
Delft University of Technology
Delft Center for Systems and Control

Technical report 17-019

Robust adaptive tracking control of
uncertain slowly switched linear systems∗

S. Yuan, B. De Schutter, and S. Baldi

If you want to cite this report, please use the following reference instead:
S. Yuan, B. De Schutter, and S. Baldi, “Robust adaptive tracking control of uncertain
slowly switched linear systems,” Nonlinear Analysis: Hybrid Systems, vol. 27, pp.
1–12, Feb. 2018. doi:10.1016/j.nahs.2017.08.003

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/17_019.html

https://doi.org/10.1016/j.nahs.2017.08.003
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/17_019.html


Robust adaptive tracking control of uncertain slowly switched linear systems

Shuai Yuana,∗, Bart De Schuttera, Simone Baldia

aDelft Center for Systems and Control, Delft University of Technology,
Delft, The Netherlands

Abstract

In this paper, robust adaptive tracking control schemes for uncertain switched linear systems subject to disturbances
are investigated. The robust adaptive control problem requires the design of both adaptive and switching laws. A novel
adaptive law is proposed based on an extended leakage approach, which does not require knowledge of the bounds
of the uncertainty set. Two switching laws are developed based on extended dwell time (DT) strategies: a) mode-
dependent dwell time (MDDT); b) mode-mode-dependent dwell time (MMDDT). MDDT exploits the information of
the known reference model for every subsystem, i.e., the dwell time is realized in a subsystem sense. MMDDT is a
variant of MDDT that can guarantee stability under faster switching than MDDT, provided that the next subsystem to
be switched on is known. The proposed adaptive schemes can achieve global uniform ultimate boundedness for shorter
switching intervals than state-of-the-art adaptive approaches based on DT. In addition to global uniform ultimate
bounded stability, transient and steady-state performance bounds are derived for the tracking error. The numerical
example of a highly maneuverable aircraft technology vehicle is adopted to demonstrate the effectiveness of the
proposed adaptive methods.

Keywords:
Robust adaptive tracking control, uncertain switched linear systems, mode-dependent dwell time,
mode-mode-dependent dwell time

1. Introduction

Switched systems are an important class of hybrid systems consisting of subsystems with continuous dynamics,
called modes, and a rule, called switching law, to regulate the switching action between the modes. Switched systems
appear in a wide range of applications, such as intelligent transportation systems, power electronics, and smart energy
systems [1].

To date, productive research has been conducted on switched systems with known parameters, such as stability
and stabilization problems [2, 3, 4, 5, 6, 7]. This research direction is mainly based on two families of switching laws:
dwell time (DT) and average dwell time (ADT) [8]. In DT switching, the switching interval between two consecutive
discontinuities of the switching law should be larger than a sufficiently large constant to guarantee the stability of the
switched system. In ADT switching, the switching interval between two consecutive discontinuities of the switching
law should be sufficiently large in an average sense: this means that very short switching intervals are allowed provided
that they are compensated by long ones. Recently, conservativeness1 of ADT has been further decreased by a new
switching strategy proposed in [9]: mode-dependent average dwell time (MDADT). The peculiarity of this switching
strategy consists in exploiting the information of every mode, such as the exponential rate of the Lyapunov function
associated to each mode.
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On the other hand, research on uncertain switched systems is not equally mature. As a matter of fact, in real-life
problems parametric uncertainty is a ubiquitous condition. This creates additional difficulties when designing con-
trol and switching laws. In general, there are two main families of techniques dealing with stabilization of uncertain
systems: robust control and adaptive control. It is well recognized that a single robust controller may lead to very
conservative performance for a large uncertainty set [10, 11]. Therefore, when the uncertainties are polytopic, using a
family of robust controllers has been proposed to improve the performance of a single controller [12]. As a comple-
ment to robust control, adaptive approaches for non-switched uncertain systems have been investigated to improve the
performance of robust approaches over large non-polytopic uncertainties [13, 14, 15, 16]. However, adaptive control
of uncertain switched systems is more challenging. This is because not only an adaptive law should be developed to es-
timate the unknown parameters, but also a switching law should be carefully designed to guarantee the stability of the
closed-loop system. Recently, some research has been conducted on adaptive tracking control of uncertain switched
systems, i.e., switched nonlinear systems [17, 18] where adaptive fuzzy approaches are adopted, state-dependent
switched systems [19, 20, 21, 22] where minimal control synthesis algorithm is used, and time-constraint switched
systems [23, 24, 25, 26]. However, the following two gaps can be identified in the state of the art on adaptive tracking
control for uncertain slowly switched systems: first, the set where the nominal parameters reside should be known a
priori [23, 24, 25, 26]; second, not much attention has been paid to switching laws that exploit the information of each
subsystem. While the importance of overcoming the knowledge of the uncertainty set is evident, the need to address
less conservativeness switching laws stems from the following research problem: ADT and MDADT switching strate-
gies might cause undesired transient performance of the switched system due to overshoot of the Lyapunov function
[1, 27]. Therefore, it is relevant to address the following question: can we design an adaptive law and a switching law
for uncertain switched linear systems such that the knowledge of the residing space of the parameters is not necessary,
and undesired transient behavior of the tracking error due to fast switchings can be avoided?

