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Abstract

In this paper, a methodology for the identification of distributed-parameter systems is proposed, based
on finite-difference discretization on a grid in space and time. It is considered the case when the partial
differential equation describing the system is not known. The sensor locations are given and fixed, but
not all grid points contain sensors. Per grid point, a model is constructed by means of lumped-parameter
system identification, using measurements at neighboring grid points as inputs. As the resulting model
might become overly complex due to the involvement of neighboring measurements along with their time
lags, the Lasso method is used to select the most relevant measurements and so to simplify the model. Two
examples are reported to illustrate the effectiveness of the methodology, a simulated two-dimensional heat
conduction process and the construction of a greenhouse climate model from real measurements.

Keywords: system identification, finite-difference method, input selection, indoor climate modeling,
greenhouse climate model

1. Introduction

Many real-life processes are distributed-parameter systems. Examples include chip manufacturing plants
[1]; process control systems such as: packed-bed reactors [2], reverse flow reactors [3], and waste water
treatment plants [4]; flexible structures in atomic force microscopes [5], ultraviolet disinfection installations
in food industry [6], electrochemical process [7], or drying installations [8].

Distributed-parameter systems are typically modeled using partial differential equations. However, de-
veloping such models from first principles is a tedious and time-consuming process [9]. If input-output mea-
surements are available, a model can be constructed by using system identification methods. However, due
to the large number of spatially interdependent state variables, the identification of distributed-parameter
systems is considerably more complex than the identification of lumped-parameter systems, and known as
ill-posed inverse problems [10] because the solution is not unique [11]. There are three main approaches to
the identification of distributed-parameter systems [12]: (i) direct identification, (ii) reduction to a lumped-
parameter system, and (iii) reduction to an algebraic equation. While the direct identification approach
uses the infinite-dimensional system model, the reduction-based approaches involve spatial discretization to
create a set of ordinary differential equations in time to which identification methods for lumped-parameter
systems can be applied. This approach, also called time-space separation [9], is the subject of this paper.

Two recent books related to the modeling of partial differential equations, and consequently to the
proposed method, namely [13] by Cressie and Wikle and [14] by Billings. Cressie and Wikle [13] extensively
treat statistical modeling and analysis of spatial, temporal, and spatio-temporal data. The spatio-temporal
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data are in the form of time series of discrete-time and spatially distributed measurements. The text
covers methods to interpolate values at locations that are not measured, as well as model simplification
via spectral decomposition. Billings [14] addresses identification problems for nonlinear systems, including
those based on spatio-temporal discretized partial differential equations with cellular automata and coupled
map lattice structures. The models use polynomial basis function and are simplified by using orthogonal
forward regression.

In this paper, a methodology for the identification of finite-dimensional models for distributed-parameter
systems with a small number of fixed sensors is proposed. Compared to other finite-difference identification
methods in the literature [15, 16, 17, 18, 19, 20, 14], this methodology:

• does not assume a dense set of measurement locations in space,

• uses an input selection method to reduce the complexity of the model.

The methodology also allows the use of external inputs in the model, a problem not addressed by Cressie and
Wikle [13]. In addition, an application that, to our knowledge, has not yet been described in the literature
is presented, namely the identification of a model for temperature dynamics in a greenhouse.

The remainder of the paper is organized as follows: Section 2 presents the problem formulation for which
the methodology is proposed. Section 3 gives the details of the methodology. In Section 4, two examples
are presented to show the effectiveness of the methodology: identification using data from a simulation of
a 2D heat conduction equation and identification using temperature measurements of a real-life greenhouse
setup. Section 5 concludes the paper.

2. Problem Formulation

Consider a distributed-parameter system described by a partial differential equation, with the associated
boundary and initial conditions. For the ease of notation and without loss of generality, a system that is
first-order in time and second-order in a two-dimensional space is presented:

∂g(z, t)

∂t
= f

(

z, t, g(z, t),
∂g(z, t)

∂z1
,
∂g(z, t)

∂z2
,
∂g(z, t)

∂z1z2
,

∂2g(z, t)

∂z21
,
∂2g(z, t)

∂z22
, u(z, t), w(z, t)

)

, ∀z ∈ Z \Zb, ∀t (1a)

0 = h

(

z, t, g(z, t),
∂g(z, t)

∂z1
,
∂g(z, t)

∂z2
, u(z, t), w(z, t)

)

, ∀z ∈ Zb, ∀t (1b)

g(z, t0) = g0(z), ∀z ∈ Z (1c)

Here g(·, ·) is the variable of interest, f(·) is the system function, h(·) is the boundary value function,
z = (z1, z2) ∈ Z ⊂ R

2 is the spatial coordinate,1 t ∈ R
+ ∪ {0} is the continuous-time variable, u(·, ·) is the

input function, w(·, ·) is the process noise, and Zb is the set of spatial boundaries of the system. Higher-order
and multi-variable systems can be defined analogously.

Assume that a set of input-output measurements are available from the distributed-parameter system
(1) with unknown functions f(·) and h(·). The sensors are located at specified points to measure g(·, ·), and
there are also actuators that generate inputs u(·, ·) to the system. Since the actuators and the sensors are
placed at known and fixed locations, the space is discretized with a set of grid points Mg such that the
actuator locations Mu and the sensor locations Ms are in Mg, i.e., Mu⊂Mg and Ms⊂Mg. Assume that the
measurements, concatenated in a vector y(·), are affected by additive Gaussian noise v(zi, t) ∼ N(0, σ2

vi
).

The input and measurement vectors are defined as:

u(t) =
[

u(zu,1, t) . . . u(zu,Nu
, t)
]⊤

(2a)

1Vectors are denoted by boldface symbols.
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y(t) =
[

g(zg,1, t) + v(zg,1, t) . . . g(zg,Ns
, t) + v(zg,Ns

, t)
]⊤

(2b)

where Nu is the number of actuators, Ns the number of sensors, the coordinates of the inputs are denoted
by zu,j ∈ Mu, the measurement coordinates by zg,i ∈ Mg, and the superscript ⊤ denotes the transpose of
a matrix or vector. Note that not every grid point is associated with a sensor or actuator.

