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Minimal Realization in the Max Algebra is an Extended

Linear Complementarity Problem

Bart De Schutter1 and Bart De Moor1

ESAT - Katholieke Universiteit Leuven, Kardinaal Mercierlaan 94, B-3001 Leuven, Belgium,
email: bart.deschutter@esat.kuleuven.ac.be, bart.demoor@esat.kuleuven.ac.be.

Abstract: We demonstrate that the minimal state space realization problem in the max
algebra can be transformed into an Extended Linear Complementarity Problem (ELCP). We
use an algorithm that finds all solutions of an ELCP to find all equivalent minimal state
space realizations of a single input single output (SISO) discrete event system. We also give
a geometrical description of the set of all minimal realizations of a SISO max-linear discrete
event system.

Keywords: discrete event systems, max algebra, state space models, minimal realization,
linear complementarity problem.

1 Introduction

1.1 Overview

In this paper we consider discrete event systems, such as flexible manufacturing systems, sub-
way traffic networks, parallel processing systems, etc. . Some of these systems can be described
using the so called max algebra [1]. We shall show that the minimal state space realization
problem in the max algebra can be transformed into an Extended Linear Complementar-
ity Problem (ELCP). The ELCP is an extension of the well-known Linear Complementarity
Problem, which is one of the fundamental problems of mathematical programming. In [5] we
have developed an algorithm to find all solutions of an ELCP. We shall use this algorithm to
find all equivalent minimal state space realizations of a single input single output (SISO) dis-
crete event system and to give a geometrical insight in the structure of the set of all equivalent
state space realizations.

Although there have been some attempts to solve this minimal realization problem [3, 8, 9] ,
this is – to the authors’ knowledge – the first time it is solved entirely. And it is certainly
the first time that a complete description of the set of all minimal realizations of a SISO
max-linear discrete event system is given.

1.2 The max algebra

One of the mathematical tools used in this paper is the max algebra. In this introduction
we only explain the notations we use to represent the max-algebraic operations and give

1Bart De Schutter is a research assistant and Bart De Moor is a senior research associate with the N.F.W.O.
(Belgian National Fund for Scientific Research). The following text presents research results obtained within
the framework of the Belgian programme on interuniversity attraction poles (IUAP-nr. 50) initiated by the
Belgian State - Prime Minister’s Office - Science Policy Programming. The scientific responsibility is assumed
by its authors.
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some definitions and theorems that will be used in the remainder of this paper. A complete
introduction to the max algebra can be found in [1].

In this paper we use the following notations: a ⊕ b = max(a, b) and a ⊗ b = a + b. The
neutral element for ⊕ in Rmax = R ∪ {−∞},⊕,⊗ is ǫ = −∞. The max-algebraic power is

defined as follows: a⊗
k
= a⊗ a⊗ . . .⊗ a

︸ ︷︷ ︸

k times

and is equal to ka in linear algebra.

En is the n by n identity matrix in Rmax: eij = 0 if i = j and eij = ǫ if i 6= j. The operations
⊕ and ⊗ are extended to matrices in the usual way.

We also use the extension of the max algebra Smax that was introduced in [1, 7]. We
shall restrict ourselves to the most important features of Smax. There are three kinds of
elements in Smax: the positive elements (S⊕max, this corresponds to Rmax), the negative el-
ements (S⊖max) and the balanced elements (S•max). The positive and the negative elements
are called signed (S∨max = S

⊕
max ∪ S

⊖
max). The ⊖ operation in Smax is defined as follows:

a⊖ b = a if a > b ,
a⊖ b = ⊖b if a < b ,
a⊖ a = a• .

This extension allows us to “solve” equations that have no solutions in Rmax. Unfortunately
we then have to introduce balances (∇) instead of equalities. Informally an ⊖ sign in a bal-
ance means that the element should be at the other side: so 3 ⊖ 3 ∇ 2 means 3 ∇ 2 ⊕ 3. If
both sides of a balance are signed we can replace the balance by an equality.

1.3 Some notations, definitions and theorems

To select submatrices we use the following notation: A([i1, i2, . . . , ik], [j1, j2, . . . , jl]) is the k
by l matrix resulting from A by eliminating all rows except for rows i1, . . . , ik and all columns
except for columns j1, . . . , jl. A(:, j) is the j-th column of A. We represent the set of all
possible combinations of k different numbers out of the set {1, 2, . . . , n} as Ck

n.