The main contribution of this paper is twofold. On the one hand, a robust adaptive law with a leakage approach
is developed without requiring a priori knowledge of the uncertainty set. On the other hand, two switching laws with
shorter switching intervals than dwell time are introduced. In particular, new adaptive tracking control scheme for
uncertain switched linear systems is developed based on a mode-dependent dwell time (MDDT) switching law by
exploiting the information of every subsystem [28]. Furthermore, to address scenarios for which the next subsystem
to be switched on is known, we introduce a new switching scheme: mode-mode-dependent dwell-time (MMDDT).
MMDDT is relevant in many applications, such as automobile power train [29], power converters [30], thermostatic
control [31], train trajectory planning [32], where the next mode to be switched on is known in advance. Exploiting
this information allows even shorter switching intervals than MDDT. Global uniform ultimate stability of the switched
system via the proposed robust adaptive tracking control schemes is shown. An upper bound and the ultimate bound
characterizing the global uniform ultimate boundedness of the tracking error are also given.

The paper is organized as follows. The problem and some definitions are presented in Section 2. In Section 3,
an adaptive law and two switching laws based on mode-dependent dwell time and mode-mode-dependent dwell time
are explained. In Section 4, stability results of the closed-loop system are given. In Section 5, a practical example of
highly maneuverable aircraft technology is used to illustrate the proposed control schemes. The paper is concluded
with Section 6.

Notations: The notations used in this paper are as follows: R and N+ represent the set of real numbers and positive
natural numbers, respectively. For a symmetric matrix P > 0 means P is positive definite. In addition, the superscript
T represents the transpose of matrix. The operator tr(·) represents the trace of a matrix. The notation ∥ · ∥ represents
the Euclidean norm. The identity matrix with dimension n is denoted with In×n. The notation Ω = {1,2, · · · ,N}
represents the set of subsystems and N is the number of subsystems.

2. PROBLEM FORMULATION AND PRELIMINARIES

Consider the uncertain switched linear system described by:

ẋ(t) = Aσ(t)x(t)+Bσ(t)u(t)+d(t), σ(t) ∈ Ω (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input, σ is the switching signal, and d ∈ Rn is a bounded
disturbance with known upper bound d. We say that a subsystem p ∈ Ω is uncertain when the entries of the matrices
Ap ∈ Rn×n and Bp ∈ Rn×m are unknown.
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A group of switched reference models representing the desired behavior of each subsystem is given as follows:

ẋm(t) = Amσ(t)xm(t)+Bmσ(t)r(t), σ(t) ∈ Ω (2)

where xm ∈ Rn is the desired state vector, and r ∈ Rm is a bounded reference input. The matrices Amp ∈ Rn×n and
Bmp ∈ Rn×m are known and Amp, p ∈ Ω, are Hurwitz matrices. The state-feedback mode-dependent control that
makes the switched systems behave like the reference models is u(t) = K∗T

σ(t)(t)x(t)+L∗
σ(t)(t)r(t), where K∗

p ∈ Rn×m

and L∗
p ∈ Rm×m, p ∈ Ω, are nominal parameters satisfying the following matching conditions:

Ap +BpK∗T
p = Amp, BpL∗

p = Bmp. (3)

Since we cannot obtain K∗
p and L∗

p from (3) with unknown Ap and Bp, the following mode-dependent controller is
introduced:

u(t) = KT
σ(t)(t)x(t)+Lσ(t)(t)r(t) (4)

where Kp and Lp are the estimates of K∗
p and L∗

p, p ∈ Ω, respectively. The tracking error is defined as e(t) = x(t)−
xm(t). Substituting (4) into (1) and subtracting (2) leads to the following dynamics of the tracking error:

ė(t) = Amσ(t)e(t)+Bσ(t)(K̃
T
σ(t)(t)x(t)+ L̃σ(t)(t)r(t))+d(t) (5)

where K̃p = Kp −K∗
p and L̃p = Lp −L∗

p are the parameter estimation errors.
We use the notation {(σ(t0), t0),(σ(t1), t1) · · · (σ(tl), tl), · · · | l ∈ N+} to represent the set of mode-switching

instant pairs. The sequence of switch-in instants of subsystem p, p ∈ Ω, is given as:
{

tp1 , tp2 , · · · tpl , · · · | l ∈ N+
}
,

and the sequence of switch-out instants of subsystem p, p ∈ Ω, is given as:
{

tp1+1, tp2+1, · · · tpl+1, · · · | l ∈ N+
}

. The
following preliminary definitions are given. First, we define switching signals based on extended dwell time.

Definition 1 (Mode-dependent dwell time). [27] A switching signal is said to be admissible with mode-dependent
dwell time if there exists a number τp > 0 for p ∈ Ω such that the constraint tpl+1 − tpl ≥ τp holds for all l ∈N+. Any
positive number τp for which this constraint holds is called mode-dependent dwell time.

