
Delft University of Technology
Delft Center for Systems and Control

Technical report 18-011

The interaction between scheduling and
control of semi-cyclic hybrid systems∗

T.J.J. van den Boom, H. de Bruijn, B. De Schutter, and L. Özkan

If you want to cite this report, please use the following reference instead:

T.J.J. van den Boom, H. de Bruijn, B. De Schutter, and L. Özkan, “The interaction
between scheduling and control of semi-cyclic hybrid systems,” Proceedings of the
14th International Workshop on Discrete Event Systems (WODES 2018), Sorrento
Coast, Italy, pp. 212–217, May–June 2018. doi:10.1016/j.ifacol.2018.06.303

Delft Center for Systems and Control
Delft University of Technology
Mekelweg 2, 2628 CD Delft
The Netherlands
phone: +31-15-278.24.73 (secretary)
URL: https://www.dcsc.tudelft.nl

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/18_011.html

https://doi.org/10.1016/j.ifacol.2018.06.303
https://www.dcsc.tudelft.nl
https://pub.bartdeschutter.org/abs/18_011.html

The interaction between scheduling and

control of semi-cyclic hybrid systems

Ton J.J. van den Boom ∗ Hilco de Bruijn ∗ Bart De Schutter ∗

Leyla Özkan ∗∗

∗ Delft University of Technology, Delft Center for Systems and
Control, Delft, The Netherlands (e-mail: a.j.j.vandenboom@tudelft.nl)

∗∗ Eindhoven University of Technology, Control Systems Group,
Eindhoven, The Netherlands

Abstract: In this paper a new iterative approach is proposed for the design of a combined
real-time scheduling and control algorithm that can be applied to industrial systems that
are described by a hybrid model with a (semi-)cyclic behavior. Traditionally scheduling and
control problems are considered in a sequential way. First the scheduling problem is solved and
subsequently the control problem. This may result in inconsistent solutions such that the system
may not operate adequately and does not reach the desired operational targets.
In our approach scheduling is done with model predictive control using a switching max-
plus linear model of the discrete event part of the system. The interface with a reference
generator determines whether the computed reference signal will lead to a feasible response.
Furthermore, it estimates the duration of the operations in the system based on the actual state,
and communicates that with the scheduler. In an iterative procedure the optimal and feasible
schedule can be computed. In a case study the railway traffic on a single track is considered,
showing that updating the schedule results in feasible local speed profiles for the trains and less
delay in the overall system in case of a delay.

Keywords: Scheduling algorithms, Control, Hybrid Systems, Switching Max-Plus linear
systems, Iterative methods

1. INTRODUCTION

For complex dynamical systems with a semi-cyclic behav-
ior, such as manufacturing operation, large cyber-physical
systems, and transportation systems, the real-time op-
eration involves a large number of scheduling decisions
distributed over several layers of automation hierarchy.
This paper is concerned with the development of new
methodologies and algorithms for the smart online inter-
action between scheduling and control layers.

The major disadvantage of traditional scheduling, plan-
ning and control techniques is that the problems are con-
sidered separately and solved in a sequential top-down
way: First a schedule is computed, subsequently the sched-
ule is translated into a number of reference signals that
need to be tracked by the controllers.

To avoid these issues, our aim in this paper is to design a
combined real-time scheduling and control algorithm that
can be applied to industrial systems that are described
by a hybrid model with a (semi-)cyclic behavior (such as
production systems (Mutsaers et al., 2012), cyber-physical
systems (Alirezaei et al., 2012), traffic networks (Kersber-
gen et al., 2016), queuing systems and array processors).
Semi-cyclic behavior occurs when cycles deviate from each
other because of different ordering, different routing or just
different parameters. We will go through scheduling and
control levels sequentially at regular intervals. This means
that we need to monitor the process status continuously

and establish a smart interaction between the scheduler
and the controllers. This interaction is done via a smart
interface.

scheduler

q, x θ̂1

interface

q, x θ̂2

interface . . .

q, x θ̂n

interface

q, r1 ξ̂1

controller

q, r2 ξ̂2

controller . . .

q, rn ξ̂n

controller

u1 ym,1

sub-system

u2 ym,2

sub-system . . .

un ym,n

sub-system

Figure 1: Process with interacting scheduler and
controller.

