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The Extended Linear Complementarity Problem1

Bart De Schutter2 and Bart De Moor3

ESAT - Katholieke Universiteit Leuven, Kardinaal Mercierlaan 94, B-3001 Leuven, Belgium,
email: bart.deschutter@esat.kuleuven.ac.be, bart.demoor@esat.kuleuven.ac.be.

Abstract. In this paper we define the Extended Linear Complementarity Problem (ELCP),
an extension of the well-known Linear Complementarity Problem (LCP). We show that the
ELCP can be viewed as a kind of unifying framework for the LCP and its various generaliza-
tions. We study the general solution set of an ELCP and we develop an algorithm to find all
its solutions. We also show that the general ELCP is an NP-hard problem.

Keywords: linear complementarity problem, generalized linear complementarity problem,
double description method.

1 Introduction

1.1 Overview

In this paper we propose the Extended Linear Complementarity Problem (ELCP), an exten-
sion of the well-known Linear Complementarity Problem (LCP), which is one of the funda-
mental problems of mathematical programming. We show that the ELCP can be viewed as a
unifying framework for the LCP and its various extensions, such as the Vertical LCP of Cot-
tle and Dantzig [5], the Generalized LCP of De Moor et al. [8, 9], the Extended Generalized
Order LCP of Gowda and Sznajder [17], the Extended LCP of Mangasarian and Pang [20]
and so on.

The formulation of the ELCP arose from our work in the study of discrete event systems,
examples of which are flexible manufacturing systems, subway traffic networks, parallel pro-
cessing systems and telecommunication networks. Some of these systems can be described
using the so called max algebra [2, 7]. In [11, 12] we have demonstrated that many important
problems in the max algebra such as solving a set of multivariate polynomial equalities and
inequalities, matrix decompositions, state space transformations, minimal state space real-
ization of max-linear discrete event systems and so on, can be reformulated as an ELCP. We
shall illustrate this with an example. Although these problems do not always ask for the
generation of the entire solution set of the corresponding ELCP, in some cases such as e.g.
the (minimal) realization problem it can be interesting to obtain the entire solution set.

Therefore we also derive an algorithm to find all solutions of an ELCP. The core of
this algorithm is formed by an adaptation and extension of Motzkin’s double description
method [25] for solving sets of linear inequalities. Our algorithm yields a description of
the complete solution set of an ELCP by extreme rays and a basis for the linear subspace

1This paper presents research results of the Belgian programme on interuniversity attraction poles (IUAP-
50) initiated by the Belgian State, Prime Minister’s Office for Science, Technology and Culture. The scientific
responsibility is assumed by its authors.

2Research assistant with the N.F.W.O. (Belgian National Fund for Scientific Research).
3Senior research associate with the N.F.W.O.
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associated to the largest affine subspace of the solution set. In that way it provides a geometric
insight in the solution set of the kind of problems mentioned above. The algorithm we propose
is in fact a generalization and extension of the algorithm of [8, 9] for solving Generalized LCPs.
We also use some concepts of graph theory such as clique. This paper thus borrows from a
broad range of domains such as max algebra, linear algebra, mathematical programming and
graph theory.

In Section 1 we introduce the notations and some of the concepts and definitions that will
be used in this paper. We also give a concise introduction to the Linear Complementarity
Problem. In Section 2 we propose the Extended Linear Complementarity Problem (ELCP)
and show how it is linked to other Linear Complementarity Problems. Next we make a
thorough study of the general solution set of an ELCP and we develop an algorithm to find
all solutions of this problem. We also discuss the computational complexity of the ELCP. We
conclude with an example of the application of the ELCP in the max algebra.

1.2 Notations and definitions

All the vectors that appear in this paper are assumed to be column vectors. If a is a vector
then ai or (a)i represents the ith component of a. If A is a matrix then the entry on the ith
row and the jth column is denoted by aij or (A)ij . We use Ai. to denote the ith row of A
and A.j to denote the jth column of A. The submatrix of A obtained by extracting the first
k rows of A is represented by A1:k,.. The n by n identity matrix is represented by In and the
m by n zero matrix by Om×n. The transpose of A is denoted by AT . If a is a vector with n
components then a > 0 means that ai > 0 for i = 1, 2, . . . , n. Likewise a = 0 means ai = 0
for i = 1, 2, . . . , n.
If A is a set then #A is the cardinality of A. Consider a set of vectors A = {a1, a2, . . . , al}

with ai ∈ R
n and define a =

l
∑

i=1

αiai. If αi ∈ R then a is a linear combination of the vectors

of A. If αi > 0 we have a nonnegative combination. A nonnegative combination that also

satisfies
l
∑

i=1

αi = 1 is a convex combination.

Definition 1.1 (Polyhedron) A polyhedron is the solution set of a finite system of linear
inequalities.

Definition 1.2 (Polyhedral cone) A polyhedral cone is the set of solutions of a finite sys-
tem of homogeneous linear inequalities.

The definitions of the remainder of this subsection are based on [28].

Definition 1.3 (Face) A subset F of a polyhedron P is called a face of P if F = P or if F
is the intersection of P with a supporting hyperplane of P.

Note that each face of a polyhedron is also a (nonempty) polyhedron and that a k-dimensional
face of a polyhedron P in R

n is the intersection of P and n−k linearly independent hyperplanes
from the constraints defining the polyhedron.

Definition 1.4 (Minimal face) A minimal face of a polyhedron is a face not containing
any other face.
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Definition 1.5 (Lineality space) Let P be a polyhedron defined by P = {x |Ax > b}. The
lineality space of P, denoted by L(P), is the linear subspace associated to the largest affine
subspace of P: L(P) = {x |Ax = 0}.

A set C of basis vectors for L(P) is called a set of central rays. The dimension of L(P) is equal
to t = n − rank (A). If t is equal to 0, then P is called a pointed polyhedron. The minimal
faces of P are translations of L(P). Hence the dimension of a minimal face of P is equal to t.
Now consider a polyhedral cone K defined by K = {x |Ax > 0}. Clearly, the only minimal
face of K is its lineality space. Let t be the dimension of L(K). A face of K of dimension t+1
is called a minimal proper face. If G is a minimal proper face of the polyhedral cone K and
if e ∈ G with e 6= 0, then any arbitrary point u of G can be represented as

u =
∑

ck∈C

λkck + κe with λk ∈ R and κ > 0

where C is a set of central rays of K. We call e an extreme ray corresponding to G. If Kred is
the pointed polyhedral cone obtained by subtracting the lineality space from K, then extreme
rays of K correspond to edges of Kred. If C is a set of central rays of K and if E is a set of
extreme rays of K, obtained by selecting exactly one point of each minimal proper face of K,
then any arbitrary point u of K can be uniquely represented as

u =
∑

ck∈C

λkck +
∑

ek∈E

κkek with λk ∈ R and κk > 0 .

Definition 1.6 (Adjacency) Two minimal faces of a polyhedron P are called adjacent if
they are contained in one face of dimension t+ 1, where t = dimL(P).
Two minimal proper faces of a polyhedral cone K are called adjacent if they are contained in
one face of dimension t+ 2, where t = dimL(K). Extreme rays corresponding to these faces
are then also called adjacent.

1.3 The Linear Complementarity Problem

One of the possible formulations of the LCP is the following [6]:

Given a matrix M ∈ R
n×n and a vector q ∈ R

n, find two vectors w, z ∈ R
n such that

w, z > 0

w = q +Mz

zTw = 0 ,

or show that no such vectors w and z exist.

The LCP has numerous applications such as linear and quadratic programming problems, the
bimatrix game problem, the market equilibrium problem, the optimal invariant capital stock
problem, the optimal stopping problem, etc. [6]. This makes the LCP one of the fundamental
problems of mathematical programming.
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2 The Extended Linear Complementarity Problem

In this section we introduce the Extended Linear Complementarity Problem (ELCP) and we
establish a link between the ELCP and the Linear Complementarity Problem (LCP). We also
show that many generalizations of the LCP can be considered as special cases of the ELCP.

2.1 Problem formulation

Consider the following problem:

Given two matrices A ∈ R
p×n, B ∈ R

q×n, two vectors c ∈ R
p, d ∈ R

q and m subsets φj ,
j = 1, 2, . . . ,m, of {1, 2, . . . , p}, find a vector x ∈ R

n such that

m
∑

j=1

∏

i∈φj

(Ax− c)i = 0 (1)

subject to Ax > c

Bx = d ,
or show that no such vector exists.

In Section 2.3 we demonstrate that this problem is an extension of the Linear Complementarity
Problem (LCP). Therefore we call it the Extended Linear Complementarity Problem (ELCP).
Equation (1) represents the complementarity condition. One possible interpretation of this
condition is the following: since Ax > c, condition (1) is equivalent to

∏

i∈φj

(Ax− c)i = 0 for j = 1, 2, . . . ,m .

So we could say that each set φj corresponds to a subgroup of inequalities of Ax > c and that
in each group at least one inequality should hold with equality:

∀j ∈ {1, 2, . . . ,m} : ∃i ∈ φj such that (Ax− c)i = 0 .

2.2 The homogeneous ELCP

Now we homogenize the ELCP: we introduce a scalar α > 0 and define u =

[

x

α

]

, P =
[

A −c
O1×n 1

]

and Q = [B − d ]. Then we get an homogeneous ELCP:

Given two matrices P ∈ R
p×n, Q ∈ R

q×n and m subsets φj of {1, 2, . . . , p}, find a (non-
trivial) vector u ∈ R

n such that

m
∑

j=1

∏

i∈φj

(Pu)i = 0 (2)

subject to Pu > 0
Qu = 0 ,

or show that no such vector u exists.
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In Section 4 we shall develop an algorithm to solve this homogeneous ELCP. Afterwards we
shall extract the solutions of the original inhomogeneous ELCP.
It is sometimes advantageous to use an alternative form of the complementarity condition:
since Pu > 0, condition (2) is equivalent to

∏

i∈φj

(Pu)i = 0 for j = 1, 2, . . . ,m . (3)

2.3 Link with the LCP

The LCP can be considered as a particular case of the ELCP: if we set x =

[

w

z

]

, A = I2n,

B = [ In −M ], c = O2n×1, d = q and φj = {j, j + n} for j = 1, 2, . . . , n in the formulation of
the ELCP we get an LCP.

2.4 Link with the Horizontal LCP

A problem that is slightly more general than the LCP is the so called Horizontal Linear
Complementarity Problem (HLCP), which can be formulated as follows [6]:

Given 2 matrices M,N ∈ R
n×n and a vector q ∈ R

n, find two non-trivial vectors w, z ∈ R
n

such that

w, z > 0

Mz +Nw = q

zTw = 0 .

The term horizontal is used to characterize the geometric shape of the matrix [M N ] since
the number of rows of this matrix is less than the number of columns. It is obvious that the
HLCP is also a particular case of the ELCP.