Definition 1.1 (Determinant) Consider a matrix A ∈ S
n×n
max . The determinant of A is

defined as detA =
⊕

σ∈Pn

sgn (σ) ⊗
n⊗

i=1

aiσ(i) , where Pn is the set of all permutations of

{1, . . . , n} , and sgn (σ) = 0 if the permutation σ is even and sgn (σ) = ⊖0 if the permutation
is odd.

Theorem 1.2 Let A ∈ S
n×n
max . The homogeneous linear balance A ⊗ x ∇ ǫ has a non-trivial

signed solution if and only if detA ∇ ǫ.

Proof : See [7]. The proof given there is constructive so it can be used to find a solution. ✷

Definition 1.3 (Characteristic equation) Let A ∈ S
n×n
max . The characteristic equation of

A is defined as det(A⊖ λ⊗ En) ∇ ǫ.

Theorem 1.4 (Cayley-Hamilton) In Smax every square matrix satisfies its characteristic
equation.
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2 The Extended Linear Complementarity Problem

2.1 Problem formulation

Consider the following problem:

Given two matrices A ∈ R
p×n, B ∈ R

q×n, two column vectors c ∈ R
p, d ∈ R

q and m subsets
φj of {1, 2, . . . , p}, find a vector x ∈ R

n such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0 (1)

subject to Ax > c and Bx = d ,
or show that no such vector exists.

In [5] we have demonstrated that this problem is an extension of the Linear Complementarity
Problem [2]. Therefore we call it the Extended Linear Complementarity Problem (ELCP).
Equation (1) represents the complementarity condition. Since Ax > c, this condition is
equivalent to

∏

i∈φj

(Ax− c)i = 0 , ∀j ∈ {1, 2, . . . ,m} . (2)

So we could say that each set φj corresponds to a subgroup of inequalities of Ax > c and that
in each group at least one inequality should hold with equality:

∀j ∈ {1, 2, . . . ,m} : ∃i ∈ φj such that (Ax− c)i = 0 .

We shall use this interpretation in Section 3 to demonstrate that a set of multivariate poly-
nomial equations in the max algebra can be transformed into an ELCP.

In [5] we have made a thorough study of the solution set of the ELCP and developed an
algorithm to find all its solutions. We shall now state the main results of that paper.

The ELCP algorithm results in 3 sets of rays: X cen, X inf , X fin and a set Λ of pairs
{

X inf
s ,X fin

s

}

where X inf
s is a subset of X inf and X fin

s is a non-empty subset of X fin. The

solution set of the ELCP is then characterized by the following theorems:

Theorem 2.1 When X cen, X inf , X fin and Λ are given, then x is a solution of the ELCP if

and only if there exists a pair
{

X inf
s ,X fin

s

}

∈ Λ such that

x =
∑

xk∈X
cen

λkxk +
∑

xk∈X
inf
s

κkxk +
∑

xk∈X
fin
s

µkxk ,

with λk ∈ R, κk, µk > 0 and
∑

k

µk = 1.

Theorem 2.2 The general solution set of an ELCP consists of the union of (bounded and
unbounded) polyhedra.
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3 Multivariate polynomial equations in the max algebra

Consider the following problem:

Given a set of integers {mk} and three sets of coefficients {aki}, {bk} and {ckij} with
i ∈ {1, . . . ,mk} , j ∈ {1, . . . , n} and k ∈ {1, . . . , p}, find a vector x ∈ R

n
max that satisfies

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk , for k = 1, 2, . . . , p . (3)

Now we demonstrate that this problem can be transformed into an ELCP:
First we consider one equation of the form (3) :

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk .

In linear algebra this is equivalent to the set of linear inequalities

aki + cki1x1 + cki2x2 + . . .+ ckinxn 6 bk , for i = 1, 2, . . . ,mk ,

where at least one inequality should hold with equality. If we transfer the aki’s to the right
hand side and if we define dki = bk − aki, we get the following set of a linear inequalities:

cki1x1 + cki2x2 + . . .+ ckinxn 6 dki , for i = 1, 2, . . . ,mk .

