) (20)

...

F df
1 (w̃N (k))Ṽ (k) ≤ F df

2 (k) + F df
3 (k)x(k).

The operational cost of the system is given by (10).
Considering that the sequence of control inputs is determined
based on (17) and following a similar procedure as in Section
IV-A, the cost function can be written in the following form:

J(k) = W df
v (w̃(k))Ṽ (k) +W df

d (k)w̃(k), (21)

where W df
v and W df

d (k) can be determined based on the
system model and the future electricity tariff, respectively.

To minimize the worst-case operational cost of the system,
the following optimization problem should be solved:

min
Ṽ (k)

max
w̃(k)

J(k) (22)

subject to (19), for all w̃(k)

The operational cost of the system (21) has an affine
relation with the disturbance of the system, w̃(k). Therefore,
with considering Assumption 1 for the disturbance, the
worst-case cost of the system will be realized in one of
the sequences of w̃i. Therefore, by using Lemma 1, the
optimization problem (22) can be simplified to:

minṼ (k) max{ Wv(k)Ṽ (k) +Wd(k)w̃1(k), . . .

Wv(k)Ṽ (k) +Wd(k)w̃N (k)}
(23)

subject to (20).

This is also a collection of MILP problems.

V. NUMERICAL EXAMPLE

We now present a case study to illustrate the proposed
approaches using a microgrid containing 4 fuel cell cars,
a water electrolysis system, and a storage tank of hydro-
gen. For the sake of simplicity, we assume that the fuel
cell cars are not used in the transportation mode. The
values of (αf,i, βf,i) for i = 1, 2, 3, 4 are (0.0502, 0.095),
(0.0504, 0.10), (0.0506, 0.105), and (0.0508, 0.11). For all
the cars, the maximum power generation, ūf,i, the minimum,
xf,i, and maximum, x̄f,i, limit of fuel level and the refilling
rate, Rf,i/Ts, are 15 kW, 2 kg, 5 kg, and 2 kg per time step,
respectively. The interval between any two consecutive time
steps, Ts, is 15 minutes. The maximum power consumption
of the water electrolysis system, ūel, is 100 kW. The value
of αel is 0.02 kg/kWh. A storage tank of hydrogen with
the maximum capacity, x̄el, of 200 kg is connected to the
electrolyzer to refill the fuel cell cars. The values of Wsf ,
Wsel, Wpf , and Wpel in the cost function (10) are equal to
0.1 e, 0.1 e, 0.6 e/kWh, and 0.1 e/kWh, respectively.

We have used Gurobi to solve the MILP problems in the
simulation. The residual load of the microgrid is depicted in
Figure 1. In order to maintain the power balance condition,
the scheduled power generation of all the fuel cell cars
and the electrolyzer should be equal to the residual load
of the microgrid. The uncertainty in the prediction of the
residual load is less than 4 kWh, i.e. w̄ = |w| = 4 kWh.
For the sake of comparing the two control approaches, we
have considered the same realizations of the uncertainty
in simulating the system behavior for both the min-max
approach and the min-max disturbance feedback approach.
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Fig. 1. Residual load of the microgrid; the blue line indicates the prediction
of the residual load, while the actual residual load will be realized in the
shaded area.
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Difference in fuel cell power generation

Fig. 2. Operation of the control system. Top: actual power generation of all
the fuel cell cars using the min-max approach and the min-max disturbance
feedback approach. Bottom: difference between the total power generation
using the disturbance feedback approach and the min-max approach.

Based on the problem set-up, there is a lower-level controller
inside each fuel cell car that maintains the power balance in
the time scales less than Ts. Therefore, the uncertainty in
the prediction of the residual load will influence the actual
power generation of fuel cell cars. This phenomenon is
clearly observable in Figure 2(top). Figure 2(bottom) shows
the difference between the total power generation of the
fuel cell cars for the two approach. As can be seen, the
difference is often positive, which indicates that the fuel cell
cars generate more power by using the min-max approach
compared to using the disturbance feedback approach. Here,
the former method results in generating 2.6 MWh electrical
energy of fuel cells during the entire simulation time, while
this value is 2.3 MWh for the latter method. Because the
power generation of the fuel cell cars determines the majority
of the operational costs, less power generation of fuel cell
cars is a desirable behavior. Hence, the disturbance feedback
approach results in a better performance.

TABLE I
REALIZED OPERATIONAL COST OF THE SYSTEM FOR MIN-MAX (MM)

AND MIN-MAX DISTURBANCE FEEDBACK (DF) APPROACHES.

Np 4 6 8 10
w̄ MM DF MM DF MM DF MM DF
1 1651 1208 1650 1223 1650 1205 1649 1217
2 1854 1378 1855 1388 1855 1390 1855 1398
3 1850 1380 1849 1384 1850 1367 1850 1340
4 2051 1500 2051 1528 2050 1538 2051 1536

The realized operational cost of the system with respect
to different values of w̄ = |w| and Np is reported in Table
I. It is assumed that the disturbance, w, is realized in the
domain [w, w̄] with a uniform probability function. It can be
seen that the realized operational cost of the system for the
min-max disturbance feedback approach is significantly less
than for the min-max approach.

VI. CONCLUSIONS

We have developed a min-max model predictive control
approach that is able to guarantee the power balance condi-
tion in a microgrid with fuel cell cars and a water electrolysis
system, while the operational cost of the system is minimized
for the worst-case scenario of the disturbance. In addition,
we also developed a min-max disturbance feedback approach
that reduces the conservativeness of the min-max approach.
The case study illustrates the system performance of the min-
max approach, in addition to the reduction of conservatism
by the proposed min-max disturbance feedback approach.
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