Definition 2 (Mode-mode-dependent dwell time). The switching signal σ(·) is said to have mode-mode-dependent
dwell time (MMDDT) if there exist positive numbers τpq such that tpl+1 − tpl ≥ τpq with σ(tpl ) = p and σ(tpl+1) = q,
∀l ∈ N+. Furthermore, we indicate the fact that the next mode to be switched on after p is q with N(p) = q. The
MMDDT switching law is defined for every p, q such that N(p) = q.

Secondly, we characterize the type of stability sought in this work.

Definition 3 (Global uniform ultimate stability). The uncertain switched system (1) under switching signal σ(·) is
globally uniformly ultimately bounded if there exists a convex and compact set C such that for every initial condition
x(0) = x0, there exists a finite T (x0) such that x(t) ∈ C for all t ≥ T (x0).

Definition 4 (Ultimate bound). A signal φ(·) is said to be globally uniformly ultimately bounded with ultimate
bound b if there exists a positive constant b, and for any a ≥ 0, there exists T = T (a,b), where b and T are inde-
pendent of t0, such that ∥φ(t0)∥ ≤ a ⇒∥φ(t)∥ ≤ b, ∀t ≥ t0 +T .

Given these definition, the control objective for the uncertain switched linear system (1) can be formulated as:

Problem 1. Develop an adaptive law for the control parameters in (4) and a switching law based on extended dwell
time that, without requiring the knowledge of the nominal values of Ap and Bp, ∀p ∈ Ω, assures the global uniform
ultimate stability of all signals in the switched system (1) with controller (4).

3. Methodology

In this section, an adaptive law and two switching laws are proposed to solve Problem 1.
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3.1. Adaptive control

Before introducing the adaptive law, an assumption is required: there exists a family of matrices Sp ∈ Rm×m,
p ∈ Ω, such that Mp := L∗

pSp =
(
L∗

pSp
)T

= ST
p L∗T

p > 0,∀p ∈ Ω. This assumption, which is adopted for adaptive
control of multiple-input non-switched systems [33], is analogous to knowing the sign of L∗ in the signal-input case.
Let p denote the index of the subsystem active for t ∈ [tl , tl+1). Suppose that there exists a matrix Pp > 0 and a constant
κp > 0 such that

AT
mpPp +PpAmp +(1+κp)Pp ≤ 0. (6)

Then, the following adaptive law using a leakage approach is introduced, for t ∈ [tl , tl+1)

K̇T
p (t) = −ST

p BT
mpPpe(t)xT (t)−δpMpKT

p (t) (7a)

L̇p(t) = −ST
p BT

mpPpe(t)rT (t)−δpMpLp(t) (7b)

K̇T
q (t) = −δqMqKT

q (t) (7c)

L̇q(t) = −δqMqLq(t) (7d)
q = 1, . . . , p−1, p+1, . . . ,N

where the leakage rate δp should satisfy the following condition:

δp −max
p∈Ω

{
κp
}

λmax(M−1
p )≥ 0. (8)

Remark 1. The difference between the adaptive law (7) and the laws proposed in literature [23, 24, 25, 26] consists
in the following two aspects. Firstly, the knowledge of the uncertainty set where the nominal control parameters
reside is not required in (7) thanks to the leakage approach. Secondly, the parameter estimates of each subsystem are
continuously updated even when the corresponding mode is inactive: two updating laws are exploited depending on
status of the subsystem, i.e., active (update law (7a)–(7b)), or inactive (update law (7c)–(7d)).

3.2. Switching Laws

In this section, two switching laws are proposed based on the MDDT and MMDDT strategies, respectively. We
denote with λ p and λ p the largest and the smallest eigenvalue of Pp, respectively, and we define κmax = maxp∈Ω κp,
α = maxp∈Ω λ p and β = minp∈Ω λ p. We propose a switching law based on the following MDDT:

τp > τ
∗
p =

1
ξ κp

ln µp, ∀p ∈ Ω (9)

where µp = α/λ p and ξ ∈ (0, 1) is a design positive constant.
For the scenario when the next subsystem q to be switched on after subsystem p is known, a different switching

law than (9) is proposed with the following MMDDT:

τpq > τ
∗
pq =

1
ξ κp

ln µpq, ∀p ∈ Ω, q =N(p) (10)

where µpq = λ q/λ p and ξ ∈ (0, 1) is a design positive constant. Note that, when the switching sequence is given, the
MMDDT (10) represents a larger class of switching signals than (9), for which GUUB of the closed-loop switched
system can be guaranteed.

Remark 2. When a prespecified switching sequence is known in advance, optimal control has been investigated to
find the optimal switching instants and the optimal controller [29, 34]. However, the methods in [29, 34] are not
applicable when the switched system is uncertain. In light of this, the MMDDT switching law is presented to deal
with the scenario when the switching sequence is known. Comparing with (9) and (10), it can be observed that
MMDDT can allow faster switching than MDDT by exploiting the information of the next subsystem to be switched
on.
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4. Main result

In this section, the robust stability results deriving from the adaptive law (7)–(8) and switching laws (9)–(10) are
presented.