2.5 Link with the Vertical LCP

In [5] Cottle and Dantzig introduced a generalization of the LCP which is now called the
Vertical Linear Complementarity Problem (VLCP) and is defined as follows [6]:

Let M be a matrix of order m× n with m > n, and let q be a vector with m components.
Suppose that M and q are partitioned in the following form:

M =













M1

M2
...
Mn













and q =













q1
q2
...
qn













where each Mi ∈ R
mi×n and qi ∈ R

mi with
n
∑

i=1

mi = m. Now find a vector z ∈ R
n such

that

q +Mz > 0
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z > 0

zi

mi
∏

j=1

(qi +Miz)j = 0 for i = 1, 2, . . . , n .

Since the number of rows ofM is greater than or equal to the number of columns this problem
is a vertical generalization of the LCP.

The VLCP is also a particular case of the inhomogeneous ELCP: let x = z, A =

[

M

In

]

, B =

[ ] , c =

[

−q
On×1

]

, d = [ ] and φj = {sj + 1, sj + 2, . . . , sj +mj ,m+ j} for j = 1, 2, . . . , n

with s1 = 0 and sj+1 = sj +mj .

2.6 Link with the GLCP

In [8, 9] De Moor introduced the following Generalized Linear Complementarity Problem
(GLCP):

Given a matrix Z ∈ R
p×n and m subsets φj of {1, 2, . . . , p}, find a non-trivial vector u ∈ R

n

such that

m
∑

j=1

∏

i∈φj

ui = 0

subject to u > 0
Zu = 0 .

Now we show that the homogeneous ELCP and the GLCP are equivalent: that is, if we can
solve the homogeneous ELCP we can also solve the GLCP and vice versa.

Theorem 2.1 The homogeneous ELCP and the GLCP are equivalent.

Proof :
The GLCP is a special case of the homogeneous ELCP since setting P = In and Q = Z in
the definition of the homogeneous ELCP yields a GLCP.

Now we prove that an homogeneous ELCP can be transformed into a GLCP.

First we define the sign decomposition of u: u = u+ − u− with u+, u− > 0 and (u+)Tu− = 0.
Next we introduce a vector of nonnegative slack variables s ∈ R

p such that Pu − Ips = 0.

Since Pu = Ips, the complementarity condition
m
∑

j=1

∏

i∈φj

(Pu)i = 0 is equivalent to
m
∑

j=1

∏

i∈φj

si =

0. Because the components of u+, u− and s are nonnegative we can combine the latter
condition with the condition (u+)Tu− = 0, which yields the new complementarity condition
n
∑

i=1

u+i u
−
i +

m
∑

j=1

∏

i∈φj

si = 0. Finally we define n+m subsets φ′j such that

φ′j = {j, j + n} for j = 1, 2, . . . , n ,

= {i+ 2n | i ∈ φj−n} for j = n+ 1, n+ 2, . . . , n+m .

This leads to the following GLCP:
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Find v =







u+

u−

s






such that

n+m
∑

j=1

∏

i∈φ′
j

vi = 0

subject to v > 0 and

[

P −P −Ip
Q −Q Oq×p

]

v = 0 .

Hence we have proved that the ELCP and the GLCP are equivalent. ✷

In [8] an algorithm was derived to find all solutions of a GLCP. Since the GLCP and the
ELCP are equivalent we could use that algorithm to solve the ELCP. However, there are a
few drawbacks:

• To convert the ELCP into a GLCP we have introduced extra variables: u− and the
slack variables (one for each inequality). This increases the complexity of the problem.
Because the execution time of the algorithm of [8] grows rapidly as the number of
unknowns grows, it is not advantageous to have a large number of variables. Since the
number of intermediate solutions and thus the required storage space also grows with
the number of variables, the problem can even become intractable in practice if the
number of variables is too large. Moreover, we do not need the extra slack variables,
since they will be dropped at the end anyway.

• The solutions set of a GLCP is characterized by a set of extreme rays E and a set Γ of so
called cross-complementary subsets of E such that any arbitrary solution of the GLCP

can be written as u =
∑

ek∈Es

κkek with κk > 0 for some subset Es ∈ Γ4. Even if there

is no redundancy in the description of the solution set of the GLCP after dropping
the slack variables, it is possible that the transition from u+ and u− to u results in
redundant rays. It is also possible that some of the cross-complementary sets can be
taken together. This means that in general we do not get a minimal description of the
solution set of the ELCP.

We certainly do much unnecessary work if we use the detour via the GLCP. Therefore we
shall develop a separate algorithm to solve the ELCP, in which we do not have to introduce
extra variables and that will yield a concise description of the solution set. This algorithm
will also be much faster than an algorithm that uses the transformation into a GLCP.

2.7 Link with other generalizations of the LCP

In [17] Gowda and Sznajder have introduced the Generalized Order Linear Complementarity
Problem (GOLCP) and the Extended Generalized Order Linear Complementarity Problem
(EGOLCP). The EGOLCP is defined as follows:

Given k + 1 matrices B0, B1, . . . , Bk ∈ R
n×n and k + 1 vectors b0, b1, . . . , bk ∈ R

n, find a
vector x ∈ R

n such that

(B0x+ b0) ∧ (B1x+ b1) ∧ . . . ∧ (Bkx+ bk) = 0

where ∧ is the entrywise minimum: if x, y ∈ R
n then x∧y ∈ R

n and (x∧y)i = min {xi, yi}.
4In Section 4 we shall show how the sets E and Γ can be calculated and what they represent.
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If we take B0 = In and b0 = On×1 then we have a GOLCP.
The EGOLCP is a special case of the ELCP: since the entrywise minimum of the vectors
Bix + bi is equal to 0 we should have that Bix > −bi and for every j ∈ {1, 2, . . . , n} there
should exist at least one i such that (Bix+ bi)j = 0. So if we put all matrices Bi in one large

matrix A =







B0
...
Bk






and all vectors bi in one large vector c =







−b0
...
−bk






and if we define n sets

φj such that φj = {j, j + n, . . . , j + kn} for j = 1, 2, . . . , n, then we get an ELCP:

Find x ∈ R
n such that

n
∑

j=1

∏

i∈φj

(Ax− c)i = 0 subject to Ax > c ,

that is equivalent to the original EGOLCP.

The Extended Linear Complementarity Problem of Mangasarian and Pang [16, 20]:

Given two matricesM,N ∈ R
m×n and a polyhedral set P in R

m, find two vectors x, y ∈ R
n

such that

x, y > 0

Mx−Ny ∈ P
xT y = 0 ,

is also a special case of our ELCP:
We may assume without loss of generality that P can be represented as P = {u ∈ R

m |Au > b}
for some matrix A ∈ R

l×m and some vector b ∈ R
l. Hence the condition Mx − Ny ∈ P is

equivalent to AMx−ANy > b. If we define v =

[

x

y

]

then we get the following ELCP:

Find v ∈ R
2n such that

n
∑

i=1

vivi+n = 0 subject to v > 0 and [AM −AN ] v > b .

Furthermore, it is easy to show that the Generalized LCP of Ye [33]:

Given A,B ∈ R
m×n, C ∈ R

m×k and q ∈ R
m, find x, y ∈ R

n and z ∈ R
k such that

x, y, z > 0

Ax+By + Cz = q

xT y = 0 ,

the mixed LCP [6]:

Given A ∈ R
n×n, B ∈ R

m×m, C ∈ R
n×m, D ∈ R

m×n, a ∈ R
n and b ∈ R

m, find u ∈ R
n and

v ∈ R
m such that

a+Au+ Cv = 0

b+Du+Bv > 0

v > 0

vT (b+Du+Bv) = 0 ,
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and the Extended HLCP of Sznajder and Gowda [30]:

Given k+1 matrices C0, C1, . . . , Ck ∈ R
n×n, q ∈ R

n and k−1 vectors d1, d2, . . . , dk−1 ∈ R
n

with positive components, find x0, x1, . . . , xk ∈ R
n such that

C0x0 = q +
k
∑

j=1

Cjxj

x0, x1, . . . , xk > 0

dj − xj > 0 for j = 1, 2, . . . , k − 1

xT0 x1 = 0

(dj − xj)Txj+1 = 0 for j = 1, 2, . . . , k − 1 ,

are also special cases of the ELCP.

Conclusion: As can be seen from this and the previous subsections, the ELCP can indeed
be considered as a unifying framework for the LCP and its various generalizations.

The underlying geometric explanation for the fact that all these generalizations of the LCP can
be considered as particular cases of the ELCP is that they all have a solution set that either
is empty or consists of the union of faces of a polyhedron, and that the union of any arbitrary
set of faces of an arbitrary polyhedron can be described by an ELCP (see Theorem 4.15).
For more information on the LCP and the various generalizations discussed above and for
applications, properties and methods to solve these problems the interested reader is referred
to [5, 6, 8, 9, 13, 16, 17, 18, 20, 29, 30, 31, 32, 33, 34] and the references therein.

3 The solution set of the homogeneous ELCP

In this section we discuss some properties of the solution set of the homogeneous ELCP.
Note that the homogeneous ELCP can be considered as a system of homogeneous linear
equalities and inequalities subject to a complementarity condition. The solution set of the
system of homogeneous linear inequalities and equalities

Pu > 0

Qu = 0 ,

is a polyhedral cone K. We already know that an arbitrary point of K can be uniquely
represented as

u =
∑

ck∈C

λkck +
∑

ek∈E

κkek with λk ∈ R and κk > 0

where C is a set of central rays of K and E is a set of extreme rays of K. If c is a central ray
then we have that Pc = 0. By analogy we call all points u ∈ K that satisfy Pu = 0 central
solutions of K and all points u ∈ K that satisfy Pu 6= 0 non-central solutions. Note that if e
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is an extreme ray then we have that Pe 6= 0.
Later we shall show that every solution of the homogeneous ELCP can be written as

u =
∑

ck∈C

λkck +
∑

ek∈Es

κkek with λk ∈ R and κk > 0

for some subset Es of E (see Theorem 4.11). Note that we always have a trivial solution for
the homogeneous ELCP: u = [ 0 0 . . . 0 ]T .
In the next section we shall present an algorithm to calculate C and E . But first we give some
properties of the solution set of the homogeneous ELCP.

Property 3.1 If c is a central solution of the polyhedral cone defined by Pu > 0 and Qu = 0
then we have that ∀λ ∈ R : λc is a solution of the homogeneous ELCP.

Proof : Since c is a central solution, we have that

m
∑

j=1

∏

i∈φj

(P (λc))i =
m
∑

j=1

∏

i∈φj

λ(Pc)i = 0 .

Furthermore, we have that P (λc) = λ(Pc) = 0 > 0 and Q(λc) = λ(Qc) = 0. So λc is indeed
a solution of the ELCP. ✷

Note that every central solution of the polyhedral cone defined by Pu > 0 and Qu = 0
automatically satisfies the complementarity condition.

Property 3.2 If u is a solution of the homogeneous ELCP then ∀κ > 0 : κu is also a solution
of the homogeneous ELCP.

Proof :

m
∑

j=1

∏

i∈φj

(P (κu))i =
m
∑

j=1

∏

i∈φj

κ(Pu)i

=
m
∑

j=1

κ#φj
∏

i∈φj

(Pu)i

= 0 because of complementarity condition (3) .