If we define p matrices Ck and p column vectors dk such that (Ck)ij = ckij and (dk)i = dki,
then (3) leads to p groups of linear inequalities Ck x 6 dk with in each group at least one
inequality that should hold with equality.

We put all Ck’s in one large matrix A =







−C1

−C2
...

−Cp






and all dk’s in one vector c =







−d1
−d2
...

−dp






.

We also define p sets φj such that φj = {sj+1, sj+2, . . . , sj+mj} , for j = 1, 2, . . . , p , where
s1 = 0 and sj+1 = sj +mj for j = 1, 2, . . . , p− 1. Our original problem (3) is then equivalent
to the following ELCP:

Find a vector x ∈ R
n such that

p
∑

j=1

∏

i∈φj

(Ax− c)i = 0 (4)

subject to Ax > c .

This means that we can use the ELCP algorithm of [5] to find all solutions of problem (3).
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4 Minimal state space realization

4.1 Realization and minimal realization

Suppose that we have a SISO discrete event system that can be described by an n-th order
state space model:

x[k + 1] = A⊗ x[k] ⊕ B ⊗ u[k] (5)

y[k] = C ⊗ x[k] (6)

with A ∈ R
n×n
max , B ∈ R

n×1
max and C ∈ R

1×n
max. u is the input, y is the output and x is the state

vector. We define the unit impulse e as: e[0] = 0 and e[k] = ǫ if k 6= 0 .
If we apply a unit impulse to the system and if we assume that the initial state x[0] satisfies
x[0] = ǫ or A⊗ x[0] 6 B, we get the impulse response as the output of the system:

x[1] = B , x[2] = A⊗B , . . . , x[k] = A⊗
k−1

⊗B ⇒ y[k] = C ⊗A⊗
k−1

⊗B . (7)

Let gk = C ⊗A⊗
k
⊗B. The gk’s are called the Markov parameters.

Let us now reverse the process: suppose that A, B and C are unknown, and that we only
know the Markov parameters (e.g. from experiments – where we assume that the system
is max-linear and time-invariant and that there is no noise present). How can we construct
A, B and C from the gk’s? This process is called realization. If we make the dimension of A
minimal, we have a minimal realization.

In the next subsections we shall use the results of the previous sections to give a complete
description of the set of all minimal realizations of a SISO max-linear discrete event system.

4.2 A lower bound for the minimal system order

Property 4.1 Consider A ∈ S
n×n
max , B ∈ S

n×1
max and C ∈ S

1×n
max. If ap is the coefficient of A⊗

n−p

in the characteristic equation of A then the Markov parameters satisfy

n⊕

p=0

ap ⊗ gk+n−p ∇ ǫ for k = 0 , 1, 2, . . . .

Suppose that we have a system that can be described by (5) – (6), with unknown system
matrices. If we want to find a minimal realization of this system the first question that has
to be answered is that of the minimal system order.

Consider the semi-infinite Hankel matrix H =






g0 g1 . . .
g1 g2 . . .
...

...
. . .




 .

As a direct consequence of Property 4.1 we have that the columns of H satisfy

n⊕

p=0

ap ⊗H(:, k + n− p) ∇ ǫ for k = 1, 2, . . . . (8)

If we combine this with Property 1.2 we find:

5



Property 4.2 Let Hsub,s = H([i1, i2, . . . , is], [j + 1, j + 2, . . . , j + s]) be an s by s square
submatrix of the Hankel matrix H with arbitrary row indices and consecutive column indices.
If s > n then we have that det(Hsub,s) ∇ ǫ .

So the dimension of the largest square submatrix of H with consecutive column indices
that has a non-balanced determinant will be less than or equal to n. We represent this
dimension as rcc(H).

Definition 4.3 (Consecutive column rank) Consider P ∈ S
m×n
max . The consecutive column

rank of P , rcc(P ), is the dimension of the largest square submatrix of P with consecutive
column indices, the determinant of which is not balanced:

rcc(P ) = max {dim(Psub,s) |Psub,s = P ([i1, i2, . . . , is], [j + 1, j + 2, . . . , j + s]) with

0 6 s 6 min(m,n), 0 6 j 6 n− s, {i1, i2, . . . , is} ∈ Cs
m and det(Psub,s) ∇/ ǫ} .