The measurements are collected at discrete time steps tk = k · Ts with k ∈ N ∪ {0}, where Ts is the
sampling period. To simplify the notation, the discrete time instant tk is subsequently written as k. The
notation is further simplified by using an integer subscript assigned to the given sensor or actuator location:

uj(k) = u(zu,j , t)
∣

∣

t=k·Ts

, j = 1, . . . , Nu (3)

for the inputs and

yi(k) =
(

g(zg,i, t) + v(zg,i, t)
)∣

∣

∣

t=k·Ts

, i = 1, . . . , Ns (4)

for the outputs. The input and output data (3) and (4) are the only available information to construct a
distributed finite-order model of (1).

3. Identification Methodology for Distributed-Parameter Systems

The main idea of the methodology proposed in this paper is to identify at each sensor location a lumped-
parameter system, described by a dynamic model. To take into account the spatial dynamics of the system,
measurements from the neighboring locations are included as inputs.

Given the set of input-output measurements from an unknown distributed-parameter system, the iden-
tification procedure is the following:

1. Create a spatial grid for the system so that each sensor and each actuator is associated with a grid point.
The grid may have a uniform or a nonuniform spacing, depending on the actuator and sensor locations.
Recall that not all grid points are occupied by sensors or actuators. The sensors and actuators are
numbered consecutively: i = 1, . . . , Ns for the sensors and j = 1, . . . , Nu for the actuators. An
illustration of a 2D system, with spatial grid points and labels for the sensors and actuators, is shown
in Figure 1.
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Figure 1: An illustration of a 2D system with a nonuniform spatial grid. Sensors and actuators are indicated by solid and
dashed circles, respectively.

2. For each sensor i in the grid:

(a) Determine the dynamic model structure, using one of the available structures for lumped-parameter
systems, such as auto-regressive with exogenous input (ARX), output error (OE), Box-Jenkins
(BJ), etc.

(b) Define the set of neighboring sensors and actuators, i.e., those that are located in a defined neigh-
borhood (details on the notion of neighborhood are given in the next section). The neighboring
measurements and inputs from neighboring actuators become inputs to the dynamic model of
sensor i. Determine the (temporal) system order and construct the regressors.
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(c) When the number of regressors is large, optimize the model structure in order to simplify the
model.

(d) Estimate the parameters of the dynamic model for sensor i.

(e) Validate the dynamic model. If the model is rejected, return to step 2a to use a different system
structure or to 2b to change the set of neighbors.

The sequence of the steps and decisions of the methodology is shown in Figure 2 and the steps are detailed
next. More specifically, it is discussed:

• How to construct coupled discrete-time dynamic models in Section 3.1.

• How to identify and estimate the parameters of the models in Section 3.2.

• How to simplify the identified models to obtain simpler models in Section 3.3.

• Sensor placement and interpolation for locations where measurements are not available in Section 3.4.

START

END

Measurements from Ns sensor nodes

External inputs from Nu actuators

Create grid points

Determine model structure

Too many
regressors?

Optimize number of regressors 

Estimate model parameters

Is the model
acceptable?

For each
sensor node

N

N

Y

Y

Determine:

-- neighboring external inputs

-- neighboring sensor nodes

-- (temporal) system order

Model validation

Step 1

Step 2a

Step 2b

Step 2c

Step 2d

Step 2e

Figure 2: Flow chart of the proposed methodology.
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Remarks:

• The proposed framework performs off-line identification for distributed-parameter systems, however,
the method can be extended directly to recursive identification for the ARX structure.

• For structures that require the predicted output to compute the parameter, extension to recursive
parameter estimation is possible in condition that the measurements are updated synchronously.

• The convergence analysis for the recursive implementation of the framework follows [21].

3.1. Construction of coupled discrete-time dynamic models

The discretization of a partial differential equation in space by using the finite-difference method results
in a set of coupled ordinary differential equations. At time instant t, the coupling spatially relates the
value of the variable of interest at node i, gi(t), to values of the same variable at the neighboring nodes.
The influence of more distant neighbors may be delayed due to the finite speed of spatial propagation of
the quantity of interest. As an example, consider the following simplification of (1a) to an autonomous
one-dimensional case:

∂g(z, t)

∂t
= m

(

∂2g(z, t)

∂z2

)

(5)

where g(z, t) ∈ R is the variable of interest, z ∈ R is the spatial coordinate, and m(·) is a nonlinear function.
The system is spatially discretized using the finite-difference method by creating grid points, which, for the
sake of simplicity, are uniformly spaced at distance ∆z. Denote gi(t) for g(z, t) at grid point z = i · ∆z,
called node i for short. The central approximation [22] of the second-order derivative in space is:

∂2g(z, t)

∂z22

∣

∣

∣

∣

z=i

≈
gi+1(t)− 2gi(t) + gi−1(t)

(∆z)2
(6)

which results in:
dgi(t)

dt
= m

(

gi+1(t)− 2gi(t) + gi−1(t)

(∆z)2

)

(7)

Then, by using the forward-difference approximation of the time derivative:

dgi(t)

dt

∣

∣

∣

∣

t=k

≈
gi(k + 1)− gi(k)

Ts

to discretize the left-hand side of (7), which gives:

gi(k + 1) = gi(k) + Ts · m

(

gi+1(k)− 2gi(k) + gi−1(k)

(∆z)2

)

(8)

or in a slightly more general form:

gi(k + 1) = q
(

gi(k), gi−1(k), gi+1(k), Ts,∆z

)

(9)

Note that in this example gi(k) is influenced only by its immediate neighbors. For systems with a higher
spatial order and with exogenous inputs (9) can be written as:

gi(k + 1) = q(gNs,i
(k), uNu,i

(k), Ts,∆z) (10)

where gNs,i
(k) = {gj(k)|j ∈ Ns,i} is the set of neighboring variables of interest, including gi(k) itself and

uNu,i
(k) = {ul(k)|l ∈ Nu,i} is the set of neighboring inputs including ui(k) itself.