The overall system is depicted in Figure 1 and it consists
of four layers:

(1) Process with interacting sub-systems. Each sub-
system i has an input ui and an output yi.

(2) Control: Given the global discrete state q the ith
model-based controller will compute a control signal
ui such that the sub-system i follows the given ref-
erence signal ri. The measured state ξ̂i is sent to the
interface.

(3) Scheduling: The real-time scheduling strategy aims at
providing the mode (represented by the discrete state
q) and the vector xi with begin and end times of all
tasks based on the vector θ̂i of estimated operation
times of sub-system i. In this paper we propose to
use a switching max-plus linear (SMPL) approach to
solve the scheduling problem.

(4) Interface: A smart interface between scheduler and
control layers. The aim of the interface is to commu-
nicate the proposed schedule to the local controller,
compute an appropriate reference signal ri for the
ith sub-system, and to extract process variables θ̂i
efficiently from the dynamical hybrid model’s data
and communicate them to the scheduler.

In this paper we propose an iterative sequential approach.
The scheduling problem and the control problem are
solved sequentially in an iterative procedure. For the
scheduling part we will use switching max-plus linear sys-
tems. Max-plus algebra has been used more often in litera-
ture to solve scheduling problems. In Yurdakul and Odrey
(2004) an algorithm has been developed to solve a steady-
state schedule problem by transforming their original non-
linear model into a linear one. In Bouquard et al. (2006)
the single machine, two-machines and three-machines flow
shop scheduling problems have been solved. More recently,
a mathematical formulation for cyclic flow-shops using
max-plus algebra has been presented in Nambiar and
Judd (2011), and a method to solve the cyclic job shop
scheduling problem was proposed in Houssin (2011). In van
den Boom et al. (2013) a methodology has been derived
to systematically construct synchronization controllers for
multiple cyclic discrete-event systems modeled in the max-
plus framework.

2. EVENT-DRIVEN AND TIME-DRIVEN MODELS

Consider the hybrid system of Figure 1 consisting of
a scheduler, interfaces, controllers and subsystems. The
overall system can be represented by the hybrid automaton
H = (Q,Ξ, f, Init, Inv, E ,R), where Q is a finite set of
discrete states, Ξ is the continuous state space, f is a
vector field, Init is the set of initial states, Inv describes
the invariants of the locations, E is the transition relation,
and R is the reset map. The state of the hybrid system is
given by (q, ξ) ∈ Q × Ξ, and the evolution of the state is
given by

ξ̇(t) = f(q(t), ξ(t)) , t ∈ R (1)

Invariants and guards describe when a transition will take
place (the guard will enable a transition, the invariant
forces a transition). The reset map specifies how new
continuous states are related to previous continuous states
for a particular transition.

We assume the overall system can be split into N subsys-
tems, each with its own continuous state ξi, its own local
discrete state qloc,i and with one common discrete state
qcom, leading to the local system descriptions:

ξ̇i(t) = fi(qcom(t), qloc,i(t), ξi(t)) , for i = 1, . . . , N (2)

This means that we assume the interaction between the
sub-systems is only in the discrete event domain, i.e. the
coupling of begin and end times of the different operations
in the sub-systems.

In (semi-)cyclic systems we assume that all operations
will repeat in a (semi-)cyclic manner. Let tj,b be the time
instant that the hybrid system switches to discrete state
qj . The state will evolve according to (1) for a fixed qj until
the invariant and guard decide that a transition to another
discrete state will take place. Let tj,e be the end-time in
discrete state qj at which a new transition will take place.
We can say that the duration of the operation in discrete
state qj is equal to θj = tj,e − tj,b.

Based on the estimated values θ̂ of the operations in the
system the scheduler will construct an optimal schedule
for the overall system, described by the discrete state q.

Scheduling with SMPL systems

Now we arrive at the scheduling part of the system, in
which the starting times tj,b(k) and finishing times tj,e(k)
of the system’s operations for cycle k are synchronized.
This means that a next operation can only start if one or
more other operations are finished.