We have that P (κu) = κ(Pu) > 0 because Pu > 0 and κ > 0. We also have that Q(κu) =
κ(Qu) = 0. So κu is a solution of the ELCP. ✷

Now we prove that extreme rays that do not satisfy the complementarity condition cannot
yield a solution of the ELCP. In our algorithm such rays will therefore immediately be removed
from E .

Property 3.3 If el ∈ E does not satisfy the complementarity condition then we have that

∀Es ⊂ E with el ∈ Es, ∀λk ∈ R, ∀κk > 0 with κl > 0 : u =
∑

ck∈C

λkck +
∑

ek∈Es

κkek does not

satisfy the complementarity condition.
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Proof : If el does not satisfy the complementarity condition then

m
∑

j=1

∏

i∈φj

(Pel)i 6= 0 .

Since Pel > 0 this is only possible if

∃j ∈ {1, 2, . . . ,m} such that ∀i ∈ φj : (Pel)i 6= 0 . (4)

Now assume that u =
∑

ck∈C

λkck +
∑

ek∈Es

κkek satisfies the complementarity condition. Then

we have that

m
∑

j=1

∏

i∈φj



P





∑

ck∈C

λkck +
∑

ek∈Es

κkek









i

= 0

or

m
∑

j=1

∏

i∈φj





∑

ck∈C

λk(Pck)i +
∑

ek∈Es

κk(Pek)i



 = 0

and since ∀c ∈ C : Pc = 0, we get

m
∑

j=1

∏

i∈φj



κl(Pel)i +
∑

ek∈Es\{el}

κk(Pek)i



 = 0 .

Because Pek > 0, Pel > 0, κk > 0 and κl > 0 this is only possible if

∀j ∈ {1, 2, . . . ,m} , ∃i ∈ φj such that κl(Pel)i +
∑

ek∈Es\{el}

κk(Pek)i = 0

and also

∀j ∈ {1, 2, . . . ,m} , ∃i ∈ φj such that (Pel)i = 0

since κl > 0. But this is in contradiction with (4). Hence our initial assumption was false,
which means that u does not satisfy the complementarity condition. ✷

4 An algorithm to find all solutions of an ELCP

In this section we shall derive an algorithm to find all solutions of a general ELCP. As was
already indicated in Section 2.2 we shall first solve the corresponding homogeneous ELCP
and afterwards we shall extract the solutions of the inhomogeneous ELCP.
So now we consider an homogeneous ELCP. To enhance the efficiency of the algorithm we
first extract the inequalities of Pu > 0 that appear in the complementarity condition and put
them in P1u > 0. The remaining inequalities are put in P2u > 0. If we also adapt the sets φj
accordingly we get an ELCP of the following form:
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Given three matrices P1 ∈ R
p1×n, Q ∈ R

q×n, P2 ∈ R
p2×n and m subsets φj of {1, 2, . . . , p1},

find a vector u ∈ R
n such that

m
∑

j=1

∏

i∈φj

(P1u)i = 0

subject to P1u > 0
Qu = 0
P2u > 0 .

Note that we now have that
m
⋃

j=1

φj = {1, 2, . . . , p1}.

The ELCP algorithm consists of 3 parts:

Part 1: Find all solutions of P1u > 0 that satisfy the complementarity condition. We describe
the solution set of this problem with central and extreme rays.

Part 2: Take the conditions Qu = 0 and P2u > 0 into account.

Part 3: Determine which combinations of the central and extreme rays are solutions of the
ELCP: i.e. determine the so called cross-complementary sets.

Now we go through the algorithm part by part. We represent the different parts of the
algorithm in their most rudimentary form. In the remarks after each algorithm we indicate
how one can improve the numerical stability and the performance of the algorithm.

4.1 Find all solutions of a system of linear inequalities that satisfy the

complementarity condition

The algorithm of this subsection is an extension and adaptation of the double description
method of [25] to find all solutions of a system of linear inequalities. We have adapted it to
get a more concise description of the solution set and we have added tests to reject solutions
that do not satisfy the complementarity condition. In this iterative algorithm we take a
new inequality into account in each step and we determine the intersection of the current
polyhedral cone – described by a set of central rays C and a set of extreme rays E – with the
half-space determined by this inequality. We also immediately remove the rays that do not
satisfy the complementarity condition.
We give the algorithm to calculate C and E in a pseudo programming language. ← indicates
an assignment. Italic text inside curly brackets {} is meant to be a comment.

Algorithm 1: solve a system of linear inequalities subject to the complementarity
condition

Input: p1, n, P1 ∈ R
p1×n, {φj}mj=1

Initialization:

C ← {ci | ci = (In).i for i = 1, 2, . . . , n}
E ← ∅
Pnec ← [ ]
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Main loop:

for k = 1, 2, . . . , p1 do { The rows of P1 are taken one by one. }
∀s ∈ C ∪ E : res (s)← (P1)k. s { Calculate the residues. }
C+← {c ∈ C | res (c) > 0}
C−← {c ∈ C | res (c) < 0}
C0← {c ∈ C | res (c) = 0}
E+← {e ∈ E | res (e) > 0}
E−← {e ∈ E | res (e) < 0}
E0← {e ∈ E | res (e) = 0}
if C+ = ∅ and C− = ∅ and E− = ∅ then { Case 1 }

{ The kth inequality is redundant. }
E ← E0 ∪ { e ∈ E+ | e satisfies the partial complementarity condition }

else

if C+ = ∅ and C− = ∅ then { Case 2 }
E ← E0 ∪ { e ∈ E+ | e satisfies the partial complementarity condition }
for all pairs (e+, e−) ∈ E+ × E− do

if e+ and e− are adjacent then

enew ← res (e+) e− − res (e−) e+

if enew satisfies the partial complementarity condition then

E ← E ∪ { enew }
endif

endif

endfor

else { Case 3 }
C ← C0
E ← E0
C+ ← C+ ∪ {−s | s ∈ C−}
∀s ∈ C− : res (−s)← −res (s) { Adapt the residues. }
Take one ray c ∈ C+.
if c satisfies the partial complementarity condition then

E ← E ∪ {c}
endif

∀c+ ∈ C+ \ {c} : C ← C ∪ { res (c+) c− res (c) c+ }
for all e ∈ E+ ∪ E− do

enew ← res (c) e− res (e) c do

if enew satisfies the partial complementarity condition then

E ← E ∪ { enew }
endif

endfor

endif
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Add the kth row of P1 to Pnec.

endif

endfor

Output: C, E , Pnec

Remarks:

1. If s1 and s2 are two rays in the kth step and if res (s1) res (s2) < 0 then the new ray

s = |res (s1) | s2 + |res (s2) | s1 (5)

will satisfy (P1)k.s = 0 , in other words, ray s will lie in the hyperplane defined by the
kth row of P1.

Proof : Without loss of generality we may assume that res (s1) > 0 and res (s2) < 0.
Then we have that

(P1)k.s = (P1)k. (|res (s1) |s2 + |res (s2) |s1)
= (P1)k. (res (s1) s2 − res (s2) s1)

= res (s1) (P1)k.s2 − res (s2) (P1)k.s1

= res (s1) res (s2)− res (s2) res (s1)

= 0 . ✷

In our algorithm we have worked out the absolute values in (5), which leads to the
different expressions for constructing new rays.

2. Because in each main loop we have to combine intermediate rays it is advantageous
to have as few intermediate rays as possible. The complementarity test is one way to
reject rays. We cannot use the complete complementarity condition (2) when we are
processing the kth inequality since this complementarity condition takes all inequalities
into account. However, if we consider the equivalent complementarity condition (3) then
it is obvious that we can apply the condition for φj to eliminate extreme rays as soon
as we have considered all inequalities that correspond to that particular φj . That is
why we use a partial complementarity test. In the kth step the partial complementarity
condition is:

∏

i∈φj

(P1u)i = 0 ∀j ∈ {1, 2, . . . ,m} such that φj ⊂ {1, 2, . . . , k} . (6)

If there are no sets φj such that φj ⊂ {1, 2, . . . , k} then the partial complementarity
condition is satisfied by definition.
We know that extra rays can only be constructed by taking positive combinations of
other rays as indicated by (5). Because of Property 3.3, which is also valid for the partial
complementarity condition, any ray that does not satisfy the (partial) complementarity
condition cannot yield a ray that satisfies the complementarity condition. Therefore we
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can reject such rays immediately.
Since central rays automatically satisfy the complementarity condition, we only have
to check the extreme rays. We can even be more specific. According to the following
property we only have to test new extreme rays and extreme rays that have a non-zero
residue.

Property 4.1 If e ∈ E0 in step k and if e satisfied the partial complementarity condi-
tion of step k− 1, then e will also satisfy the partial complementarity condition for step
k.

Proof : If e ∈ E0 then we have that (P1)k.e = 0 or equivalently (P1e)k = 0 and thus

∏

i∈φj

(P1e)i = 0 ∀j ∈ {1, 2, . . . ,m} such that k ∈ φj . (7)

Since e satisfies the partial complementarity condition of step k − 1 we know that

∏

i∈φj

(P1e)i = 0 ∀j ∈ {1, 2, . . . ,m} such that φj ⊂ {1, 2, . . . , k − 1} . (8)

Combining (7) and (8) leads to

∏

i∈φj

(P1u)i = 0 ∀j ∈ {1, 2, . . . ,m} such that φj ⊂ {1, 2, . . . , k} .

So e satisfies the partial complementarity condition of step k. ✷

3. The matrix Pnec is used to determine whether two extreme rays are adjacent. The reason
that we only combine adjacent extreme rays is that we do not want any redundancy
in the description of the solution set. Note that at the beginning of the kth step Pnec

contains all the inequalities that define the current polyhedral cone. Furthermore, it is
obvious that we do not have to include redundant inequalities in Pnec.
Let K be the polyhedral cone defined by K = {u |Pnecu > 0} at the beginning of step k.
Let EK be a set of extreme rays of K and let t be the dimension of the lineality space
of K. So t is equal to the number of central rays of K. The zero index set I0(e) of an
extreme ray e ∈ EK is defined as follows:

I0(e) = { i | (Pnec e)i = 0 } .

Now we shall determine some necessary and sufficient conditions for two extreme rays
e1 and e2 of the polyhedral cone K to be adjacent.
If e1 and e2 are adjacent then by Definition 1.6 there exist two minimal proper faces
G1 and G2 of K with e1 ∈ G1 and e2 ∈ G2 and a (t+ 2)-dimensional face F of K such
that G1 ⊂ F and G2 ⊂ F . This means that both e1 and e2 have to belong to the same
(t + 2)-dimensional face F of K. Since each element of such a face satisfies at least
n− t− 2 linearly independent equality constraints taken from Pnec u = 0, this leads to
the following property:
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Property 4.2 (Necessary condition for adjacency) A necessary condition for two
extreme rays e1 and e2 to be adjacent is that the zero index sets of e1 and e2 should
contain at least n− t− 2 common indices.