The following lemma will be exploited to prove the stability results.

Lemma 1. [35] Let φ ∈ Rg, ϕ ∈ Rs be vector-valued signals, and let W ∈ Rg×g, V ∈ Rg×s be constant matrices.
Then, the following inequality holds: 2φ TWV ϕ ≤ φ TWW T φ +ϕTV TV ϕ .

Theorem 1. With the adaptive law (7)–(8) and the switching law with MDDT (9), the GUUB stability of the unknown
switched system (1) with controller (4) can be guaranteed. In addition, the tracking error is bounded as:

∥e(t)∥2 ≤ 1
β 2 max

{
c1,

α
(
c2 +α∥d∥2

)
(1−ξ )maxp∈Ω κp

}
(11)

where c1 and c2 are two positive constants that depend on the initial estimates and on the actual values of the controller
parameters. In addition, the tracking error is GUUB with an ultimate bound b in the interval:

b ∈

0,
1
β

√
α
(
c2 +α∥d∥2

)
(1−ξ )maxp∈Ω κp

 . (12)

Proof. The proof is organized as follows: we adopt a Lyapunov function which is quadratic in the tracking error
and estimation errors. The behavior of the Lyapunov function is studied with the proposed adaptive law (7)–(8) and
switching law (9). It is shown that the Lyapunov function is decreasing at an exponential rate when the value of
Lyapunov function is located outside of a bound. Then, it is proven that there exists a finite bound such that after
some time the Lyapunov function will stay inside the bound, which implies that the closed-loop system is GUUB. The
following Lyapunov function is adopted:

V (t) = eT (t)Pσ(t)e(t)+
N

∑
p=1

tr
[
K̃p(t)M−1

p K̃T
p (t)

]
+

N

∑
p=1

tr
[
L̃T

p (t)M
−1
p L̃p(t)

]
. (13)

In general, Pp is different for different subsystems, which indicates that V (·) might be continuous w.r.t. time only
in the intervals between two consecutive switches. In light of this, to investigate the behavior of V (·), first, we need to
establish the characteristics of V (·) at the discontinuous instants. Without loss of generality, we study the Lyapunov
function at the switching instant tl+1, l ∈N+. Subsystem σ(t−l+1) is active when t ∈ [tl , tl+1) and subsystem σ(tl+1) is
active when t ∈ [tl+1, tl+2).

At the switching instant tl+1, we have before switching

V (t−l+1) = eT (t−l+1)Pσ(t−l+1)
e(t−l+1)+

N

∑
p=1

tr
[
K̃p(t−l+1)M

−1
p K̃T

p (t
−
l+1)

]
+

N

∑
p=1

tr
[
L̃T

p (t
−
l+1)M

−1
p L̃p(t−l+1)

]
and after switching

V (tl+1) = eT (tl+1)Ptl+1e(tl+1)+
N

∑
p=1

tr
[
K̃p(tl+1)M−1

p K̃T
p (tl+1)

]
+

N

∑
p=1

tr
[
L̃T

p (tl+1)M−1
p L̃p(tl+1)

]
.

According to the continuity of the tracking error e(·) in (5) and the continuity of the parameter estimates updated
via (7), we have e(tl+1) = e(t−l+1), K̃p(tl+1) = K̃p(t−l+1), and L̃p(tl+1) = L̃p(t−l+1) for any switching law. Due to
eT (t)Pσ(t)e(t) ≤ αeT (t)e(t) and eT (t)Pσ(t)e(t) ≥ λ σ(t)e

T (t)e(t), we have V (tl+1)−V (t−l+1) = eT (tl+1)(Pσ(tl+1) −
P

σ(t−l+1)
)e(tl+1) ≤ (α − λ

σ(t−l+1)
)/λ

σ(t−l+1)
· eT (tl+1)Pσ(t−l+1)

e(tl+1) ≤ (α − λ
σ(t−l+1)

)/λ
σ(t−l+1)

·V (t−l+1). Then, the fol-
lowing relationship of V (t) at the switching instant tl+1 can be established:

V (tl+1)≤ µ
σ(t−l+1)

V (t−l+1) (14)
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with µ
σ(t−l+1)

= α/λ
σ(t−l+1)

, which is a positive constant no smaller than 1. Moreover, the dynamics of V (t) between
two consecutive switching instants is studied. When t ∈ [tl , tl+1), the derivative of V (t) w.r.t. time according to (5)
and (7) is:

V̇ (t) = eT (t)(AT
mσ(t−l+1)

P
σ(t−l+1)

+P
σ(t−l+1)

Amσ(t−l+1)
)e(t)−2

N

∑
p=1

tr
[
K̃p(t)δpKT

p (t)
]
−2

N

∑
p=1

tr
[
L̃T

p (t)δpLp(t)
]

+dT (t)P
σ(t−l+1)

e(t)+ eT (t)P
σ(t−l+1)

d(t)

(15)

Since P
σ(t−l+1)

is a positive definite matrix, there exists a nonsingular matrix H
σ(t−l+1)

such that P
σ(t−l+1)

=H
σ(t−l+1)

HT
σ(t−l+1)

.