Let all processing times in the system for the cycle k be
collected in a vector

θ(k) = [θ1(k) θ2(k) · · · θNθ
(k)]

T

and define a vector

x(k) = [t1,b(k) t1,e(k) · · · tn,b(k) tn,e(k)]
T

where k ∈ Z
+ is the cycle counter.

These synchronizations can then be written in the form:

xj(k) = max
p,µ

(xp(k − µ) + τjpµ)

where τjpµ is the minimal delay time between event p
in cycle k − µ and event j in cycle k. If there is no
synchronization between event p in cycle k − µ and event
j in cycle k we choose τjpµ = −∞.

Now we introduce some notation from max-plus algebra
(Baccelli et al., 1992). Define Rε = R∪{ε} where ε = −∞.
The max-plus-algebraic addition (⊕) and multiplication
(⊗) are defined as follows:

x⊕ y = max(x, y) , x⊗ y = x+ y

for any x, y ∈ Rε, and

[A⊕B]i,j = ai,j ⊕ bi,j = max(ai,j , bi,j)

[A⊗ C]i,j =
n

⊕

k=1

ai,k ⊗ ck,j = max
k=1,...,n

(ai,k + ck,j)

for matrices A,B ∈ R
m×n
ε and C ∈ R

n×p
ε .

If we collect all values τjpµ in a matrix Aµ with [Aµ]jp =
τjpµ the relation between the events becomes (van den
Boom et al., 2013):

x(k) =

µ̄
⊕

µ=1

Aµ(θ)⊗ x(k − µ)

where we write Aµ(θ(k)) because the variables τjpµ are the
entries of the vector θ (with Nθ = n2µ̄).

When we do scheduling of the system, the synchronization
between different events may change (e.g. because of
rerouting or reordering of the events). In van den Boom
et al. (2013) we have shown that by introducing a binary
scheduling variable u(k) ∈ {0, ε} and the adjoint

ū(k) =

{

0 if u(k) = ε

ε if u(k) = 0

we can introduce the scheduling matrix Aµ(θ(k)) as follows

Aµ(u(k), θ(k), k) =
L
⊕

ℓ=1

uℓ(k)⊗A
µ
ℓ (θ(k), k) ⊕

L
⊕

ℓ=1

ūℓ(k)⊗ Ā
µ
ℓ (θ(k), k)

for some fixed matrices A
µ
ℓ (θ(k), k) and Ā

µ
ℓ (θ(k), k) with

L the number of max-plus binary decision variables. The
synchronization between the events can be described by
the so-called switching max-plus linear (SMPL) system
description (van den Boom and De Schutter, 2006):

x(k) =

µ̄
⊕

µ=1

Aµ(u(k), θ(k), k)⊗ x(k − µ) (3)

The event state q(k) will be encoded by the max-plus
binary variables u(k).

In this paper we will use a model predictive control
strategy for the scheduling part. With a receding horizon
principle (Maciejowski, 2002; van den Boom et al., 2013)
the schedule for the complete task is not calculated at once,
but in several iterations. In every iteration the schedule is
calculated for only the jobs in the nearest future, where
only these few future jobs and the necessary past jobs are
taken into account, instead of all jobs in the scheduling
task. The scheduling task may contain many jobs. The
computation time of the optimal solution increases as
the number of scheduling variables increases. A too long
computation time can cancel out the time gained by
optimizing the schedule, or even deteriorate the total
solution. The negative impact of the computation time
can be avoided by using the receding horizon principle,
which is one of the main characteristics of MPC. We aim
for predictive operational scheduling, which means that
based on observations of the system’s behavior we can
reschedule (reroute, resynchronize, and reorder) the jobs
of the system to optimize the performance. The optimal
schedule is computed by minimizing a performance index
J(k) over a prediction horizon Np. This performance index
J(k) is usually given by

J(k) =

Np−1
∑

j=0

n
∑

i=1

σj,i max
(

xi(k+j)− di(k+j) , 0
)

+ max
i=1,...,n

αxi(k+Np) +

Ltot
∑

l=1

ρj,l ηl(k+j). (4)

where

ηl(k + j) =

{

0 for ul(k+j) = ε

1 for ul(k+j) = 0
(5)

is a conventional binary variable, and d is a due date signal.
Further α, σj,i, and ρj,l are weighting scalars. The first
term is related to the weighted sum of delays with respect
to a due date d, the second term of (4) is the makespan

over the prediction horizon (that is the total production
length over the next Np jobs), and the third term denotes
the penalty for all changes in ordering or synchronization
during cycle k + j, and