In the system identification setting, ∆z and Ts are known and fixed and instead of gi(k) the measurement
yi(k) is used (which includes the effect of measurement noise vi(k)). Thus the following model is obtained:

yi(k + 1) = w(yNs,i
(k), uNu,i

(k), vNs,i
(k)) (11)
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Figure 3: An illustration of the neighboring measurements and inputs set with two possible neighborhoods of sensor 7 using
a Euclidean distance criterion. The first set of neighbors is defined using distance ̺1 from sensor 7 and the second set using
distance ̺2.

where yNs,i
(k) is the set of neighboring measurements at node i, including yi(k). The neighbors of node i can

be simply the nodes that are within a specified distance ̺, i.e., yNs,i
(k) =

{

y(z, k)| ‖z−zi‖ ≤ ̺, z ∈ Mu∪Ms

}

for measurements and uNs,i
(k) =

{

u(z, k)| ‖z − zi‖ ≤ ̺, z ∈ Mu ∪ Ms

}

for inputs, see Figure 3. A priori
knowledge can be used to obtain a suitable value of ̺.

An inappropriate choice of ̺ may, however, yield a large number of neighbors that are included in the
model. In order to reduce the model complexity, an input or regressor selection method is applied. This
topic is discussed later on in Section 3.3.

When w(·) in (11) is not known, an approximation can be designed using the available input-output data
and linear or nonlinear system identification. Assuming that the system can be approximated by a linear
model, linear system identification methods can be applied (11), as described in the following section.

3.2. System identification and parameter estimation

Identification methods for linear systems (including linear-in-parameters nonlinear systems) use the fol-
lowing model representation:

ŷi(k + 1) = φi(k)θ
T
i (12)

where ŷi(k) is the predicted yi(k), φi(k) is the regressor vector at time step k, and θi is the vector of
parameters. Note that the subscript index i corresponds to sensor i as in the previous section. The regressor
vector contains lagged input-output measurements, including those of neighboring sensors and inputs. The
parameter vector θ̂i can be estimated by using least-squares methods [23], so that the following prediction
error is minimized:

θ̂i = argmin
θi

N
∑

k=1

∥

∥

∥yi(k + 1)− φi(k)θ
T
i

∥

∥

∥

2

2

= argmin
θi

N
∑

k=1

‖ǫi(k)‖
2
2

with ǫi(k) = yi(k) − ŷi(k) the prediction error. The use of neighboring measurements as inputs to the
model may lead a situation where the regressors are corrupted by noise. This requires an error-in-variables
identification approach, solved, e.g., by using total least squares [24]. For a thorough discussion of the total-
least squares method refer to [25]. When noiseless input variables to the actuators are among the regressors,
a mixed ordinary-total least-squares method must be used [25].

In nonlinear system identification, the problem is more difficult as there is no unique way to represent the
nonlinear relation between the regressors and the output, and different methods are available to represent
the nonlinearity. For instance, Wiener systems [26] and Hammerstein systems [27] use nonlinear functions
cascaded with a linear system, Takagi-Sugeno fuzzy models combine local linear models by weighting them
via membership functions [28], while neural networks use global nonlinear basis functions [29].
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3.3. Model reduction by using regressor selection

Including neighboring measurements as inputs will increase the size of the regressor vector φi(k). This
size is determined by the number of neighboring inputs and the number of components of each neighboring
regressor vector. For several reasons, it is desired to have a simpler model by removing inputs that do
not contribute to the output to reduce computational load, especially when the models are used in on-line
control design.

Three methods are commonly used in standard linear regression [30]: stepwise regression, backward
elimination, and exhaustive search. With these methods, the inclusion or exclusion of a regressor is decided
based on statistical tests, such as the F -test. One of more recent methods is Lasso [31], which stands for
the least absolute shrinkage and selection operator. Assumed is the following regression model:

ŷ(k) = θ0 + φ⊤θ(k)

with θ =
[

θ1 . . . θnr

]⊤
and θ0 the parameters of the model and φ the vector of regressors. Lasso computes

the parameters so that the parameters of regressors that have the least importance are made zero by using
a regularization parameter. Lasso solves the following optimization problem [31]:

[

θ̂0 θ̂
⊤
]⊤

= argmin
θ0,θ

N
∑

i=1

(

yi − θ0 − φ⊤

i θ
)2

, s.t.

nr
∑

j=1

|θj | ≤ τ (13)

where τ is the tuning parameter, and for the sake of simplicity the scalar case is considered (extension to
the vector case is straightforward). This problem can also be written as:

[

θ̂0 θ̂
⊤
]⊤

= argmin
θ0,θ





1

2N

N
∑

i=1

(

yi − θ0 − φ⊤

i θ
)2

+ λ

nr
∑

j=1

|θj |



 (14)

where λ is the nonnegative regularization parameter. Note that the two formulations are equivalent in the
sense that for any τ ≥ 0 in (13), there exists a λ ∈ [0,∞) in (14) such that the both formulations have the
same solution, and vice versa.

As for nonlinear systems there is no unique representation, regressor selection is more complex. The
simplest method, but computationally inefficient, is by directly searching the most optimal set of regressors
using exhaustive search. Regarding model-specific methods, forward regression has been used for polynomial
models [32, 33], neural networks [34], and for adaptive network fuzzy inference systems [35]. For an example
of model-independent regressor selection method, one may refer to, e.g., [36], which uses fuzzy clustering.