Then, (15) can be recast into

V̇ (t) = eT (t)(AT
mσ(t−l+1)

P
σ(t−l+1)

+P
σ(t−l+1)

Amσ(t−l+1)
)e(t)−2

N

∑
p=1

tr
[
K̃p(t)δpKT

p (t)
]
−2

N

∑
p=1

tr
[
L̃T

p (t)δpLp(t)
]

+dT (t)H
σ(t−l+1)

HT
σ(t−l+1)

e(t)+ eT (t)H
σ(t−l+1)

HT
σ(t−l+1)

d(t)

≤ eT (t)(AT
mσ(t−l+1)

P
σ(t−l+1)

+P
σ(t−l+1)

Amσ(t−l+1)
)e(t)−2

N

∑
p=1

tr
[
K̃p(t)δpKT

p (t)
]
−2

N

∑
p=1

tr
[
L̃T

p (t)δpLp(t)
]

+ eT (t)P
σ(t−l+1)

e(t)+dT (t)P
σ(t−l+1)

d(t)

≤ −κ
σ(t−l+1)

eT (t)P
σ(t−l+1)

e(t)−2
N

∑
p=1

tr
[
K̃p(t)δp(K̃T

p (t)+K∗T
p )
]
−2

N

∑
p=1

tr
[
L̃T

p (t)δp(L̃T
p (t)+L∗T

p )
]

+dT (t)P
σ(t−l+1)

d(t)

(16)

where the first inequality holds according to Lemma 1, and the last inequality holds due to (6). Since tr
[
K̃pK∗T

p
]
=

tr
[
K∗T

p K̃p
]
, we have −2tr

[
K̃pK̃T

p
]
−2tr

[
K̃pK∗T

p
]
≤− tr

[
K̃pK̃T

p
]
+ tr

[
K∗

pK∗T
p
]
. Hence, it follows from (16) that

V̇ (t)≤ −κ
σ(t−l+1)

eT (t)P
σ(t−l+1)

e(t)−
N

∑
p=1

tr
[
δpK̃p(t)K̃T

p (t)
]
+

N

∑
p=1

tr
[
δpK∗

pK∗T
p
]
−

N

∑
p=1

tr
[
δpL̃T

p (t)L̃
T
p (t)

]
+

N

∑
p=1

tr
[
δpL∗

pL∗T
p
]
+dT (t)P

σ(t−l+1)
d(t)

≤ −κ
σ(t−l+1)

V (t)+
N

∑
p=1

tr
[
K̃p(t)K̃T

p (t)(κσ(t−l+1)
λmax(M−1

p )−δp)
]
+

N

∑
p=1

tr
[
δpK∗

pK∗T
p
]

+
N

∑
p=1

tr
[
L̃T

p (t)L̃p(t)(κσ(t−l+1)
λmax(M−1

p )−δp)
]
+

N

∑
p=1

tr
[
δpL∗

pL∗T
p
]
+dT (t)P

σ(t−l+1)
d(t).

(17)

Using (8), we have for t ∈ [tl , tl+1), ∀ξ ∈ (0, 1):

V̇ (t)≤−ξ κ
σ(t−l+1)

V (t)− (1−ξ )κ
σ(t−l+1)

V (t)+
N

∑
p=1

tr
[
δpK∗

pK∗T
p
]
+

N

∑
p=1

tr
[
δpL∗

pL∗T
p
]
+dT (t)P

σ(t−l+1)
d(t). (18)

We define a positive number B as

B=
α∥d∥2 + c2

(1−ξ )maxp∈Ω κp
(19)

where c2 = ∑
N
p=1 tr

[
δpK∗

pK∗T
p +δpL∗

pL∗T
p
]
. To analyze the behavior of the Lyapunov function during two consecutive

switching instants, i.e., t ∈ [tl , tl+1), two possible scenarios should be taken into account:

• When V (t)≥B, it follows that V̇ (t)≤−ξ κ
σ(t−i+1)

V (t), i.e., V (t) is decreasing at an exponential rate.
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• When V (t)<B, it follows that V (t) may be increasing.

In light of this, we consider two cases for the initial condition: V (t0)≥B (case 1); V (t0)<B (case 2).
Case 1: we assume V (t) ≥ B for t ∈ [t0, t0 + T1), where T1 represents the time instant before V (t) enters into

the bound B. This means that V (t) is decreasing at an exponential rate for t ∈ [t0, t0 +T1). Denote the number of
all switching intervals by N1 in the whole time interval [t0, t0 +T1). Denote the number of intervals that subsystem
p, p ∈ Ω, is active by N1p(t), and the number of all switching intervals by N1(t) in the time interval [t0, t] for
t ∈ [t0, t0 +T1). Therefore, when t ∈ [t0, t0 +T1), it follows from (14) and (18) that

V (t)≤ V (tN1(t))

≤ µ
σ(t−N1(t)−1)

exp
(
−ξ κσ(tN1(t)

)

(
tN1(t)− tN1(t)−1

))
V (tN1(t)−1)

≤ µ
σ(t−N1(t)−1)

exp
(
−κσ(tN1(t)

)

(
tN1(t)− tN1(t)−1

))
µ

σ(t−N1(t)−2)
exp
(
−ξ κσ(tN1(t)−1)

(
tN1(t)−1 − tN1(t)−2

))
V (tN1(t)−2)

...