Often we don’t have a due date and we like to minimize the
global makespan, i.e. the total length of the schedule. Let
Ntot be the number of job cycles to be scheduled. Then
the aim will be to minimize maxi xi(k + Ntot). If Ntot

is very large it is usually better to choose a prediction
horizon Np ≪ Ntot, and the criterion will be to minimize
(4) where α = 1 and 0 ≤ σi ≪ 1 , i = 1, . . . , Np − 1. A
major advantage of a small prediction horizon Np is that
the computational complexity of the optimization problem
is drastically reduced. In other cases we like to minimize
the sum of delays with respect to a due date signal d. We
then have α = 0 and σi = 1, ∀ i.

The model predictive control problem of minimizing (4)
can be recast as an MILP problem (van den Boom et al.
(2013)).

3. INTERACTION

The overall system, including the system, control layers
and scheduler is a dynamical hybrid system. In our ap-
proach each sub-system has its own controller and there
is a continuous information exchange between the con-
trol and scheduling level. The interface consists of two
parts, namely the trajectory generator and the event-
observer/predictor.

The trajectory generator (from scheduler to control layer)

The trajectory generator takes care of the communication
between events and time driven parts of the system. and it
translates high-level output (vector x with the start time
and end time of the jobs) into a reference trajectory r that

• satisfies the start time and end time of the operation
as given in the high-level output.

• is feasible for the dynamic system it is designed for.
• is feasible with respect to operational constraints.

If there is no feasible trajectory that finishes the operation
within the allocated time, the trajectory generator will
compute a minimum end time and communicate this to
the scheduler. In this case rescheduling has to be done
with the adapted processing time. If after some iterations
(see Section 4) an optimal and feasible trajectory is found,
this trajectory will act as a reference for the underlying
controller.

Observer & event predictor (from control to scheduler)

The aim of the event observer is to estimate the continuous
time state for the controller. Based on the measured state
ξ̂ and the model we are able to make a prediction θ̂ on the
(remaining) processing times of the operations in the sub-
systems. These values are needed to solve this scheduling
problem and will therefore be communicated with the
scheduler.

4. OPTIMIZATION AND CONTROL

In the model predictive control approach for scheduling
we have to perform the optimization in real-time based on
measurements of the actual state and knowledge of delayed

operations (possibly with estimation of the remaining
processing times). In this way we can deal with changes
in the system parameters, disturbances and failures of the
system’s components. So if we can expect changes in the
occurrence of events due to disturbances or model errors,
then we can include this information when determining
the optimal schedule for the next cycles of the operation
of the system.

Iterative procedure

An advantage of the sequential method is that the two sub-
problems, finding a schedule and optimizing the control
input can be solved independently, while preserving the
interaction. A disadvantage is that it is hard to prove
convergence of the iterative procedure and optimality of
the final solution cannot be guaranteed. Despite the fact
that there is no proof of convergence and optimality we
believe that for many applications the iterative procedure
may improve the result dramatically and although the
fact the final solution will still be suboptimal it will
be significantly closer to the optimal one. To guarantee
a limited computation time we introduce the following
stopping conditions:
Stop if

• a previous set of discrete variables matches the cur-
rent set, or

• the performance index has not decreased for a prede-
fined number of iterations, or

• a predefined maximum number of iterations is reached.

The first condition prevents the system to enter an infinite
loop of alternating between two solutions. The second
condition states that if we do not find a better schedule
for a predefined number of iterations, we are probably
close to the optimal value. The third condition is obvious
since we can control indirectly the computation time. If
the iteration is terminated ,the solution with the lowest
performance index so far is said to be most optimal in this
set of iterations.