If we consider a pointed polyhedral cone then t = 0 and then this condition reduces to
the necessary condition for adjacency described in [22].

Since F is a (t+ 2)-dimensional face of K and since e1 ∈ G1 ⊂ F and e2 ∈ G2 ⊂ F , we
have that

F =
{

x
∣

∣

∣ x =
∑

ck∈C

λkck + κ1e1 + κ2e2 with λk ∈ R and κ1, κ2 > 0
}

.

Since e1 and e2 belong to F and since there is exactly one extreme ray in EK for each
minimal proper face of K, there are no other extreme rays in EK that also belong to F ,
which leads to:

Property 4.3 (Necessary and sufficient condition for adjacency)
Two extreme rays e1, e2 ∈ EK are adjacent if and only if there is no other extreme ray
e ∈ EK such that I0(e1) ∩ I0(e2) ⊂ I0(e) .

The conditions of Properties 4.2 and 4.3 can be considered as an extension and a gener-
alization of the necessary and/or sufficient conditions for the adjacency of two extreme
rays of a pointed polyhedral cone of [8, 9].
It is possible that some of the extreme rays of K have already been eliminated in a
previous step of the ELCP algorithm because they did not satisfy the complementarity
condition. In that case the condition of Property 4.3 is not sufficient any more since we
do not consider all extreme rays.
Therefore we apply the following procedure in the ELCP algorithm to determine whether
2 extreme rays e1, e2 ∈ E are adjacent:

Adjacency Test 1: First we determine the common zero indices. If there are less than
n− t− 2 common zero indices then e1 and e2 are not adjacent.

Adjacency Test 2: Next we test whether there are other extreme rays e ∈ E such
that I0(e1) ∩ I0(e2) ⊂ I0(e) . If such rays exist then e1 and e2 are not adjacent.

Note that the first test takes far less time to perform than the second especially if the
number of extreme rays is large. That is why we use it first.
It is possible that two non-adjacent extreme rays pass Adjacency Test 2 if some other
extreme rays of K have already been eliminated. However, in that case the following
proposition provides a sufficient condition for adjacency:

Proposition 4.4 If two non-adjacent extreme rays e1, e2 ∈ E pass Adjacency Test 2,
then every positive combination of these rays will not satisfy the (partial) complemen-
tarity condition.

Proof : Since adjacency only depends on the extreme rays, we can assume without loss
of generality that t = 0.
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If all sets φj are empty then the complementarity condition is always satisfied by defi-
nition and no extreme ray of the polyhedral cone will be eliminated, which means that
the condition of Property 4.3 is still sufficient. Therefore non-adjacent extreme rays
cannot pass Adjacency Test 2.
If at least one set φj is nonempty, then we have a complementarity condition. Since the
complementarity condition requires that some of the inequalities of P1:k,.u > 0 should
hold with equality, there are only two possible cases:

• Every point of the polyhedral cone K satisfies the (partial) complementarity con-
dition.

• The (partial) complementarity condition only selects points that lie on the border
of the polyhedral cone K. So interior points of the polyhedral cone will not satisfy
the (partial) complementarity condition.

In the first case no extreme rays will be rejected because of the (partial) complementarity
condition, which means that the condition of Adjacency Test is still sufficient. Therefore
we can limit ourselves to the second case.
Now consider a face F of the polyhedral cone K that contains both e1 and e2. Note
that F is in itself also a polyhedral cone. If the non-adjacent rays e1 and e2 pass
Adjacency Test 2 then this is only possible if another extreme ray of F has already been
eliminated because it did not satisfy the (partial) complementarity condition. Since
either all points of F satisfy the (partial) complementarity condition or only points on
the border of F satisfy the (partial) complementarity condition, this means that every
positive combination of the non-adjacent extreme rays e1 and e2 – which always lies in
the interior of F – will not satisfy the (partial) complementarity condition. ✷

So if two non-adjacent rays e1 and e2 pass both Adjacency Tests then the new ray enew

will not satisfy the (partial) complementarity condition and hence will be automatically
rejected. Therefore no redundant rays will be created.
Together these three tests provide necessary and sufficient conditions for adjacency.

Note that the final Pnec is also considered as an output of this algorithm because we
need it in the second part of the ELCP algorithm, when we process P2u > 0.

4. If c ∈ C at the beginning of step k then both c and −c are solutions of (P1)1:k−1,. u > 0 .
We have that res (−c) = (P1)k,. (−c) = −(P1)k,. c = −res (c). So if c ∈ C+ then −c ∈ C−
and vice versa. This explains why we may set C+ ← C+∪{−s | s ∈ C−} and why we have
adapted the residues in the next step. After this step all central rays have a nonnegative
residue.

5. If we multiply a central or extreme ray by a positive real number it will stay a central
or extreme ray because of Properties 3.1 and 3.2. This means that we can normalize
all new rays after each pass through the main loop in order to avoid problems such as
overflow.
To avoid problems arising from round-off errors it is better to test the residues against
a threshold τ > 0 instead of against 0 when determining the subsets C+, C−, C0, E+,
E− and E0.

17



6. If both C and E are empty after a pass through the main loop, we can stop the algorithm.
In that case the homogeneous ELCP will not have any solutions except for the trivial
solution u = [ 0 0 . . . 0 ]T .

For more information about the method used to find all solutions of a system of linear in-
equalities the interested reader is referred to [25]. One of the main differences between our
algorithm and that of [25] is that we only store one version of each central ray c, whereas in
the double description method both c and −c are stored. We have also added the test on the
(partial) complementarity condition to eliminate as many rays as soon as possible.

4.2 Take the remaining equality and inequality constraints into account

The next algorithm is an adaptation of Algorithm 1. Since we have already processed all rows
of P1 in Algorithm 1, we can now test for the complete complementarity condition.

Algorithm 2: add the equality constraints

Input: m, p1, q, n, P1 ∈ R
p1×n, Q ∈ R

q×n, {φj}mj=1, C, E , Pnec
Main loop:

for k = 1, 2, . . . , q do { The rows of Q are taken one by one. }
∀s ∈ C ∪ E : res (s)← Qk. s { Calculate the residues. }
C+← {c ∈ C | res (c) > 0}
C−← {c ∈ C | res (c) < 0}
C0← {c ∈ C | res (c) = 0}
E+← {e ∈ E | res (e) > 0}
E−← {e ∈ E | res (e) < 0}
E0← {e ∈ E | res (e) = 0}
if C+ = ∅ and C− = ∅ and E+ = ∅ and E− = ∅ then { Case 1 }

{ The kth equation is redundant. }
else

if C+ = ∅ and C− = ∅ then { Case 2 }
E ← E0
for all pairs (e+, e−) ∈ E+ × E− do

if e+ and e− are adjacent then

enew ← res (e+) e− − res (e−) e+

if enew satisfies the complementarity condition then

E ← E ∪ { enew }
endif

endif

endfor

else { Case 3 }
C ← C0
E ← E0
C+ ← C+ ∪ {−s | s ∈ C−}
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∀s ∈ C− : res (−s)← −res (s) { Adapt the residues. }
Take one ray c ∈ C+.
∀c+ ∈ C+ \ {c} : C ← C ∪ {res (c+) c− res (c) c+}
for all e ∈ E+ ∪ E− do

enew ← res (c) e− res (e) c

if enew satisfies the complementarity condition then

E ← E ∪ { enew }
endif

endfor

endif

endif

endfor

Output: C, E

Remarks:

1. We do not have to add any rows to Pnec since after the kth step every ray s will satisfy
Q1:k,.s = 0. So adding the kth row of Q to Pnec would yield the same extra element in
all zero index sets. As a consequence Adjacency Test 1 for the kth step of Algorithm 2
becomes: if there are less than n− (k− 1)− t− 2 common indices in the zero index sets
of e1 and e2 then e1 and e2 are not adjacent.

2. The main difference with Algorithm 1 is that now we have to satisfy equality constraints.
That is why we only keep those rays that have a zero residue, whereas in Algorithm 1
we kept all rays with a positive or zero residue.

3. If we construct extra rays we immediately test whether the complementarity condition
is satisfied. We do not have to test the rays that are copied from the previous loop since
they already satisfy the complete complementarity condition. Since each new central

ray c will still satisfy P1c = 0 and thus also
m
∑

j=1

∏

i∈φj

(P1c)i = 0, we only have to test new

extreme rays.

4. If one is only interested in one solution, one could use the equality constraints to elimi-
nate some of the variables. However, since we want a minimal description of the entire
solution set with central and extreme rays, we do not eliminate any variables. Further-
more, the matrix Q is not necessarily invertible.

To take the remaining inequalities into account we again apply Algorithm 1 but we skip the
initialization step and continue with the sets C and E that resulted from Algorithm 2 and
the matrix Pnec from Algorithm 1. Adjacency Test 1 now becomes: if there are less than
n − q − t − 2 common indices in I0(e1) and I0(e2) then e1 and e2 are not adjacent. In the
main loop we only have to test whether newly constructed extreme rays satisfy the complete
complementarity condition.

To avoid unnecessary calculations and to limit the required amount of storage space,
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it is advantageous to have as few intermediate rays as possible. That is why we split the
inequalities of Pu > 0 and why we process Qu = 0 before P2u > 0:

• The complementarity condition is one way to reject rays. Therefore we already use a
partial complementarity condition in Algorithm 1. Since we want to apply this test as
soon as possible we removed the inequalities that did not appear in the complementarity
condition and put them in P2u > 0.

• In the next steps we then further reduce the solution set by taking the extra equality
and inequality constraints into account. Unless we have a priori knowledge about the
coefficients of the equalities and the inequalities, it is logical to assume that an equality
will yield less intermediate rays than an inequality, since we only retain existing rays
with a zero residue for an equality and rays with a positive or zero residue for an
inequality. That is why we first take Qu = 0 into account and only then P2u > 0.

4.3 Determine the cross-complementary sets

Let K be the polyhedral cone defined by P1u > 0, Qu = 0 and P2u > 0. As a direct
consequence of the way in which C and E are constructed, we have that every u that is
defined as

u =
∑

ck∈Cs

λkck +
∑

ek∈Es

κkek with λk ∈ R and κk > 0 (9)

for an arbitrary subset Cs ⊂ C and an arbitrary subset Es ⊂ E , belongs to K. Since the
complementarity condition requires that in each subgroup of inequalities of P1u > 0 that
corresponds to some φj at least one inequality should be satisfied by equality, the comple-
mentarity condition is satisfied either by all points of K or only by (some) points on the
border of K. Since we have only rejected rays that did not satisfy the complementarity con-
dition and hence certainly would not yield solutions of the ELCP, any arbitrary solution of
the homogeneous ELCP can be represented by (9).