≤ µ
σ(t−N1(t)−1)

exp
(
−ξ κσ(tN1(t)

)

(
tN1(t)− tN1(t)−1

))
µ

σ(t−N1(t)−2)
exp
(
−ξ κσ(tN1(t)−1)

(
tN1(t)−1 − tN1(t)−2

))
· · ·

µσ(t0) exp
(
−ξ κσ(t0) (t1 − t0)

)
V (t0)

≤
N

∏
p=1

µ
N1p(t)
p exp

(
−

N

∑
p=1

N1p(t)ξ κp(tpl+1 − tpl )

)
V (t0)

(20)
for all l ∈

{
0, 1, 2, · · · , N1p(t)

}
. Substituting the MDDT condition τp = tpl+1−tpl > ln µp/ξ κp into (20) gives rise to

V (t)<V (t0) for t ∈ [t0, t0+T1). Moreover, since V (t0+T1)<B, according to (14) we have that V (tN1+1)< µ
σ(t−N1+1)

B

at the next switching instant tN1+1 after t0 +T1. This means that V (t) may be no smaller than B after the instant tN1+1.
In view of this, similarly, we assume V (t)≥B when t ∈ [tN1+1, t0 +T2). Denote the number of all switching intervals
in the interval [tN1+1, t0 + T2) by N2 . Then, substituting V (t0) with V (tN1+1) in (20), based on similar proof lines
as (20), we have V (t) < V (tN1+1) for t ∈ [tN1+1, t0 + T2). Due to V (t0 + T2) < B, according to (14) we have that
V (tN1+N2+2)< µ

σ(t−N1+tN2
+2)

B at the next switching instant tN1+tN2+2 after t0 +T2. Using a similar analysis recursively,

we can conclude that V (t)≤Bα/β for t ∈ [t0+T1, ∞). This implies that once V (t) enters the interval [0, B], it cannot
exceed the bound Bα/β for any time later with MDDT (9). According to the definition of GUUB, the switched linear
system (1) with controller (4) is GUUB with the adaptive law (7)–(8) and the switching law (9).

Next, we study the dynamics of the tracking error. Based on the aforementioned analysis about GUUB, it can be
obtained that

V (t)≤ max
{

V (t0),
α

β
B

}
, ∀t > t0. (21)

In addition, the fact that eT (t)Pσ(t)e(t)≥ β∥e(t)∥2 leads to

V (t) = eT (t)Pσ(t)e(t)+
N

∑
p=1

tr
[
K̃p(t)M−1

p K̃T
p (t)

]
+

N

∑
p=1

tr
[
L̃T

p (t)M
−1
p L̃p(t)

]
≥ β∥e(t)∥2.

(22)

Then, it follows from (21)–(22) that the tracking error is upper bounded in the following form

∥e(t)∥2 ≤ 1
β

max

{
c1,

α
(
α∥d∥2 + c2

)
β (1−ξ )maxp∈Ω κp

}
(23)

with c1 =V (t0), and the tracking error is GUUB with an ultimate bound b with:

b ∈

0,
1
β

√
α
(
α∥d∥2 + c2

)
(1−ξ )maxp∈Ω κp

 . (24)
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Case 2: The same results (23) and (24) can be obtained following the proof lines from (20) to (22). This completes
the proof.

Remark 3. The upper bound (11) and ultimate bound (12) of the tracking error indicate that the proposed methods
prevent the tracking error in the closed-loop switched system from growing large over short switching intervals. The
numerical example in Section 5 will show that a large overshoot can occur with MDADT when the interval between
two consecutive switches is very short.

Remark 4. A quasi-time-dependent quadratic Lyapunov function was proposed recently in [36, 37], which has been
shown to provide less conservative switching laws than classical Lyapunov functions for known switched systems.
This could be a potentially useful tool to solve adaptive control of uncertain switched linear systems. Future work
will be focusing on this direction.

For the case when the switching sequence is known, the following result is introduced.