5. APPLICATION TO A RAILWAY TRACK

In this section we will show how the derived methodology
can be used to (re)schedule a number of trains over a single
track with block sections (de Bruijn, 2017). We consider
different train types (intercity, local train, freight train).
For safety reasons most railway tracks have block sections
with signals to separate the trains. The safety of a railway
network can be guaranteed by keeping all trains at a safe
distance from each other in such a way that a train can
always brake if a preceding train makes an unscheduled
emergency stop. For each train we aim for a minimum
energy speed profile.

Optimal speed profile for a single train

The sub-system in this case is the train with its local
controller to obtain an energy-optimal speed profile, with
closed-loop state equation for train i given by:

ξ̇i(t) = fi(qcom(t), qloc,i(t), ξi(t))

Here ξi consists of the speed and position the train i,
the variable qloc,i is the local discrete state reflecting the
driving phase and the common discrete state qcom indicates
the ordering of the trains on the track. The optimal speed

profile for a single train on a single track consists of five
driving phases (Hansen and Pachl, 2008):

(1) In the first phase is acceleration, in which the train
uses maximum acceleration ξ̈ = aacc, until the train’s
maximum allowed speed is achieved, at which point
the train will go on to the next phase.

(2) The second phase is cruising, in which the train keeps
the maximum allowed speed achieved in the previous
phase ξ̇ = vmax.

(3) The third phase is coasting, in which no traction
effort is present and the train drives only against the
resistance forces. ξ̈ = −acoa

(4) The fourth phase is braking, involves maximum brak-
ing after coasting or cruising. A train must break in
order to safely reach the station. This point on the
track where the braking phase starts is determined
by the braking coefficient and the speed of the train
ξ̈ = −abra, such that the train’s speed is equal to zero
at the final destination.

(5) The fifth phase is at-rest, which is when the train has
stopped: ξ̇ = 0.

Note that in this study we neglect the resistance force
in the acceleration and braking phase. The basic optimal
speed profile consists of acceleration phase, cruising phase
and braking phase. The different phases can be recognized
in Figures 2 and 3. Note that the traveled distance is the
integral of the speed (size of the gray area). If the resulting
arrival time is earlier than the planned arrival time, the
coasting phase will be added to arrive at the destination
at the desired arrival time.

tdep t1 t2 t3 tarr

τ1 τ2 τ4

t −→

↑
v

vmax

Figure 2: Basic speed profile.

tdep t1 t4 t2 t5 t3 tarr

τ1 τ2 τ3 τ4

t −→

↑
v

vmax

Figure 3: Optimal speed profiles with coasting phase.

Let tdep be the planned departure time and tarr be the
planned arrival time of a train. Further, let vmax be the
maximum allowed speed on the track, then the duration
of the acceleration phase and the traveled distance will be
given by

τ1 = t1 − tdep =
vmax

aacc
, and s1 =

v2max

2aacc
,

respectively. Let vmax be the maximum allowed speed on
the track, then the duration of phase 4 and the traveled
distance will be given by

τ4 = t3 − t2 =
vmax

−abra
, and s4 =

v2max

−2abra
If the distance stot between two station is larger than
s1 + s4 the minimal time in cruising phase will be given

τ2 = t2 − t1 =
stot − s1 − s4

vmax

If the desired arrival time tarr is larger than t3 a coasting
phase will be introduced. The starting time t4 and end
time t5 of the coasting phase is chosen such that the
braking phase ends in the final destination, in other words
the gray areas in the Figures 2 and 3 will be equal in
size (Recall that the integral of the speed is equal to the
total distance). If the distance stot between two stations is
smaller than s1+s4, the cruising phase and coasting phase
are skipped and the braking phase starts before the train
reaches the maximum speed.

Multiple trains and signaling

Consider Figure 4. If a train is in a black section, it is
protected by a stop signal (Pachl, 2002). In front of the
previous block section a yellow approach signal is in place
to ensure that the train approaches the red stop signal with
a moderate speed. In front of the block section before the
yellow approach signal, a green signal given and the train
can proceed that block with maximum allowable speed.

block section block section block section

GREEN YELLOW RED

Figure 4: Block sections and signaling.

For safety reasons due to signaling, the intercity trains
maintain a distance of at least two block sections (because
we want these fast trains to always see a green signal)
where the distance between intercity and a slow freight
train is only one block section (the speed limit introduced
by a yellow signal does not affect the already low maximum
speed).