However, if we take arbitrary subsets of C and E then normally not every combination of
the form (9) will be a solution of the ELCP. The complementarity condition determines for
which subsets of C and E (9) will yield a solution of the homogeneous ELCP. This is where
the concept “cross-complementarity” appears.
In [8] two solutions of a GLCP are called cross-complementary if every nonnegative combi-
nation of the two solutions satisfies the complementarity condition. This definition can be
extended to an arbitrary number of solutions. However, for the ELCP we have to adapt this
definition:

Definition 4.5 (Cross-complementarity) A set of solutions S of an ELCP is called cross-
complementary if every sum of an arbitrary linear combination of the central solutions in S
and an arbitrary nonnegative combination of the non-central solutions in S :

u =
∑

sk∈Scen

λksk +
∑

sk∈Snc

κksk with λk ∈ R and κk > 0 (10)

where Scen = {s ∈ S |Ps = 0} and Snc = {s ∈ S |Ps 6= 0}, satisfies the complementarity
condition.
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Note that every combination of the form (10) always belongs to K. So if S is a cross-
complementary set then every combination of the form

u =
∑

sk∈Scen

λksk +
∑

sk∈Snc

κksk with λk ∈ R and κk > 0

where Scen = {s ∈ S |Ps = 0} and Snc = {s ∈ S |Ps 6= 0} is a solution of the ELCP.
Now we shall determine the maximal sets of cross-complementary solutions. The following
property tells us that we can always set Cs = C in (9):

Property 4.6 If u1 is a solution of the ELCP then the set C ∪{u1} is cross-complementary.

Proof : First we define a set A such that A = R if u1 is a central solution and A = {r ∈
R | r > 0} if u1 is a non-central solution. So now we have to prove that ∀λk ∈ R, ∀µ ∈ A:
u =

∑

ck∈C

λkck + µu1 satisfies the complementarity condition. We have that

m
∑

j=1

∏

i∈φj



P1





∑

ck∈C

λkck + µu1









i

=
m
∑

j=1

∏

i∈φj





∑

ck∈C

λk(P1ck)i + µ(P1u1)i





=
m
∑

j=1

∏

i∈φj

(0 + µ(P1u1)i) since P1ck = 0

=
m
∑

j=1

µ#φj
∏

i∈φj

(P1u1)i

= 0

because of complementarity condition (3). So the set C ∪ {u1} is cross-complementary. ✷

So now we only have to consider the extreme rays. The following property tells us that we
only have to test one positive combination to determine whether a set of extreme rays or
non-central solutions is cross-complementary or not:

Property 4.7 Let e1, e2, . . . , ek be arbitrary extreme rays (or non-central solutions) of the
ELCP. Then we have that

∀κ1, κ2, . . . , κk > 0 : κ1e1 + κ2e2 + . . .+ κkek satisfies the complementarity condition

if and only if

∃µ1, µ2, . . . , µk > 0 such that µ1e1 + µ2e2 + . . .+ µkek satisfies the complementarity

condition.

Proof : Since the proof of the only-if-part is trivial we only prove the if-part.
If there exist positive real numbers µ1, µ2, . . . , µk such that µ1e1+µ2e2+ . . .+µkek satisfies
the complementarity condition then we have that

∏

i∈φj

(P1(µ1e1 + µ2e2 + . . .+ µkek))i = 0 for j = 1, 2, . . . ,m
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or
∏

i∈φj

(µ1(P1e1)i + µ2(P1e2)i + . . .+ µk(P1ek)i) = 0 for j = 1, 2, . . . ,m

and thus

∑

(ψ1,ψ2,...,ψk)∈Ψj

k
∏

l=1

∏

i∈ψl

µl(P1el)i = 0 for j = 1, 2, . . . ,m

where Ψj is the set of all possible k-tuples of disjoint subsets of φj the union of which is equal
to φj :

Ψj =

{

(ψ1, ψ2, . . . , ψk)

∣

∣

∣

∣

∀l ∈ {1, 2, . . . , k} : ψl ⊂ φj ;
k
⋃

l=1

ψl = φj and

∀l1, l2 ∈ {1, 2, . . . , k} : if l1 6= l2 then ψl1 ∩ ψl2 = ∅
}

.

Note that we also allow empty subsets ψl in the definition of Ψj .
So

∑

(ψ1,ψ2,...,ψk)∈Ψj

(

k
∏

l=1

µ
#ψl

l

)

·




k
∏

l=1

∏

i∈ψl

(P1el)i



 = 0 for j = 1, 2, . . . ,m

and since µl > 0 and (P1el)i > 0 for l = 1, 2, . . . , k, this is only possible if

∀(ψ1, ψ2, . . . , ψk) ∈ Ψj :
k
∏

l=1

∏

i∈ψl

(P1el)i = 0 for j = 1, 2, . . . ,m . (11)

Now we show that ∀κ1, κ2, . . . , κk > 0: κ1e1 + κ2e2 + . . .+ κkek also satisfies the complemen-
tarity condition. Using the same reasoning as for µ1e1 + µ2e2 + . . .+ µkek we find that

m
∑

j=1

∏

i∈φj

(P1(κ1e1 + κ2e2 + . . .+ κkek))i

=
m
∑

j=1

∑

(ψ1,ψ2,...,ψk)∈Ψj

(

k
∏

l=1

κ
#ψl

l

)

·




k
∏

l=1

∏

i∈ψl

(P1el)i





= 0 because of (11). ✷

To determine whether a set of extreme rays of the ELCP is cross-complementary we take an
arbitrary positive combination of these rays. If the combination satisfies the complementarity
condition then the rays are cross-complementary. If it does not satisfy the condition then the
rays cannot be cross-complementary.

Now we construct the cross-complementarity graph G. This graph has #E vertices – one
for each extreme ray ek ∈ E – and an edge between two different vertices k and l if the
corresponding extreme rays ek and el are cross-complementary. A subset V of vertices of a
graph such that any two vertices of V are connected by an edge is called a clique. A maximal
clique is a clique that is not a subset of any other clique of the graph. In contrast to what has
been suggested in [9], finding all cross-complementary solutions does not amount to detecting
all maximal cliques of the graph G, as will be shown by the following trivial example.
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Example 4.8 Consider the following GLCP:

Find a vector







x

y

z






∈ R

3 such that xyz = 0 subject to x, y, z > 0 and 0x+0y+0z = 0 .

The solution set of this GLCP has three extreme rays:

e1 =







1
0
0






, e2 =







0
1
0






and e3 =







0
0
1






.

{e1, e2} is a set of cross-complementary solutions, and the same goes for {e2, e3} and {e3, e1} .
The graph G of cross-complementary rays is represented in Figure 1.

❏
❏

❏
❏

❏
❏❏

✡
✡
✡
✡
✡
✡✡

r r

r

e1 e2

e3

Figure 1: The cross-complementarity graph G of Example 4.8.

{e1, e2, e3} is clearly a clique of this graph, but it is not a cross-complementary set since
e1 + e2 + e3 = [ 1 1 1 ]T does not satisfy the complementarity condition. ✷

To find all cross-complementary solutions we have to construct all maximal subsets Es of cross-
complementary extreme rays. For Example 4.8 this would yield E1 = {e1, e2} , E2 = {e2, e3}
and E3 = {e3, e1}.
We can save much time if we make some extra provisions, as will be shown by the following
properties.

Property 4.9 If e1 ∈ E satisfies P1e1 = 0 then e1 belongs to every maximal cross-comple-
mentary set.

Proof : Assume that Es ⊂ E \ {e1} is a cross-complementary set. Now we show that Es∪{e1}
is also a cross-complementary set. We have to prove that every nonnegative combination of
the rays of Es ∪ {e1}:

u = κe1 +
∑

ek∈Es

κkek with κ > 0 and κk > 0

satisfies the complementarity condition.
Since Es is a cross-complementary set we know that

m
∑

j=1

∏

i∈φj



P1





∑

ek∈Es

κkek









i

= 0 . (12)
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Now we have that

m
∑

j=1

∏

i∈φj

(P1u)i =
m
∑

j=1

∏

i∈φj



P1



κe1 +
∑

ek∈Es

κkek









i

=
m
∑

j=1

∏

i∈φj



 κ(P1e1)i +



P1





∑

ek∈Es

κkek









i





=
m
∑

j=1

∏

i∈φj



P1





∑

ek∈Es

κkek









i

since P1e1 = 0

= 0 because of (12) .

So Es ∪ {e1} is indeed a cross-complementary set. ✷

Property 4.10 If e1 and e2 are two extreme rays and if

∀i ∈ {1, 2, . . . , p1} : (P1e1)i = 0 if and only if (P1e2)i = 0 , (13)

then e1 will belong to a maximal cross-complementary set if and only if e2 belongs to that set.

Proof : Consider an arbitrary subset Es ⊂ E \{e1, e2}. First we prove that if the set Es∪{e1}
is cross-complementary then Es ∪ {e1, e2} is also cross-complementary.
If Es∪{e1} is cross-complementary then every nonnegative combination of its elements satisfies
the complementarity condition. This means that

u = e1 +
∑

ek∈Es

ek = e1 + vs

with vs =
∑

ek∈Es

ek, satisfies the complementarity condition:

∏

i∈φj

(P1(e1 + vs))i = 0 for j = 1, 2, . . . ,m

or

∏

i∈φj

((P1e1)i + (P1vs)i) = 0 for j = 1, 2, . . . ,m

and thus

∑

ψ∈D(φj)

∏

i∈ψ

(P1e1)i
∏

i∈ψc

(P1vs)i = 0 for j = 1, 2, . . . ,m (14)

where D(φj) is the set of all subsets of φj and ψc = φj \ψ is the complement of ψ with respect
to φj . Since (P1e1)i > 0 and (P1vs)i > 0, (14) can only hold if

∀ψ ∈ D(φj) :
∏

i∈ψ

(P1e1)i
∏

i∈ψc

(P1vs)i = 0 for j = 1, 2, . . . ,m
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or equivalently

∀ψ ∈ D(φj) : ( ∃i ∈ ψ such that (P1e1)i = 0 ) or ( ∃i ∈ ψc such that (P1vs)i = 0 )

for j = 1, 2, . . . ,m. But if (P1e1)i = 0 then also (P1e2)i = 0 and thus (P1(e1 + e2))i = 0. This
leads to

∀ψ ∈ D(φj) : ( ∃i ∈ ψ such that (P1(e1 + e2))i = 0 ) or

( ∃i ∈ ψc such that (P1vs)i = 0 )

for j = 1, 2, . . . ,m, and consequently

∏

i∈φj

(P1(e1 + e2 + vs))i = 0 for j = 1, 2, . . . ,m .

Hence the nonnegative combination

v = e1 + e2 + vs = e1 + e2 +
∑

ek∈Es

ek

of the elements of Es ∪ {e1, e2} satisfies the complementarity condition. According to Prop-
erty 4.7 this means that the set Es ∪ {e1, e2} is cross-complementary.