Theorem 2. With the adaptive law (7)–(8) and the switching law with MMDDT (10), the GUUB stability of the
unknown switched system (1) with controller (4) can be guaranteed. In addition, the tracking error is bounded as:

∥e(t)∥2 ≤ 1
β

max

c1, max
p, q∈Ω

N(p)=q

{
µpq
}
·

(
c2 +α∥d∥2

)
β (1−ξ )maxp∈Ω κp

 (25)

where c1 and c2 are the same positive constants as in Theorem 1. In addition, the tracking error is GUUB with an
ultimate bound b with:

b ∈

0,

√√√√ max
p, q∈Ω

N(p)=q

{
µpq
}
·

(
c2 +α∥d∥2

)
β (1−ξ )maxp∈Ω κp

 . (26)

Proof. The proof is similar with the proof of Theorem 1. The same Lyapunov function as (13) is adopted. The main
difference arises from the relationship of the values between the Lyapunov function at switching instant tl+1, which is
expressed as follows:

V (tl+1)≤
λ σ(tl+1)

λ
σ(t−l+1)

V (t−l+1) =: µ
σ(tl+1)σ(t−l+1)

V (t−l+1).

The dynamics of the Lyapunov function during the switching interval is identical with (15)–(19). Since the switching
sequence is known, the maximum increase of the Lyapunov function at the switching instants is maxp, q∈Ω,N(p)=q
instead of α/β as in the MDDT case. The rest of the proof follows the lines from (20) to (24) after substituting
µ

σ(t−l+1)
with µ

σ(tl+1)σ(t−l+1)
. We conclude that the adaptive law (7)–(8) and the switching law with MMDDT (10) lead

to GUUB stability with bounds (25) and (26).

Remark 5. Note that stable closed-loop switched system can automatically guarantee stability of the switched refer-
ence model (2). We provide a brief proof of stability of the switched reference model using MDDT switching law. A
Lyapunov function V = xT

mPpxm is studied: the decreasing rate is upper bounded by 1+κp according to (6), and the
increment at the switching instants is α/λ p. Therefore, if the switching interval is larger than ln

(
α/λ p

)
/(1+κp),

then the switched reference model is exponentially stable. It is observed that the proposed switching law (9) has larger
switching intervals than ln

(
α/λ p

)
/(1+κp). In light of this, we can say that the switched reference model is stable

based on MDDT or MMDDT switching laws.

Remark 6. If there exists a common positive definite matrix P satisfying (6) for all Amp and d(·) ≡ 0, the tracking
error tends to zero asymptotically using the adaptive law (7) with δp = 0 for all p ∈ Ω and with arbitrarily fast
switching. The interested reader is referred to [23] for more details.

The following corollary to Theorem 2 can be established.
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Corollary 1. Consider two consecutive switching instants tpl and tpl+1, l ∈ N+, with σ(tpl ) = p and σ(tpl+1) = q,
p×q ∈ Ω×Ω. If µpq ≤ 1 in (10), then the switching interval tpl+1 − tpl can be as small as desired, i.e., the closed-
loop switched system is GUUB and the tracking error is upper bounded as (25) with ultimate bound b as (26) under
arbitrarily fast switches of the subsystem p when N (p) = q, where N (p) denotes the index of subsystem to be switched
on after subsystem p.

PROOF. Since µpq ≤ 1 in (10), it follows V (tl+1) ≤ V (t−l+1) at the switching instant tl+1, which indicates the energy
defined by the Lyapunov function is decreasing at the switching instant tl+1. Considering that the Lyapunov function
is non-increasing in the interval between two consecutive switching instants, τpq is allowed to be arbitrarily small.
Therefore, the closed-loop systems are GUUB with arbitrarily fast switches of the subsystem p when N (p) = q.

Remark 7. Note that Corollary 1 does not guarantee asymptotic stability under arbitrarily fast switches, unless a
common Lyapunov function exists as discussed in Remark 6. Consider two subsystems p and q, for which the
condition µpq ≤ 1 is satisfied: the system can switch arbitrarily fast from p to q. On the other hand, if the switching
signal at switching instant tpl+1 switches from q to p, we have µqp ≥ 1, which leads to GUUB since the Lyapunov
function may increase at switching instant tpl+1.

5. Example

In this section, a highly maneuverable aircraft technology (HiMAT) vehicle [38, 39, 40] is adopted to illustrate the
proposed adaptive control method. The adaptive control approach is utilized to design a closed-loop controller and
switching signals for the unstable longitudinal dynamics. The switched linear system is redẋ = Apx+Bpu+d, p ∈ Ω,
and considers the following three modes:

A1 =

−0.8435 0.97505 −0.0048
8.7072 −1.1643 0.0026

0 1 0

 , B1 =

−0.1299 −0.092 −0.0107 −0.0827
−7.6833 −4.7974 4.8178 −5.7416

0 0 0 0


A2 =

−1.8997 0.98312 −0.00073
11.720 −2.6316 0.00088

0 1 0

 , B2 =

−0.2436 −0.1708 −0.00497 −0.1997
−46.206 −31.604 22.396 −31.179

0 0 0 0


A3 =

−1.2206 0.99411 −0.00084
−64.071 −1.8876 0.00046

0 1 0

 , B3 =

−0.0662 −0.0315 −0.0141 −0.0749
−27.333 −13.163 11.058 −26.878

0 0 0 0

 .
5.1. Design of reference model

Three LQR controllers u = K∗
px with Q = diag([1 1 5]), R = diag([1 1 1 1]) are adopted to design the reference

model, i.e., ẋm = Ampxm +Bmpr = (Ap +BpK∗
p)xm +Bpr, p ∈ Ω . The nominal parameters and the system matrices

of reference model are:

K∗
1 =


0.6219 0.7469 1.4508
0.3969 0.4671 0.9013
−0.3174 −0.4621 −0.9483
0.4534 0.5572 1.0902

 , L∗
1 = I4×4, Am1 =

−0.9949 0.7939 −0.3562
−2.1076 −14.5691 −26.2966

0 1 0



K∗
2 =


0.1984 0.6793 1.5202
0.1368 0.4646 1.0392
−0.0642 −0.3289 −0.7527
0.1431 0.4585 1.0212

 , L∗
2 = I4×4, Am2 =

−1.9997 0.6484 −0.7487
−7.6710 −70.3615 −151.7803

0 1 0



K∗
3 =


−0.6674 0.6397 1.4517
−0.3220 0.3081 0.6995
0.3287 −0.2599 −0.6292
−0.6423 0.6288 1.4175

 , L∗
3 = I4×4, Am3 =

 −1.1228 0.8986 −0.2163
−20.6916 −43.2036 −93.9421

0 1 0

 .
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5.2. Robust adaptive control

Let κ1 = 0.25,κ2 = 0.5,κ3 = 0.4. Solving (6) gives rise to the following positive definite matrices:

P1 =

 0.7337 −0.0162 −0.3781
−0.0162 0.0549 0.0800
−0.3781 0.0800 2.3960

 , P2 =

 0.5225 −0.0028 −0.0517
−0.0028 0.0092 0.0132
−0.0517 0.0132 1.9764


P3 =

 0.7942 −0.0063 −0.3177
−0.0063 0.0167 0.0241
−0.3177 0.0241 2.4767

 .
Then, the bounds of DT, MDDT, MMDDT are obtained as shown in Table 1, which shows that a bigger class of
switching signals based on MDDT is obtained than the class of switching signals based on DT. Moreover, when the
switching sequence is known, MMDDT leads to even less conservative switching signals than MDDT and DT. We

Table 1: Comparison of three switching laws

Switching strategies DT MDDT MMDDT
Switching sequences Unknown Unknown Known in advance

Switching
signals

τ∗D = 23.7 τ∗1 = 16.3, τ∗2 = 11.8, τ∗3 = 13.2 τ∗13 = 16.3, τ∗32 = 12.6
τ∗21 = 11.8, τ∗23 = 10

µ = 278.3 µ1 = 48.6, µ2 = 278.3, µ3 = 154.1 µ13 = 48.6, µ32 = 120.3, µ21 = 272.4
κ = 0.25 κ1 = 0.25, κ2 = 0.5, κ3 = 0.4 κ1 = 0.25, κ2 = 0.5, κ3 = 0.4

design switching signals based on DT, MDADT, MDDT, and MMDDT as shown in Fig.1–4, respectively. Consider
the adaptive gains S1 = S2 = S3 = 10I4×4, the leakage rates δ1 = δ2 = δ3 = 0.05, the initial conditions x(0) = [0 0 0]T ,
xm = [2 2 1]T , Kp(0) = 0.8K∗

p, Lp(0) = 0.8L∗
p, the disturbance d(t) = [0.2sin(10t) 0.15e−t 0.1cos(πt)]T , and the

reference input r(t) = [2sin(t) cos(t) 0.5sin(0.5t) 0]T . The tracking errors based on the four switching signals are
shown in Fig. 5–8, respectively. It can be observed that the tracking errors are upper bounded, and an ultimate bound
is 0.8, which is verified by the results in this work. Moreover, comparing Fig. 5 and Fig. 6, the fast switchings of
MDADT negatively impact the transient performance of the tracking error.

Figure 1: Switching signal based on MDDT Figure 2: Switching signal based on MDADT

Figure 3: Switching signal based on DT Figure 4: Switching signal based on MMDDT
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Figure 5: The tracking error based on MDDT with a enlarged detail in
[0,20]
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Figure 6: The tracking error based on MDADT with a enlarged detail
in [0,20]
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Figure 7: The tracking error based on DT
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Figure 8: The tracking error based on MMDDT

6. Conclusion

In this paper, a robust adaptive tracking control problem for uncertain switched systems subject to disturbances has
been studied. An adaptive law with leakage approach has been proposed to overcome the assumption, adopted till now
in literature, of knowing the bounds of the uncertainty set. Moreover, switching laws based on the mode-dependent
dwell time and the mode-mode-dependent dwell time have been developed, which can allow faster switching as com-
pared to switching laws based on the dwell time. Global uniform ultimate boundedness of the closed-loop switched
system based on the proposed methods can be guaranteed. The upper bound and the ultimate bound of the track-
ing error have been derived. Finally, an example of highly maneuverable aircraft technology has demonstrated the
effectiveness of the proposed robust adaptive tracking control methods.
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