3.4. Sensor and actuator locations and interpolation

Measurements and actuations in distributed-parameter systems are commonly performed at spatially
sampled locations. This practice raises two related problems in control and estimation of distributed-
parameter systems:

1. How many sensors and/or actuators are required and where they should be placed to obtain good
output observations? For the identification of distributed-parameter systems, the problem is about
using the smallest number sensors possible and placing them in certain locations such that the exper-
iment data can be used to obtain a valid model. A short introduction to this topic is given in a survey
by Kubrusly and Malebranche [37] and a more recent and thorough treatment on the optimal sensor
placement is given by Ucińsky [38]. In case the underlying partial differential model is known, the
locations of the sensors will influence the identifiability of the distributed-parameter system [38]. In
this paper the underlying partial differential model is unknown and the sensor and actuator locations
are assumed fixed and given; therefore, the sensor and actuator location problem is not considered
further here.

Beside the actuator and sensor locations, the input signals applied to the system are also crucial to
get a useful model. A general requirement for the excitation is that the signals should be persistently
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exciting so that the measurement data contain the important dynamics of the system, from which
the system can be identified. The pseudo-random binary signal is a commonly used input signal for
system identification because it has the desired properties [21].

2. How to interpolate outputs at locations that are not measured? This problem naturally arises because
the sensors give information only at their locations [13].

For the interpolation problem, kriging and splines are commonly used methods [13]. However, only
kriging, more specifically ordinary kriging, is used and briefly presented in this paper following [13].
Kriging was initially developed to solve estimation-related problems in geology and it able to interpolate
in time and space. Because temporal interpolation is not required in our setting, only spatial kriging
is given in this section.

Given a spatial random process, also called random field:

Y (z) = G(z) + V (z), z ∈ Z

where Y (·), G(·), and V (·), are respectively the measured random field, the true but unknown random field,
and the random measurement noise, z is the spatial coordinate, and Z is the spatial domain. As the spatial
domain Z has been discretized using the finite-difference method, the measurements of the random field
realizations can be written as yi = gi + vi, where the subscript i is defined similarly to that of (7), from
which the measurement vector yz is defined as the stacked measurements from Ny

z
sensor locations.

Remarks:

1. Depending on the purpose, a spatio-temporal random process

Y (z, t) = G(z, t) + V (z, t), ∀z ∈ Z, ∀t (15)

for a certain fixed time t can be viewed as a random field Y (z) or as a dynamic random process Y (t)
[39, 40]:

Y (z) = G(z) + V (z), ∀z ∈ Z (16a)

Y (t) = G(t) + V (t), ∀t (16b)

2. In the case of the proposed methodology, (2b) is the discrete-time realization of (16b) at sensor location
zi ∈ Ms.

Kriging [13] a linear estimation method to obtain the optimal spatial estimate of the second order
stationary process G(z) at a coordinate location that is not measured zo /∈ Ms, such that the mean square
estimation error (MSE):

MSE = E

{

(

gzo
− Ĝ(yz)

)2
}

(17)

is minimized, where gzo
is the true but unknown value of the process G(z), Ĝ(yz) is the estimator, and E{·}

is the expectation operator.
In ordinary kriging, the mean of G(z) is assumed constant, i.e., E{G(z)} = µG, z ∈ Z, the covariance

function Cov(gi, gj) and the zero mean measurement error variance σ2
V are assumed to be known. The

estimator has the following form:
ĜO(yz) = γ⊤yz (18)

for the column vector γ ∈ R
Nyz is the estimator parameter and ⊤ denotes the transpose operation of a vector

and a matrix. The problem of kriging is to find γ to minimize (17). To impose unbiasedness, γ⊤1 = 1 has
to be fulfilled, where 1 is a column vector with 1 as the elements. By using the Lagrange multiplier ζ, the
parameter vector γ is computed by solving the following optimization problem:

argmin
γ

(

E

{

(

gzo
− γ⊤yz

)2
}

− 2ζ · (γ⊤1− 1)
)

(19)

8



The solution of the above optimization problem is:

γ∗ = C−1
y
z

(

Cov
(

gzo
yz

)

+ ζ∗1
)

(20)

ζ∗ =
1− 1⊤C−1

y
z

Cov
(

gzo
yz

)

1⊤C−1
y
z

1
(21)

where γ∗ and ζ∗ are respectively the optimal parameter vector and Lagrange multiplier, Var(·) is the variance
function, and Cy

z
is the covariance matrix of measurement vector yz defined as:

Cy
z
=

{

Var(yi) + σ2
V i = j

Cov(yi, yj) i 6= j

Substituting ζ∗ in (20) and γ∗ into (18) gives:

ĜO(yz) =

(

Cov(gzo
yz) + 1

1− 1⊤C−1
y
z

Cov(gzo
yz)

1⊤C−1
y
z

1

)⊤

C−1
y
z

yz (22)

with the corresponding mean square error:

MSE = Var(gzo
)− Cov(gzo

yz)
⊤C−1

y
z

Cov(gzo
yz) +

1− 1⊤C−1
y
z

Cov(gzo
yz)

1⊤C−1
y
z

1
(23)

Equation (22) can be rewritten as:

ĜO(yz) = µ̂G +Var(gzo
)⊤C−1

y
z

· (yz − µ̂G1) (24)

with µ̂G the generalized least-squares estimator of µG [41]:

µ̂G =
1⊤C−1

y
z

yz

1⊤C−1
y
z

1
(25)

Another variant of kriging is universal kriging, which assumes µG(z) to be a linear model instead of
a constant as in ordinary kriging. An interesting application of this kriging variant is the Kalman filter
method for distributed motion coordination strategy of mobile robot positioning at critical locations [42].