To prove the only-if-part we interchange e1 and e2 and repeat the above reasoning. ✷

This leads to the following procedure for determining the sets of cross-complementary extreme
rays:
First we put all rays e ∈ E that satisfy P1e = 0 in E0. Because of Property 4.9 we know that
these rays will belong to every maximal cross-complementary set.
Next we define an equivalence relation ∼ on E \ E0:

e1 ∼ e2 if ∀i ∈ {1, 2, . . . , p1} : ( (P1e1)i = 0 ) ⇔ ( (P1e2)i = 0 ) ,

and we construct the equivalence classes. Now we take one representative out of each equiva-
lence class and put it in Ered. If we define S = {P1ek | ek ∈ Ered} then ∀sk ∈ S : sk > 0. Since
for any arbitrary pair of extreme rays e1 , e2 ∈ Ered we have that

(P1(µ1e1 + µ2e2))i = µ1(P1e1)i + µ2(P1e2)i = µ1(s1)i + µ2(s2)i ,

there is a one-to-one correspondence between the cross-complementary subsets of Ered and

the cross-complementary sets of solutions of the GLCP
m
∑

j=1

∏

i∈φj

si = 0 with s > 0. Therefore

we now present an algorithm to determine the maximal cross-complementary sets of solutions
of a GLCP:
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Algorithm 3: Determine the maximal cross-complementary sets of solutions of a
GLCP

Input: m,S, {φj}mj=1

Initialization:

Γ← ∅
B ← {binary(sk) | sk ∈ S} { Construct the binary equivalents. }
{ Construct the cross-complementarity matrix: }
for k = 1, 2, . . . ,#B − 1

for l = k + 1, k + 2, . . . ,#B
if (bk ∨ bl) satisfies the complementarity condition then

cross(k, l)← 1

else

cross(k, l)← 0

endif

endfor

endfor

depth← 1

start(1)← 0

last(1)← #B
∀k ∈ {1, 2, . . . ,#B} : vertices(1, k)← k

Main loop:

while depth > 0 do

start(depth)← start(depth) + 1

b←
depth
∨

d=1

bvertices(d,start(d))

{ Determine the vertices for the next depth: }
current vertex← vertices(depth, start(depth))

next depth← depth+ 1

start(next depth)← 0

last(next depth)← 0

for k = start(depth) + 1, . . . , last(depth) do

new vertex← vertices(depth, k)

if cross(current vertex, new vertex) = 1 then

if (b ∨ bnew vertex) satisfies the complementarity condition then

last(next depth)← last(next depth) + 1

vertices(next depth, last(next depth))← new vertex

endif

endif

endfor
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{ If the next depth does not contain any vertices, then a new maximal }
{ cross-complementary set has been found: }
if last(next depth) > 0 then

depth← next depth

else

Snew ←
depth
⋃

d=1

{svertices(d,start(d))}

if ∀Ss ∈ Γ : Snew 6⊂ Ss then

Γ← Γ ∪ {Snew}
endif

{ Check whether the current subset contains all remaining vertices, }
{ otherwise return to the previous point where a choice was made: }
if start(1) + depth− 1 = #B then

depth← 0

else

while start(depth) = last(depth) do

depth← depth− 1

endwhile

endif

endif

endwhile

Output: Γ = {S1,S2, . . .} { the set of all cross-complementary sets }

Remarks:

1. This algorithm is an adaptation of the algorithm of [3] to determine a maximum clique
of a graph, i.e. a clique of maximum cardinality. We start with a set that contains one
vertex and we keep adding extra vertices as long as the corresponding set of extreme
rays stays cross-complementary. If no vertices can be added without violating the cross-
complementarity, we have found a maximal cross-complementary set. Then we go back
to the last point were a choice was made and repeat the procedure.
For additional information about this algorithm the interested reader is referred to [3].
A recent survey of algorithms and applications of the maximum clique problem can be
found in [27]. However, note that finding all maximal sets of cross-complementarity
extreme rays does not amount to determining all maximal cliques of the cross-comple-
mentarity graph G (cf. Example 4.8).

2. If we encounter a set that is not cross-complementary, then according to Property 3.3
– which is also valid if el is a nonnegative combination of extreme rays – each superset
of that set will also be not cross-complementary. So once we have found a set that is
not cross-complementary, we do not have to add extra vertices.

3. If we have found a new maximal cross-complementary set, we should add it to the list
Γ. But first we determine if there is any redundancy. Because of the order in which we
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process the maximal cross-complementary sets it is impossible that a new subset is a
superset of a set that is already in the list. So we only have to test whether the new set
is a subset of one of the sets of Γ.

4. As was mentioned in [8] the cross-complementarity test can be done in binary arithmetic
only. First we replace each solution by its binary equivalent:

if s ∈ R
n then b = binary(s) ∈ R

n with bi = 0 if |si| < τ ,

= 1 if |si| > τ ,

where τ > 0 is a threshold.
In the complementarity condition we use logical and (∧) instead of multiplication and
logical or (∨) instead of addition. Example: the binary equivalent of the complemen-
tarity condition s1s2 + s3 = 0 is [(b1 = 0) ∨ (b2 = 0)] ∧ (b3 = 0) .
To determine whether two (or more) solutions are cross-complementary we first con-
struct a new vector by taking the entrywise or of the binary equivalents of the solutions
and then we test whether this vector satisfies the (binary) complementarity condition.
We have already included this technique in our algorithm since it will be much faster
than doing everything in floating point arithmetic.
Note that we can also use this technique in Algorithms 1 and 2 if we define s = Pu

because then complementarity condition (2) reduces to
m
∑

j=1

∏

i∈φj

si = 0 .

5. We have only constructed the upper triangular part of the cross-complementarity matrix
cross because in the test cross(current vertex, new vertex) = 1 we always have that
new vertex > current vertex .

6. If we are only interested in obtaining one solution of the ELCP we can skip Algorithm
3. However, this is certainly not the most efficient way to get one solution of the ELCP
(see also Section 4.5).

Once we have found the sets of cross-complementary solutions of the GLCP we reconstruct
the corresponding subsets of E by replacing each sk in each subset Ss by the corresponding
ek and all the other members of the equivalence class of ek. If we also add all the elements of
E0 to each subset we finally get Γ, the set of subsets Es of cross-complementary extreme rays
of the ELCP. Now we can characterize the solution set of the ELCP:

Theorem 4.11 When C, E and Γ are given, then u is a solution of the homogeneous ELCP
if and only if there exists a subset of cross-complementary extreme rays Es ∈ Γ such that

u =
∑

ck∈C

λkck +
∑

ek∈Es

κkek with λk ∈ R and κk > 0 .

This leads to:

Theorem 4.12 In general the solution set of an homogeneous ELCP consists of the union
of faces of a polyhedral cone.

Remark: The main difference between the ELCP and the GLCP is that the solution set of
an homogeneous ELCP consists of the union of faces of a polyhedral cone – which means that
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it can contain a linear subspace – whereas the solution set of a GLCP is the union of faces
of a pointed polyhedral cone, which means that it cannot contain a linear subspace. Hence
there are no central rays in the solution set of a GLCP.
The algorithm of [8] to calculate the solution set of a GLCP starts with C = ∅, E = {ei | ei =
(In).i for i = 1, 2, . . . , n} and Pnec = In and directly goes to Algorithm 2 and skips all steps
that deal with central rays.

4.4 Solutions of the inhomogeneous ELCP

Every solution of the homogeneous ELCP has the following form: u =

[

x

uα

]

with uα > 0.

First we normalize all nonzero α components:

• If c is a central ray then both c and −c are solutions of the homogeneous ELCP. Since
cα > 0 this is only possible if cα = 0.

• For an extreme ray there are two possibilities: eα = 0 or eα > 0. If eα > 0 then we
divide each component of e by eα such that the α component of e becomes 1. Because
of Property 3.2 the new e will still be a solution of the homogeneous ELCP.

This results in two groups of extreme rays: E inf = {ek ∈ E | (ek)α = 0} and Efin = {ek ∈
E | (ek)α = 1}. The rays in C and E inf will correspond to solutions at infinity, whereas Efin
will yield finite solutions of the inhomogeneous ELCP. If we extract the x part out of each
ray of C, E inf and Efin we get X cen, the set of central rays; X inf , the set of infinite rays and
X fin, the set of finite rays respectively.
Finally we construct for every subset Es ∈ Γ the corresponding subsets X inf

s ⊂ X inf and

X fin
s ⊂ X fin. We only retain those pairs

{

X inf
s ,X fin

s

}

for which X fin
s is not empty. This yields

Λ, the set of pairs of cross-complementary infinite and finite rays.

Theorem 4.13 When X cen, X inf , X fin and Λ are given, then x is a solution of the inhomo-

geneous ELCP if and only if there exists a pair
{

X inf
s ,X fin

s

}

∈ Λ such that

x =
∑

xk∈X cen

λkxk +
∑

xk∈X inf
s

κkxk +
∑

xk∈Xfin
s

µkxk

with λk ∈ R, κk > 0, µk > 0 and
∑

k

µk = 1.

Proof :
First we prove the if-part:

Take an arbitrary pair
{

E infs , Efins
}

with Efins 6= ∅. Consider

u =
∑

ck∈C

λkck +
∑

ek∈E inf
s

κkek +
∑

ek∈Efin
s

µkek

with arbitrary λk, arbitrary κk > 0 and arbitrary µk > 0 such that
∑

k

µk = 1. Let u =

[

x

uα

]

.

Then we have that

uα =
∑

k

λk · 0 +
∑

k

κk · 0 +
∑

k

µk · 1 =
∑

k

µk = 1 .
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Since u is a solution of the homogeneous ELCP and since uα = 1, we have that

m
∑

j=1

∏

i∈φj

(Ax− c)i = 0 , Ax− c > 0 and Bx− d = 0 .

Hence

x =
∑

xk∈X cen

λkxk +
∑

xk∈X inf
s

κkxk +
∑

xk∈Xfin
s

µkxk

is a solution of the inhomogeneous ELCP.

Now we prove the only-if-part:

Consider an arbitrary solution x of the inhomogeneous ELCP. Construct u =

[

x

1

]

. Since x

is a solution of the inhomogeneous ELCP, u is a solution of the homogeneous ELCP. So there
exists a set Es such that

u =
∑

ck∈C

λkck +
∑

el∈Es

νlel

with λk ∈ R and νl > 0 or if we extract E infs and Efins :

u =
∑

ck∈C

λkck +
∑

ek∈E inf
s

κkek +
∑

ek∈Efin
s

µkek

with λk ∈ R, κk > 0, µk > 0 and uα = 1 =
∑

k

λk · 0 +
∑

k

κk · 0 +
∑

k

µk · 1. So
∑

k

µk = 1.

Note that the set Efins cannot be empty since otherwise the α component of u would not be
equal to 1. ✷

This leads to the following theorem:

Theorem 4.14 The solution set of an ELCP either is empty or consists of the union of faces
of a polyhedron.

We can even reverse this theorem:

Theorem 4.15 The union of any arbitrary set S of faces of an arbitrary polyhedron P can
be described by an ELCP.

Proof : Let the polyhedron P be defined by P = {x |Ax > c} for some matrix A ∈ R
p×n

and some vector c ∈ R
p. Let F be the union of the faces in S: F =

⋃

Fi∈S

Fi.