Let x′

i,ℓ be the time that train i enters the ℓth block section,
and let x′

j,m be the time that train j enters the mth block
section. Let the max-plus variable ui,j determine the order
between the trains i and j (for ui,j=0 train j follows train
i, for ui,j = ε train i follows train j). Then we have

x′

i,ℓ ≥ x′

i,ℓ+pi
+ ui,j

x′

j,ℓ ≥ x′

i,ℓ+pj
+ ūi,j

where ūi,j is the adjoint value of ui,j and where pi = 2
if train i is an intercity train and pi = 2 if train i is an
intercity train.

Local interface and controller

The ith interface will compute, based on the state ξi and
discrete state q, the optimal speed profile for the ith train.
The profiles will be chosen such that the intercity trains
always meet a green signal and the freight trains will
always meet a yellow signal. Furthermore, the ith interface

will make an estimate θ̂i of the time that train i will stay
in the present block section.
The planner fits feasible trajectories for the trains with
information from the scheduling level about the departure
and arrival events of the preceding trains. Further the
following rules for the planner given are:

• minimize the total run time.
• trains cannot depart or arrive before the time given

by the normal schedule.
• trains are delayed at the departure station until they

can run freely at maximum speed over the track
i.e. the headway is adjusted such that the minimal
distance between trains is equal to the length of the
block.

The first item states that a train should be going to
coast as early as possible in order to minimize energy
consumption. The second item is to ensure that a train
leaves the departure station as soon as it is allowed by the
constraints. The third item results in a basic speed profile
which is energy-optimal.

Based on the discrete states qcom, qloc,i, and the measured
position/speed yi, the ith local controller will use a model-
based control strategy to follow the optimal speed profile
ri for train i computed by the ith interface.

Rescheduling

The (re)scheduler will (re)order the trains over the track,
based on the running times estimated by the interface, in
such way that the sum of delays is minimized using the
techniques of Kersbergen et al. (2016).

6. CASE STUDY

In this case study we consider a small part of a large
railway network. A corridor is considered that consists
of three stations A, B, and C. We study only the train
movements in one direction; so all trains run from station
A, via station B to station C. We assume all trains make a
stop at stations A and C, and at station B only local trains
make a scheduled stop. The track between the stations
consists of a single line per direction, and so trains cannot
be overtaken once they are on the track. The total track
with a length of 15000 meters is divided into 10 block
sections (each block section has a length of 1500 meters)
to guarantee a safe distance between all trains. The length
of the block sections is larger than the longest worst
case braking distance of all trains running over the track
(Hansen and Pachl, 2008).

We assume three different train types on the track with
different characteristics in maximum speed, acceleration,
and braking behavior. The parameters of the rolling stock
are given in Table 5 and comes from the typical values for
the different train types in Profillidis (2014). One of the
trains is a local train and has an extra stop at station B.

train type freight train local train intercity
aacc [m/s2] 0.19 0.52 0.46
acoa [m/s2] −0.0024 −0.051 −0.045
abra [m/s2] −0.19 −0.52 −0.52
vmax [m/s] 16.7 36.1 36.1

Table 5: Parameters per train type

In Table 6 the nominal timetable of the trains on the track,
including planned departure time in A, and planned arrival
time in C. The local train also has a planned stop in station
B. The simulation considers four intercity trains, two local
trains and one freight train.

Planned Planned
Train departure arrival Train type

[min] [min]
1 30 39 Intercity
2 32 43 Local train
3 36.5 45.5 Intercity
4 38.5 55 Freight train
5 53 62 Intercity
6 60 69 Intercity
7 62 73 Local train