4. Simulations and Applications

To illustrate the effectiveness of the proposed identification approach, two examples are considered, based
on synthetic and real data, respectively. The synthetic data are generated from a linear two-dimensional heat
conduction equation. The real-life data are temperature measurements from a small-scale real greenhouse.

4.1. Heat conduction process

Consider the following two-dimensional heated plate conduction process:

∂T (z, t)

∂t
=

κ

ρCp

[

∂2T (z, t)

∂z21
+

∂2T (z, t)

∂z22

]

, ∀z ∈ Z \Zb, ∀t (26a)

T (z, t) = Tb(t), ∀z ∈ Zb, ∀t (26b)

T (z, 0) = T0, ∀z ∈ Z (26c)

where T (z, t) is the temperature of the plate at location z and at time t, ρ the density of the plate material,
T0 the initial temperature, Cp the heat capacity, κ the thermal conductivity, and z = (z1, z2) the spatial

9



Table 1: The plate parameters for the 2D heat conduction equation example

Parameter Symbol Value Unit

Material density ρ 4700 kgm−3

Thermal conductivity κ 700 Wm−1 K−1

Heat capacity Cp 383 J kg−1 K−1

Plate length L 0.7 m
Plate width W 0.5 m
Initial temperature T0 35 ◦C
Sampling period Ts 1 s
Grid size ∆z1

,∆z2
0.05 m

coordinate on the plate. Equations (26b) and (26c) are the boundary and initial conditions, respectively.
The plate’s parameters are listed in Table 1. The values of the material properties are adopted from [43]
and modified to speed up the simulation.

For this example, a set of identification data is obtained by simulating the discretized (26). The central
approximation of the finite-difference method is used to discretized the space to create a grid of 14 by 10
cells and the zero-order hold method is used to discretize the time. The resulting discretized equation is
simulated by letting the boundary values Tb(·) follow pseudo-random binary signals with levels of 25 ◦C
and 80 ◦C where each boundary B-1 through B-4 (as defined in Figure 4) is excited by a different signal u1

through u4. It is assumed that the excitation is uniformly distributed along the boundary. The duration
of the steps is randomly selected from the set {80, 120, . . . , 200} seconds. The maximum value of the step
duration was determined based on the largest time constant of the nodes responses, i.e., 180 s.
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0.1
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0.5

Figure 4: Illustration of sensor node locations for the 2D heat conduction example.

Ten sensor nodes are placed to measure the temperature of the plate as illustrated in Figure 4, with
the exact sensor locations given in Table 2. The measurements are sampled with the period Ts = 1 s and
Gaussian noise with zero mean and variance 0.1 ◦C2 is added to the measurements. The data set is divided
into an identification set and a validation set, consisting of 1500 and 740 samples, respectively.

Table 2: Coordinates of the sensor node locations for the 2D heat conduction equation example

Sensor # (z1, z2) Sensor # (z1, z2)
Sensor 1 (0.10, 0.10) Sensor 6 (0.40, 0.30)
Sensor 2 (0.10, 0.25) Sensor 7 (0.55, 0.10)
Sensor 3 (0.20, 0.40) Sensor 8 (0.55, 0.40)
Sensor 4 (0.35, 0.40) Sensor 9 (0.65, 0.10)
Sensor 5 (0.40, 0.25) Sensor 10 (0.65, 0.30)

The neighboring nodes are defined to be the nodes that lie within the distance ̺ = 0.35m from a given
node. The value of this neighborhood radius is set sufficiently large compared to the physical dimensions
so that there are sufficient neighboring sensors included in the model. Typically, prior knowledge about the
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process can be used to determine a suitable value for the radius ̺.
Results from two representative sensors are presented: 1 and 5. Sensor 1 is relatively close to the

boundaries; it has three neighboring sensors. Since boundaries B-1 and B-4 are inside the radius ̺, the
values at boundaries B-1 and B-4 are included as inputs to the model of sensor 1. Sensor 5 is near the
middle of the plate; it has 9 neighboring sensors and it also uses the values of boundaries B-2, B-3, and B-4
as inputs. The boundary inputs are assumed spatially continuous and each of them is spatially constant for
each discrete-time k. In case a sensor node has a boundary in the neighborhood, it is taken as one input to
the model.

Subsequently, it is necessary to determine the order of the system. Considering that the system is slow,
10th-order systems are used with an ARX structure for the models. Thus, sensor 1 has initially 61 regressors
for the model and sensor 5 has 131 regressors including the bias. Lasso is applied to reduce the number
of parameters in the model, using the lasso function in the Statistics Toolbox of Matlab. The function
requires the maximum number of parameters in the model as additional input and returns a set of models
with the number of parameters varying from one to the maximum number specified. The function returns a
set of reduced models for different values of regularization parameter λ and the corresponding MSE values.
Then, one of those models is selected, based on the smallest MSE obtained from the validation data set.

After input selection, a model with 11 parameters is obtained for sensor 1 and a model with 26 parameters
for sensor 5. The reduced models are the following:

y1(k + 1) = 0.0155 y1(k − 1) + 0.0540 y3(k − 1) + 0.0467 y5(k − 1)+

+ 0.4118u1(k − 1) + 0.0173u1(k − 2) + 0.0026u1(k − 3)

+ 0.4134u4(k − 1) + 0.0244u4(k − 2) + 0.0034u4(k − 3)

− 0.5318

y5(k + 1) = 0.0089 y5(k − 1) + 0.0093 y8(k − 1) + 0.0037 y10(k − 2)

+ 0.0145 y2(k − 1) + 0.0050 y2(k − 2) + 0.0035 y2(k − 3)

+ 0.1352 y1(k − 1) + 0.0241 y1(k − 2) + 0.0073 y1(k − 3)

+ 0.1640u2(k − 1) + 0.1074u2(k − 2) + 0.0350u2(k − 3)

+ 0.0131u2(k − 4) + 0.0016u2(k − 5) + 0.0002u2(k − 6)