Now consider one face Fi ∈ S with dimension ki. This face is the intersection of P and
li = n − ki linearly independent hyperplanes from the constraints that define P. Let φi be
the set of indices that correspond to these hyperplanes. Then we have that Fi = {x |Ax >

c and ∀j ∈ φi : (Ax − c)j = 0}. Since Ax − c > 0, we also have that Fi = {x |Ax >

c and
∑

j∈φi

(Ax−c)j = 0}. If we define a set φi of indices for each face Fi ∈ S then F coincides

with the solution set of the following ELCP:
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Find x ∈ R
n such that

#S
∏

i=1

∑

j∈φi

(Ax− c)j = 0 (15)

subject to Ax > c.

Equation (15) really is a complementarity condition since we can always rewrite it as a sum
of products. ✷

Note that the empty set can also be described by an ELCP (e.g. by taking an infeasible
system of linear inequalities).

Remark: For the inhomogeneous ELCP we are only interested in cross-complementary sub-
sets that contain at least one finite solution. Therefore it is advantageous to put the extreme
rays that have eα 6= 0 at the top before determining the sets of cross-complementary rays. In
that case we do not have to consider all sets of cross-complementary extreme rays but we can
stop Algorithm 3 as soon as we have used all rays that have eα 6= 0.

4.5 The complexity of the ELCP and our ELCP algorithm

In each step of the algorithm to determine the central and extreme rays we have to make
combinations of intermediate rays. This means that the execution time of this algorithm
depends heavily on the number of extra rays that are generated in each step. In general
one could say that the execution time and the required amount of storage space grow as
the number of equations and variables grows. However, we have noticed that the execution
time and the storage space requirements do not only depend on the number of variables and
(in)equalities but also on the structure of the solution set.
In [22] Mattheiss and Rubin give a survey and comparison of methods for finding all vertices of
polytopes or polyhedra with an empty lineality space. The worst case behavior of Algorithms
1 and 2 can be compared with these algorithms if we would take the trivial complementarity

condition
p
∏

i=1

(Ax − c)i = 0, which means that at least one inequality should be satisfied by

equality or that every border point of the polyhedron defined by Ax > c is a solution of the
ELCP. Note that we may assume that there are no central rays since we can first determine a
set of central rays by solving the system of homogeneous linear equations Ax = 0 and Bx = 0,
and then remove the central rays from the ELCP solution by imposing the condition that
the other solutions should be orthogonal to the central rays. In [22] Mattheiss and Rubin
report execution times of the order O(vρ) with ρ = 1.418 and v the number of vertices of the
polyhedron for the Chernikova algorithm, which is a special case of the double description
method: the Chernikova algorithm requires the additional constraint that all variables should
be nonnegative, so there are no central rays. However, note that according to the upper
bound conjecture [22] the least upper bound of the number of vertices of a polytope defined
by m (irredundant) inequality constraints in an n-dimensional space is given by





m−
⌊

n+ 1

2

⌋

m− n



 +





m−
⌊

n+ 2

2

⌋

m− n




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where ⌊x⌋ is the largest integer less than or equal to x and

(

m

n

)

=
m!

(m− n)!n! . This means

that in the worst case the number of vertices v can be of the order O
(

m⌊n2 ⌋
)

if m≫ n≫ 1.

Fortunately, we can already use Property 3.3 to reject extreme rays that do not satisfy the
complementarity condition during the iteration process. This means that on the average the
execution times of our algorithm will be far less than the ones reported in [22]. Furthermore,
we have noticed that the number of intermediate rays also depends on the order in which the
inequalities and equalities are processed. It is still an open question how the optimal order
can be determined.
The execution time of Algorithm 3 depends heavily on the structure of the solution set and
on the number of finite rays (since we stop the algorithm as soon as all finite rays have been
considered).
Since the execution time of our ELCP algorithm depends on so many factors it is difficult to
give a neat characterization of the computational complexity as a function of the number of
variables and inequalities.

From the above we can conclude that the ELCP algorithm as presented in this paper is
not well suited for large problems with a large number of (in)equalities and variables and/or a
complex solution set. For such kind of systems one could try to develop algorithms that only
search one (non-trivial) solution, since in many cases we do not need all solutions. Possible
approaches are:

• global minimization [21]: for the ELCP we have to minimize the left hand side of the
complementarity condition over the equality and inequality constraints. The function
value in the minimum will be equal to 0 and the minimum will be a solution of the
ELCP. (See e.g. [15, 26] for methods and algorithms for constrained optimization);

• systems of polynomial equalities: by introducing slack variables the ELCP can be trans-
formed into a system of multivariate polynomial equalities;

• adaptations and extensions of the existing methods for LCPs and GLCPs of e.g. [1, 6,
19, 23, 24, 29, 34].

However, the following theorem shows that the ELCP is intrinsically a computationally hard
problem:

Theorem 4.16 The general ELCP is an NP-hard problem.

Proof : The decision problem that corresponds to the ELCP belongs to NP: a nondetermin-
istic algorithm can guess a vector x and then check in polynomial time whether x satisfies the
complementarity condition and the system of linear equalities and inequalities. Chung [4] has
proved that the decision problem that corresponds to the LCP is in general an NP-complete
problem. Since the LCP is a special case of the ELCP, the decision problem that corresponds
to the ELCP is also NP-complete. This means that in general the ELCP is NP-hard. ✷

So the ELCP can probably not be solved in polynomial time (unless the class P would coincide
with the class NP). The interested reader is referred to [14] for an extensive treatment of NP-
completeness.
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5 Example: application of the ELCP in the max algebra

The formulation of the ELCP arose from our research on discrete event systems. Normally
the behavior of discrete event systems is highly nonlinear. However, when the order of the
events is known or fixed some of these systems can be described by a linear description in the
max algebra [2].

The basic operations of the max algebra are the maximum (represented by ⊕) and the
addition (represented by ⊗):

x⊕ y = max {x, y} (16)

x⊗ y = x+ y . (17)

The max-algebraic power is defined as follows:

x⊗
a

= a · x . (18)

Many important problems in the max algebra can be reformulated as a set of multivariate
polynomial equalities and inequalities in the max algebra:

Given a set of integers {mk} and three sets of real numbers {aki}, {bk} and {ckij} for
i = 1, 2, . . . ,mk; for j = 1, 2, . . . , n and for k = 1, 2, . . . , p1 + p2, find a vector x ∈ R

n that
satisfies

mk
⊕

i=1

aki ⊗
n
⊗

j=1

xj
⊗
ckij

= bk for k = 1, 2, . . . , p1 ,

mk
⊕

i=1

aki ⊗
n
⊗

j=1

xj
⊗
ckij

6 bk for k = p1 + 1, p1 + 2, . . . , p1 + p2 ,

or show that no such vector x exists.

Note that the exponents can be negative or real. In [12] we have proved the following theorem:

Theorem 5.1 A set of multivariate polynomial equalities and inequalities in the max algebra
is equivalent to an ELCP.

We shall illustrate this by an example:

Example 5.2
Consider the following set of multivariate polynomial equalities and inequalities:

(−8)⊗ x1⊗
4 ⊗ x3 ⊗ x5⊗

−2 ⊗ x6 ⊕ 9⊗ x2⊗
4 ⊗ x4⊗

−2 ⊗ x6⊗
−2 ⊕

10⊗ x1 ⊗ x2⊗
−2 ⊗ x5⊗

−4
= 3 (19)

5⊗ x1⊗
−2 ⊗ x2⊗

4 ⊗ x3⊗
−7 ⊗ x4⊗

2 ⊗ x5⊗
2 ⊗ x6⊗

−3 ⊕

4⊗ x2⊗
−1 ⊗ x4⊗

3 ⊗ x5⊗
−2

= 14 (20)

(−3)⊗ x1⊗
−1 ⊗ x3⊗

3 ⊗ x4⊗
−2

6 8 . (21)

Using definitions (17) and (18) we find that the first “term” of (19) is equivalent to

(−8) + 4x1 + x3 + (−2)x5 + x6 .
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The other terms of (19) can be transformed to linear algebra in a similar way. Each term has
to be smaller than 3 and at least one of them has to be equal to 3. Hence we get a group of
three inequalities in which at least one inequality should hold with equality. If we also include
(20) and (21) we get the following ELCP:

Given

A =



















−4 0 −1 0 2 −1
0 −4 0 2 0 2
−1 2 0 0 4 0
2 −4 7 −2 −2 3
0 1 0 −3 2 0
1 0 −3 2 0 0



















and c =



















−11
6
7
−9
−10
−11



















,

find a vector x ∈ R
6 such that

(Ax− c)1 (Ax− c)2 (Ax− c)3 + (Ax− c)4 (Ax− c)5 = 0

subject to Ax > c .

Using a similar approach we can also transform an ELCP into a set of multivariate max-
algebraic polynomial equalities and inequalities.
If we apply the ELCP algorithm to this ELCP we get the rays of Table 1 and the pairs of
subsets of Table 2. Any arbitrary solution of the set of multivariate polynomial equalities and
inequalities can now be expressed as

x = λ1x
c
1 +

∑

xi
k
∈X inf

s

κkx
i
k +

∑

xf
k
∈Xfin

s

µkx
f
k

for some s ∈ {1, . . . , 6} with λ1 ∈ R, κk > 0, µk > 0 and
∑

k

µk = 1 . ✷

Many problems in the max algebra such as matrix decompositions, transformation of state
space models, construction of matrices with a given characteristic polynomial, minimal state
space realization and so on, can be reformulated as a set of multivariate max-algebraic poly-
nomial equalities and inequalities [11, 12]. These problems are equivalent to an ELCP and
can thus be solved using the ELCP algorithm. In general their solution set consists of the
union of a set of faces of a polyhedron.

6 Conclusions and Future Research

In this paper we have proposed the Extended Linear Complementarity Problem (ELCP)
and established a link between the ELCP and other Linear Complementarity Problems. We
have shown that the ELCP can be considered as a unifying framework for the LCP and its
generalizations. Furthermore, we have made a thorough study of the general solution set of
the ELCP and developed an algorithm to find all its solutions.

Since our algorithm yields all solutions, it provides a geometric insight in the solution set
of an ELCP and other problems that can be reduced to an ELCP. On the other hand, this also
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leads to large computation times and storage space requirements if the number of variables
and (in)equalities is large. However, we are not always interested in obtaining all solutions
of an ELCP. Therefore our further research efforts will concentrate on the development of
(heuristic) algorithms that yield only one solution (as we have already done for the minimal
state space realization problem in the max algebra [10]).

Although we have shown that in general the ELCP is NP-hard, it may also be interesting
to determine which subclasses of the ELCP can be solved with polynomial time algorithms.
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Set X cen X inf X fin

Ray xc1 xi1 xi2 xi3 xi4 xi5 xf1 xf2 xf3

x1 -108 12 -4 0 36 0 -15 3 -15

x2 136 -16 8 -2 -56 -2 6 2 22

x3 -48 0 0 0 0 0 0 0 0

x4 -18 -6 2 0 6 0 2 5 2

x5 -95 11 -1 1 37 1 -5 1.5 -13

x6 290 -26 14 -2 -70 2 13 2 45

Table 1: The central, infinite and finite rays of the ELCP of Example 5.2.

s X inf
s X fin

s

1 {xi1, xi2, xi4} {xf2}
2 {xi1, xi2} {xf1, xf2}
3 {xi1, xi3, xi4} {xf1, xf2}
4 {xi2, xi4, xi5} {xf2, xf3}
5 {xi2} {xf1, xf2, xf3}
6 {xi3, xi4, xi5} {xf1, xf2, xf3}

Table 2: The pairs of cross-complementary subsets of the ELCP of Example 5.2.