Table 6: Timetable and train type

We start a simulation at time t = 25 min. Assume that
train 1 has 8.5 minutes delay and train 2 has 3.5 minutes
delay. The first schedule is computed using the nominal
running times of the trains. Due to the delay the original
train order 1-2-3-4-5-6-7 will not give the minimal sum of
delays. With a scheduling step we obtain the optimized
order 2-4-1-3-5-6-7. With this new schedule the interface
will compute the corresponding speed profiles, and based
on these profiles, the updated departure and arrival times.
After this first iteration the sum of delays is equal to 35.5
minutes. The updated running times of the trains are sent
back to the scheduler for a second iteration step. The
new schedule (2-3-1-4-5-6-7) with updated speed profiles
and corresponding departure and arrival times gives a
sum of delays of 31.4 minutes. A third iteration leads
to another schedule (2-3-4-1-5-6-7) with the same sum of
delays of 31.4 minutes, and a fourth schedule gives us the
original schedule again with sum of delays 35.5 seconds.
This terminates the optimization procedure. Based on the
fact that the second schedule 2-3-1-4-5-6-7 is closer to the
nominal schedule than the third schedule 2-3-4-1-5-6-7,
we decide to pick the ordering from iteration 2 as most
optimal schedule.

Figure 7. Time-distance diagram (order: 2-3-1-4-5-6-7)

A B C

7. DISCUSSION

In this paper we have tackled the combined scheduling-
control problem for hybrid system with a (semi-)cyclic
behavior by using an iterative algorithm in which the
scheduling and control parts are optimized in an iterative
way. First a provisional schedule is computed. Based on

this schedule the interface will compute feasible trajecto-
ries for the local controllers. Based on measurements of the
sub-system an estimation of the remaining operation times
will be computed. They are sent to the scheduler that uses
the estimates to re-optimize the overall schedule. In a case
study the scheduling and control of rail traffic over a single
track with seven trains has been optimized.

In future research we will study the optimality of the
solution of the iterative procedure.

REFERENCES

Alirezaei, M., van den Boom, T., and Babuška, R. (2012).
Max-plus algebra for optimal scheduling of multiple
sheets in a printer. In American Control Conference
2012, 1973–1978. Montreal, Canada.

Baccelli, F., Cohen, G., Olsder, G., and Quadrat, J. (1992).
Synchronization and Linearity. Wiley, New York.

Bouquard, J., Lenté, C., and Billaut, J. (2006). Appli-
cation of an optimization problem in max-plus algebra
to scheduling problems. Discrete Applied Mathematics,
154(15), 2064–2079.

de Bruijn, J. (2017). Abstraction of hybrid systems with an
application in railway management. MSc Thesis, Delft
University of Technology, The Netherlands.

Hansen, I.A. and Pachl, J. (2008). Railway Timetable &
Traffic: Analysis - Modelling - Simulation. Eurailpress,
Hamburg, Germany.

Houssin, L. (2011). Cyclic jobshop problem and
(max,plus) algebra. In IFAC World Congress, 2717–
2721.

Kersbergen, B., Rudan, J., van den Boom, T., and De
Schutter, B. (2016). Towards railway traffic manage-
ment using switching max-plus-linear systems - struc-
ture analysis and rescheduling. Discrete Event Dynamic
Systems: Theory and Applications, 26(2), 183–223.

Maciejowski, J. (2002). Predictive Control with Con-
straints. Prentice Hall, Harlow, UK.

Mutsaers, M., Özkan, L., and Backx, T. (2012). Scheduling
of energy flows for parallel batch processes using max-
plus systems. In Proceedings of the 8th IFAC Inter-
national Symposium on Advanced Control of Chemical
Processes 2012, 176–181.

Nambiar, A. and Judd, R. (2011). Max-plus-based mathe-
matical formulation for cyclic permutation flow-shops.
International Journal of Mathematical Modelling and
Numerical Optimisation, 2, 85–97.

Pachl, J. (2002). Railway Operation and Control. Vtd Rail
Pub, Mountlake Terrace (USA).

Profillidis, V.A. (2014). Railway Management and Engi-
neering. Ashgate, 4th ed.

van den Boom, T. and De Schutter, B. (2006). Modelling
and control of discrete event systems using switching
max-plus-linear systems. Control Engineering Practice,
14(10), 1199–1211.

van den Boom, T., Lopes, G., and De Schutter, B. (2013).
A modeling framework for model predictive scheduling
using switching max-plus linear models. In 52st IEEE
Conference on Decision and Control (CDC 2013). Flo-
rence, Italy.

Yurdakul, M. and Odrey, N. (2004). Development of a
new dioid algebraic model for manufacturing with the
scheduling decision making capability. Robotics and
Autonomous Systems, 207–218.