+ 0.0831u3(k − 1) + 0.0627u3(k − 2) + 0.0221u3(k − 3)

+ 0.0063u3(k − 4) + 0.0006u3(k − 5) + 0.1646u4(k − 1)

+ 0.0588u4(k − 2) + 0.0245u4(k − 3) + 0.0094u4(k − 4)

+ 0.0039u4(k − 5)− 0.8707

where yi(k) is the measurement from sensor i, and uj(k) is the input from boundary j. From the above
models, it can be seen that the model for sensor 5 uses more parameters with larger lags of inputs and
neighboring measurements; this indicates that more time is needed to propagate those inputs and neighboring
measurements to influence sensor 5. This is different in the case of sensor 1, which is closer to the boundaries
and for which the resulting model is mainly influenced by the inputs, which yields a simpler model. The
models also have constant/bias terms which can be interpreted as heat transferred between the adjacent
nodes.

Figure 5 and 6 show the one-step ahead predictions, the free-run2 simulation predictions and their
corresponding errors in comparison with validation part of the data. As one can expect, for the validation
data set the one-step-ahead prediction error is much lower than the error from the free-run simulation. In
addition, it can also be seen that the free-run prediction errors are smaller for the reduced input models
than those of the full input models. This is more obvious for the model of sensor 5. As one expects that
the full models would deliver smaller errors, this means the full models are overfit. In general, the proposed
identification approach works well in this case and delivers sufficiently good models.

2Free-run simulations mean that the model outputs are predicted based on the inputs and the past predicted outputs.
Output measurements are not used to generate the predictions. This is a very stringent test of the model prediction accuracy.
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(a) Sensor 1: measurements and pre-
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(b) Sensor 5: measurements and pre-
dictions
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(c) Sensor 1: prediction error
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(d) Sensor 5: prediction error

Figure 5: Measurements (blue, invisible due to the overlap) and one-step ahead prediction for the models with full inputs (black
curves) and the ones with reduced inputs (red curves) using the validation data set for the two-dimensional heat conduction
example. Note that the prediction error of the full and the reduced input models are overlapping.
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(a) Sensor 1: measurements and sim-
ulations
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(b) Sensor 5: measurements and sim-
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(c) Sensor 1: simulation error
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(d) Sensor 5: simulation error

Figure 6: Measurements (blue) and free-run simulation predictions for the models with full inputs (black) and the ones with
reduced inputs (red) using the validation data set for the two-dimensional heat conduction example. Note that the output
error of the full and the reduced input models are overlapping.

12



The figures also show that the output error of the model using measurements from sensor 1 is generally
smaller than that of sensor 5. This can be explained as follows: Figure 4 shows that sensor 5 has more
neighboring sensors than sensor 1. This means the identification for measurements of sensor 5 involves more
noise from measurements of neighboring sensors than in the case of sensor 1.

Figure 7 shows contour plots of the temperature distribution based on the validation data and their one-
step-ahead and free-run simulation predictions at discrete-time step k = 90; the time step value is picked
without any preference. The sensor locations are marked with black square boxes where sensor numbers
are placed at the left-hand side of the markers. It can be seen the contour of the one-step ahead prediction
is very similar to that from the validation data. This is confirmed by the error contour, which is almost
uniformly colored around the zero value. Note that the contours look relatively coarse because they are
plotted based on sparse measurement locations using the ordinary kriging, implemented in the ooDACE
toolbox [44, 45], to interpolate temperature at locations that are not measured.
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(c) Reduced identified models
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(d) One-step-ahead prediction error
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(e) Reduced models error

Figure 7: Contours of the heated plate model at discrete-time step k = 90 of the validation data. The black square markers
are the sensor locations with their corresponding sensor numbers left of the markers.

The R2 fit for the full models and reduced models of sensor 1 and sensor 5 is shown in Table 3. The table
shows that the R2 fit of the identified models is accurate. It can also be seen for the free-run simulation
prediction, the reduced input models have a better R2 fit that the full ones. This shows that in this case
the full models are over-parameterized and that an input reduction results in better models.

Table 3: The R2 fit of the full and reduced models for one-step ahead and free-run simulation predictions of the heat equation
example.

One-step ahead Free-run simulation
Sensor # Full model Reduced model Full model Reduced model

1 99.9807% 99.9784% 94.9872% 99.0116%
5 99.9168% 99.8016% -15.5446% 93.2703%

Figure 8 shows the change of the mean squared one-step-ahead prediction error. It can be seen that the
decrease of the signal-to-noise (SNR) ratio increases the prediction error. The figures also show that the
full models have better prediction performance than the reduced ones, but the difference decreases the SNR
decreases (increase of the noise level). For the full models, the error increases exponentially while for the
reduced models it is relatively constant for larger SNR values and almost linearly increases for smaller ones.
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It can also be seen that for a relatively narrow range of low noise level, the reduced models have better
robustness than the full ones.
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(b) Sensor 5: increasing noise

Figure 8: One-step ahead prediction error of sensors 1 and 5 for the increasing noise variance. The solid lines are the full model
and the dashed lines the reduced models.

4.2. Greenhouse temperature model identification

The proposed approach is also used to identify a model based on data from a small-scale greenhouse
setup shown in Figure 9. The setup was built at TNO in the Netherlands. Its length is 4.6m, its width 2.4m,
while the height of the wall and the roof are 2.4m and 2.9m, respectively. Six 400W convection heaters,
each of 0.6×0.6m, are placed on the floor of the setup. This gives an average of 200Wm−2 irradiance. The
heaters are meant to mimic the convective effect as the absorption of solar energy by the floor during the
day [46]. The coordinates of the centers of the heaters are shown in Table 4.
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Figure 9: A schematic of the greenhouse with its physical dimensions.