The Extended Linear Complementarity Problem:

Addendum

Bart De Schutter and Bart De Moor

A Some worked examples of the ELCP algorithm

In this appendix we give two worked examples that illustrate our ELCP algorithm. In the
first example we solve a simple ELCP problem with Algorithms 1 and 2. However for this
small sized ELCP problem we do not get enough extreme rays to demonstrate Algorithm 3.
Therefore we give a second example in which we show how to determine all maximal sets of
cross-complementary extreme rays.

Example A.1: determination of the central and extreme rays

Consider the following ELCP:

Given

P =







1 0 1 0
1 1 1 −2
1 −1 0 1






and Q =

[

0 0 1 1
]

,

find u ∈ R
4 such that

(Pu)1 (Pu)2 + (Pu)2 (Pu)3 = 0 (22)

subject to Pu > 0
Qu = 0 .

Since all inequalities of Pu > 0 appear in the complementarity condition we do not have to
split Pu > 0.
First we process the inequalities of Pu > 0:

k=0

Initialization:

c0,1 =











1
0
0
0











, c0,2 =











0
1
0
0











, c0,3 =











0
0
1
0











, c0,4 =











0
0
0
1











.

k=1

First we calculate the residues:

res (c0,1) = 1 , res (c0,2) = 0 , res (c0,3) = 1 , res (c0,4) = 0 .
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Hence C+ = {c0,1, c0,3} and C0 = {c0,2, c0,4}. Since the set C+ is not empty we go to
Case 3 of Algorithm 1. First we put the elements of C0 in C: c1,1 = c0,2 and c1,2 = c0,4.
Since C− is empty we do not have to transfer rays from C− to C+. We set c = c0,1 and
put it in E : e1,1 = c0,1. Because no group of inequalities has been processed entirely yet,
condition (6) is void. So c satisfies the partial complementarity condition by definition.
Finally we combine c = c0,1 and c0,3 and put the result in C:

c1,3 = res (c0,3) c0,1 − res (c0,1) c0,3 = c0,1 − c0,3 .

So we find

c1,1 =











0
1
0
0











, c1,2 =











0
0
0
1











, c1,3 =











1
0
−1
0











, e1,1 =











1
0
0
0











.

k=2

We have that

res (c1,1) = 1 , res (c1,2) = −2 , res (c1,3) = 0 , res (e1,1) = 1 .

So C+ = {c1,1} , C0 = {c1,3} , C− = {c1,2} and E+ = {e1,1}. Since C+ is not empty
we go again to Case 3. We put c1,3 in C: c2,1 = c1,3 and transfer −c1,2 to C+. The
ray c = c1,1 satisfies the partial complementarity condition (Pu)1 (Pu)2 = 0 , since

P1:2,.c1,1 =

[

0
1

]

. Hence we put it in E : e2,1 = c1,1. We combine c = c1,1 and −c1,2 and

transfer the result to C:

c2,2 = res (−c1,2) c1,1 − res (c1,1) (−c1,2) = 2c1,1 + c1,2 .

The combination of c = c1,1 and e1,1 satisfies the partial complementarity condition, so
we also put it to E :

e2,2 = res (c1,1) e1,1 − res (e1,1) c1,1 = e1,1 − c1,1 .

This yields

c2,1 =











1
0
−1
0











, c2,2 =











0
2
0
1











, e2,1 =











0
1
0
0











, e2,2 =











1
−1
0
0











.

k=3

Using the same procedure as in the previous steps we find

c3,1 = c2,1 + c2,2 , e3,1 = c2,1 , e3,2 = e2,1 + c2,1 , e3,3 = e2,2 − 2c2,1 ,

ii



and thus

c3,1 =











1
2
−1
1











, e3,1 =











1
0
−1
0











, e3,2 =











1
1
−1
0











, e3,3 =











−1
−1
2
0











.

We do not have to reject any extreme rays since they all satisfy complementarity con-
dition (22).

Since we did not encounter any redundant inequalities, we have that Pnec = P . Now we take
the equality Qu = 0 into account:

k=1

We have that

res (c3,1) = 0 , res (e3,1) = −1 , res (e3,2) = −1 , res (e3,3) = 2 .

So C0 = {c3,1} , E+ = {e3,3} and E− = {e3,1, e3,2}. Since C+ = C− = ∅ we go to Case 2
of Algorithm 2. All elements of C stay in C:

c4,1 = c3,1 =
[

1 2 −1 1
]T

.

Now we have to determine which pairs of rays are adjacent. We find the following zero
index sets:

I0(e3,1) = {1, 2} , I0(e3,2) = {1, 3} , I0(e3,3) = {2, 3} .

If we consider Adjacency Test 1 then a necessary condition for two extreme rays to be
adjacent is that their zero index sets have n− t− 2 = 4− 1− 2 = 1 common element.
This means that all possible combinations of two different extreme rays pass Adjacency
Test 1. Note that Adjacency Test 2 is still necessary and sufficient since we have not
rejected any extreme rays. As a consequence we can conclude that the rays e3,3 and e3,1
are adjacent because I0(e3,3) ∩ I0(e3,1) = {2} 6⊂ {1, 3} = I0(e3,2) . If we combine them
we get a new extreme ray that satisfies the complementarity condition, so we put it in
E :

e4,1 = 2e3,1 + e3,3 =
[

1 −1 0 0
]T

.

Since the combination of the adjacent rays e3,3 and e3,2 :

2e3,2 + e3,3 =
[

1 1 0 0
]T

does not satisfy the complementarity condition, we have to reject it.

Now we have C =

{

[

1 2 −1 1
]T
}

and E =

{

[

1 −1 0 0
]T
}

. Hence every com-

bination of the form

u = λ











1
2
−1
1











+ κ











1
−1
0
0











with λ ∈ R and κ > 0

is a solution of the ELCP.
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Example A.2: determination of the cross-complementary sets

Since the determination of the cross-complementary sets of an ELCP essentially reduces to
the determination of the cross-complementary sets of a GLCP, we demonstrate Algorithm 3
for a GLCP. Suppose that we have the following GLCP:

Given Z =
[

1 −1 −1 −1 −1
]

, find u ∈ R
5 such that

u2 u3 u4 + u3 u5 = 0 (23)

subject to u > 0 and Zu = 0.

The extreme rays of the solution set of this GLCP are

e1 =















1
1
0
0
0















, e2 =















1
0
1
0
0















, e3 =















1
0
0
1
0















, e4 =















1
0
0
0
1















.

Now we use Algorithm 3 to determine which nonnegative combinations of the extreme rays
are also solutions of the GLCP.

• First we have to transform every ray into its binary equivalent. But since the rays are
already binary we can leave them as they are. The binary complementarity condition
is

[(u2 = 0) ∨ (u3 = 0) ∨ (u4 = 0)] ∧ [(u3 = 0) ∨ (u5 = 0)] . (24)

• Next we construct the cross-complementarity matrix, i.e. we determine which pairs of
extreme rays are cross-complementary.
The rays e1 and e2 are cross-complementary since

e1 ∨ e2 =
[

1 1 1 0 0
]T

satisfies the binary complementarity condition.
However e2 and e4 are not cross-complementary since

e2 ∨ e4 =
[

1 0 1 0 1
]T

does not satisfy condition (24).
We check all other combinations of two different extreme rays and put the results in
the cross-complementarity matrix. To make the subsequent steps easier to follow, we
represent this cross-complementarity matrix by its graph G (see Figure 2). An edge
between two vertices of G indicates that the corresponding extreme rays are cross-
complementary.
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r

e3
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e4

e2

Figure 2: The cross-complementarity graph G for Example A.2.

• In Algorithm 3 we keep track of our progress by using lists of vertices to be investigated
for each depth d, where d is the number of elements of the set that we are currently
investigating. These lists are stored in the matrix vertices where the dth row contains
the vertices for depth d. The column index for the first vertex of the list for depth d is
start(d), and the column index for the last vertex is last(d). The combination we are
currently investigating consists of the first vertex of each depth. In our explanation Nd

will represent the lists of vertices for depth d. So Nd =
last(d)
⋃

j=start(d)

{vertices(d, j)} .

• We start with a list of vertices for depth 1: N1 = {1, 2, 3, 4}.
Vertex 1 is the first vertex in the list, so now we look for other vertices of N1 that are
connected by an edge to vertex 1. Since the vertices 2, 3 and 4 satisfy this condition,
we get N2 = {2, 3, 4}.
The first vertices of each list are 1 and 2 so the set we are currently investigating is
{1, 2}. Now we try to expand this set. The only other vertex in list N2 that is connected
to both vertex 1 and vertex 2 is vertex 3. So we check whether the set {e1, e2, e3} is
cross-complementary. This is not the case since

e1 ∨ e2 ∨ e3 =
[

1 1 1 1 0
]T

does not satisfy condition (24). So we do not find any vertices for depth 3. This means
that the current set {e1, e2} is a maximal cross-complementary set. We put it in the
list Γ: Γ = { {e1, e2} }.

• We return to the previous point where a choice was made: we remove vertex 2 from N2:
N2 = {3, 4}.
Now we are investigating the set {e1, e3}. Since vertex 4 is connected to both vertex 1
and vertex 3 we check whether

e1 ∨ e3 ∨ e4 =
[

1 1 0 1 1
]T

satisfies the complementarity condition. Since this is the case, we add vertex 4 to the
list of depth 3: N3 = {4}. Because there is only one vertex in N3 we cannot augment
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the depth. Hence we have again found a maximal cross-complementary set that should
be added to the list Γ: Γ = { {e1, e2} , {e1, e3, e4} }.

• We return to previous point where a choice was made: we go again to depth 2 and we
remove vertex 3 from list N2: N2 = {4}.
The current set is {1, 4}. There are no more vertices left for the next depth so we have
a maximal cross-complementary set: {e1, e4}. But since this set is a subset of the set
{e1, e3, e4}, that is already in the list Γ, we do not add it to Γ.

• Next we go back to depth 1, remove vertex 1 from N1 and so on.

Finally we get

Γ = { {e1, e2} , {e1, e3, e4} , {e2, e3} } .

This means that every combination of the form

u = κ1e1 + κ2e2

or

u = κ1e1 + κ3e3 + κ4e4

or

u = κ2e2 + κ3e3

with κ1, κ2, κ3, κ4 > 0 is a solution of the GLCP.

Remark: We see again that finding all maximal sets of cross-complementary extreme rays
is not the same as finding all maximal cliques of the cross-complementarity graph G since
{e1, e2, e3} is a maximal clique but not a cross-complementary set.
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