The temperature measurements are collected using wireless sensors, which is a promising technology,
with some applications in production greenhouses already reported [47]. For the experiments, a total of 68
sensor nodes have been installed to measure the temperature inside the greenhouse. Out of these, 45 sensor
nodes are arranged on a grid with the spacing in z1, z2, and z3 equal to 0.3000m, 0.7667m, and 0.5500m,
respectively. Additional 5 sensor nodes are placed below the roof, 6 sensor nodes are right at the center of
the heaters, and 12 sensors are attached on the four walls of the greenhouse. The schematic of the sensor
locations is given in Figure 10 and the photo of the setup is in Figure 11.

Throughout the identification experiments, the heaters were turned on and off in pairs: heater 1 paired
with heater 4, heater 2 with heater 5, and heater 3 with heater 6 so that there are three different input
signals. In total 3179 data samples have been acquired of which 2149 samples are used for identification and
1030 samples for validation. The data sets are centered by subtracting their means before the identification
and model reduction with lasso are applied.
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Figure 10: A schematic of the sensor locations in the greenhouse.

Figure 11: A photograph of the greenhouse setup used in the case study.

Table 4: The center coordinates of the convection heaters in the greenhouse

Heater # (z1, z2, z3) Heater # (z1, z2, z3)
Heater 1 (0.90, 3.45, 0.00) Heater 4 (1.50, 3.45, 0.00)
Heater 2 (0.90, 2.30, 0.00) Heater 5 (1.50, 2.30, 0.00)
Heater 3 (0.90, 1.15, 0.00) Heater 6 (1.50, 1.15, 0.00)
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Table 5: Mean square error and variance of error of the full and reduced models for the greenhouse data example

MSE R2 fit
Sensor # Full model Reduced model Full model Reduced model

215 0.0310 0.0261 99.8772% 98.9155%
257 0.0229 0.0243 99.6821% 99.6515%

Among all sensors, identification results from two sensor nodes are presented: sensor node 215, located
at position (1.80, 3.83, 1.10) and sensor node 257 located at (0.00, 0.00, 2.20). The neighborhood radius
selected is ̺ = 1.25m, which gives 19 neighbors for sensor node 215 and 7 neighbors for sensor node 257.
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(d) Sensor node 257 error

Figure 12: Greenhouse setup measurements (blue) and one-step-ahead predictions (red) for the model with full set of inputs
and reduced inputs using the centered validation data set and their corresponding estimation error, i.e., error from the full
model ( black ) and from the reduced model (red).

A 30th-order linear ARX structure is selected for the model so that initially there are 570 parameters
and 280 parameters for respectively sensor node 215 and 257. The measurements, full input model, and
reduced input model simulation output, and the corresponding one-step estimation errors of the validation
data are shown in Figure 12. Setting the maximum number of parameters to 10, the following models are
obtained:

y215(k + 1) = 0.8241 y215(k − 1) + 0.1332 y215(k − 2) + 0.0065 y215(k − 3)

+ 0.0037 y215(k − 5) + 0.0041 y215(k − 7) + 0.0043 y215(k − 8)

+ 0.0113 y206(k − 1) + 0.0048 y218(k − 1) + 0.0027 y218(k − 2)

+ 0.0043 y218(k − 3)

y257(k + 1) = 0.6206 y257(k − 1) + 0.2410 y257(k − 2) + 0.0093 y257(k − 3)

+ 0.0368 y257(k − 4) + 0.0092 y8(k − 1) + 0.0480 y220(k − 1)

+ 0.0064 y234(k − 1) + 0.0198 y264(k − 1) + 0.0003 y20(k − 1)

+ 0.0036 y20(k − 2)

where the same as the example above, yi(k) is the measurement at sensor node i. It can be seen that the
neighboring measurements contribute to the identified model. The MSE and the R2 fit for the validation
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data are shown in Table 5. For sensor 215, it can be seen that the MSE is smaller and the R2 fit is larger for
the reduced input model compared to the full model; while for sensor 257, the MSE increases slightly and
the R2 fit decreases slightly. For the case of sensor 215, the reduction of the R2 fit suggests the full model
is over-parameterized. Generally, it can be said that reducing the number of inputs in the models does not
significantly decrease the performance of the models. This also indicates that the proposed identification
framework works well in this example.

A set of simulations were performed to see how good the performance, in term of the one-step ahead
prediction MSE, the models for different number of neighbors for sensor 238. This sensor is located about
the middle of the setup and has 8 neighbors with the same height z3. For neighbor visualization ease, the
labeled sensors are shown in Figure 13. The identification is performed for 2, 4, 6, and 8 neighbors excluding
sensor 238 itself. The performance of the full and the reduced models are compared for the validation data.
The neighbors and the performance comparison are shown in Table 6. From the table, it can be seen that
the one-step ahead prediction errors differ insignificantly for different number of neighbors. This shows the
proposed framework does not sensitive to the number of neighboring sensors.
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Figure 13: Sensors at z3 = 1.1 with sensor id labels.

Table 6: The coordinates of sensor 238, its neighbors, and its performance for different numbers of neighboring sensors. The
X symbol means the sensor is used as neighbors

Number of neighbors
Sensor # 2 4 6 8

213 X X X X
214 X X X X
215 X X X
216 X
217 X X X

218 X X
237 X
239 X
240 X X X X
241 X X X X X X

242 X X X
243 X X X
244 X X X
245 X X

MSE full 0.0215 0.0215 0.0216 0.0211 0.0220 0.0208 0.0220 0.0222

MSE red 0.0236 0.0230 0.0238 0.0233 0.0235 0.0239 0.0235 0.0239

An experiment to estimate values at locations that are not measured is also performed for sensors shown
in Figure 13. In this experiment, data from sensor 217, 238, and 241 are not identified and their estimates
for the validation data are obtained by using the ordinary kriging. The experiment is performed for both
full and reduced models. The kriging models are developed by using the estimates of the validation data of
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the rest of the sensors. The results are shown in Figure 14 for the estimates and their corresponding error
respectively. The experiment is repeated by omitting sensor 216, 217, 218, 240, 241, and 242. The estimates
are shown in Figure 15 and their corresponding error in Figure 16.

The figures show that the ordinary kriging estimates the values at locations that are not measured suffi-
ciently well. Furthermore, estimate differences between the full and the reduced models are not significant.
For the second experiment, it can be seen that the kriging estimates for sensor 216, 217, and 218 look similar;
and so are those for sensor 240, 241, and 242. This is can be explained by looking at the validation data
from sensor 216, 217, and 218 plotted as a group in Figure 17a and those from sensor 249, 241, and 242
as the other group in Section 4.2. From the figure, it can be seen that the temperature difference within a
group is small and this creates kriging estimates with insignificant difference among them.
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(a) Sensor 217 estimates
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(b) Sensor 238 estimates
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(c) Sensor 241 estimates
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(d) Sensor 217 estimation error
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(e) Sensor 238 estimation error
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(f) Sensor 241 estimation error

Figure 14: Validation data estimates for sensor 216, 238, and 241 by using the ordinary kriging and their corresponding error.
For (a), (b), and (c), black plots are the validation data, magenta plots are estimates from the full models, and blue plots are
estimates from the reduced models. For (d), (e), and (f), magenta plots are errors from the full models and blue plots are
errors from the reduced models.

Contour plots of the greenhouse temperature for 0.6 ≥ z1 ≥ 1.8, 0.767 ≥ z2 ≥ 3.833, and fixed z3 = 1.1
are shown in Figure 18. The plots are in 2D because the ooDACE toolbox is only able to build kriging
model from 2D data. The same as in the heated plate example, the plots show the contour of the validation
data, the one-step ahead prediction of the full and reduced models. It can be seen that the interpolation is
larger with the reduced models than that of the full model.

5. Conclusions and future research

In this paper, a methodology for the identification of distributed-parameter systems was presented. The
methodology is a finite-difference based method that takes into account inputs from neighboring measure-
ments and actuators into the model. The methodology assumes that the underlying partial differential
equation is not known. Although a finite-difference based method is proposed, the methodology does not
require dense measurement locations in the system. This feature allows the applicability of the methodology
to real-life systems, which generally have a limited number of measurements. Model reduction methods may
be applied to reduce the complexity of the model in case a large number of inputs are involved in the model.
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(a) Sensor 216 estimates
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(b) Sensor 217 estimates
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(c) Sensor 218 estimates

200 400 600 800 1000
25

26

27

28

29

Discrete time step k

U
n
m

ea
su

re
d
 v

al
u
e 

es
ti

m
at

es

(d) Sensor 240 estimates
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(e) Sensor 241 estimates
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(f) Sensor 242 estimates

Figure 15: Validation data estimates for sensor 216, 217, 218, 240, 241, and 242 by using the ordinary kriging. Black plots are
the validation data, magenta plots are estimates from the full models, and blue plots are estimates from the reduced models.
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(a) Sensor 216 estimation error
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(b) Sensor 217 estimation error
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(c) Sensor 218 estimation error
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(d) Sensor 240 estimation error
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(e) Sensor 241 estimation error
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(f) Sensor 242 estimation error

Figure 16: Validation data estimation error for sensor 216, 217, 218, 240, 241, and 242 by using the ordinary kriging. Magenta
plots are errors from the full models and blue plots are errors from the reduced models.
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(b) Sensor 240, 241, and 232

Figure 17: Validation data plot from sensor: (a) 216 in black, 217 in blue), 218 in magenta (b) 240 in black, 241 in blue, and
243 in magenta
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(b) One-step ahead prediction
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(c) Reduced identified models
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(d) One-step-ahead prediction error
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Figure 18: Contours of the greenhouse temperature model at discrete-time step k = 400 of the validation data for 0.6 ≥ z1 ≥

1.8, 0.767 ≥ z2 ≥ 3.833 and fixed z3 = 1.1. The black square markers are the sensor locations and the labeled sensors are used
to build the kriging model.
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The effectiveness of the methodology has been shown with the help of two examples, a simulated heated
plate and a real greenhouse.

There are several open problems related to the proposed methodology. The first one is how to use
the identified model to design a controller or an observer. Models from each sensor can be stacked to
form a state space representation, where the measurements at sensor locations represent the states of the
system. From the fact that the states are coupled across different measurement locations, the question is
how straightforward it is to apply the available control design methods for the identified model. The second
open problem is about optimal sensor location. In the literature, techniques have been proposed to place
sensors for a distributed-parameter system given a certain partial differential model [38]. An extension
to handle an unknown or partially known model structure may increase the applicability of the proposed
methodology. The third open problem is the choice of the neighbors. Selecting the right neighbors helps
to reduce the computational effort to solve the identification problem. For example, for the greenhouse the
neighbor selection is important in case the influence of air flow dynamics inside the modeled chamber cannot
be neglected. This leads to the fourth open problem, namely, how to apply the methodology online in case
dynamic neighbor selection is required to handle the air flow dynamics. Finally, further research will be
focused on the extension of the methodology to nonlinear distributed-parameter systems.
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of singular value decomposition and the Karhunen-Loève expansion, Industrial & Engineering Chemistry Research 41 (6)
(2002) 1545–1556.

[20] Y. Pan, S. A. Billings, The identification of complex spatiotemporal patterns using coupled map lattice models, Interna-
tional Journal of Bifurcation and Chaos (IJBC) in Applied Sciences and Engineering 18 (4) (2008) 997–1013.

[21] L. Ljung, System Identification: Theory for the User, 2nd Edition, Prentice Hall, USA, 1999.
[22] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady State and Time De-

pendent Problems, SIAM, Philadelphia, PA, USA, 2007.
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