We propose the following procedure to find a lower bound r for the minimal system order:

First we construct a p by q Hankel matrix

Hp,q =









g0 g1 . . . gq−1

g1 g2 . . . gq
...

...
. . .

...
gp−1 gp . . . gp+q−2









with p and q large enough: p, q ≫ n, where n is the real (but unknown) system order. Now
we try to find n and a0, a1, . . . , an such that the columns of Hp,q satisfy an equation of the
form (8).
We start with r equal to rcc(Hp,q). Let

Hsub,r = Hp,q([i1, i2, . . . , ir], [j + 1, j + 2, . . . , j + r])

be an r by r submatrix of Hp,q the determinant of which is not balanced: detHsub,r ∇/ ǫ. If
we add one arbitrary row and the (j + r + 1)-st column to Hsub,r we get an r + 1 by r + 1
matrix Hsub,r+1 that has a balanced determinant. So according to Theorem 1.2 the set of
linear balances Hsub,r+1⊗ a ∇ ǫ has a signed solution a = [ ar ar−1 . . . a0 ]

t. We now look
for a solution a that corresponds to the characteristic equation of a matrix with elements
in Rmax (this should not necessarily be a signed solution). First of all we normalize a0 to 0
and then we check if the necessary (and/or sufficient) conditions for the coefficients of the
characteristic equation of a matrix with elements in Rmax (see [4]) are satisfied. If they are
not satisfied we augment r and repeat the procedure.
We continue until we get the following stable relation among the columns of Hp,q:

Hp,q(:, k + r) ⊕ a1 ⊗Hp,q(:, k + r − 1) ⊕ . . . ⊕ ar ⊗Hp,q(:, k) ∇ ǫ (9)

for k ∈ {1, . . . , q − r} . Since we assume that the system can be described by (5) – (6) and
that p, q ≫ n, we can always find such a stable relationship by gradually augmenting r. The
r that results from this procedure is a lower bound for the minimal system order, since it
corresponds to the smallest number of terms in a relationship of the form (8) among the
columns of Hp,q.
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4.3 Determination of the system matrices

Now we have to find A ∈ R
r×r
max, B ∈ R

r×1
max and C ∈ R

1×r
max such that

C ⊗A⊗
k
⊗B = gk , for k = 0, 1, 2, . . . . (10)

In practice it seems that we only have to take the transient behavior and the first cycles of
the steady-state behavior into account. So we may limit ourselves to the first, say, N Markov
parameters.

For k = 0 we get
r⊕

i=1

ci ⊗ bi = g0 .

For k > 0 we have that (10) is equivalent to

r⊕

i=1

r⊕

j=1

tkij = gk ,

with tkij =
r⊕

i1=1

. . .
r⊕

ik−1=1

ci ⊗ aii1 ⊗ ai1i2 ⊗ . . .⊗ aik−1j ⊗ bj .

This can be rewritten as

r⊕

i=1

r⊕

j=1

rk−1

⊕

l=1

ci ⊗
r⊗

u=1

r⊗

v=1

auv
⊗
γkijluv

⊗ bj = gk ,

where γkijluv is the number of times that auv appears in the l-th subterm of term tkij . If

auv does not appear in that subterm we take γkijluv = 0 (since a⊗
0
= 0.a = 0, the identity

element for ⊗).
If we put all unknowns in one large vector x of size r(r+2) we have to solve a set of multivariate
polynomial equations of the following form:

r⊕

i=1

r(r+2)
⊗

j=1

xj
⊗
κ0ij

= g0

wk⊕

i=1

r(r+2)
⊗

j=1

xj
⊗
κkij

= gk , for k = 1 , 2 , . . . , N − 1 ,

and this can be transformed into an ELCP using the technique explained in Section 3. This
means that in general all equivalent minimal state space realizations of a max-linear SISO
system form a union of polyhedra in the x-space.
If we find a solution x we extract the elements of x and put them in the matrices A ,B and C.
Then we have found a minimal realization. If we do not find a solution we have to augment r
and start again. Since we assumed that the data were generated by a max-linear SISO system
we shall eventually find a realization and it will be minimal.

5 Example

Example 5.1

Here we reconsider the example of [3, 9]. We start from a system with impulse response

{gk} = 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, . . . .

7



First we construct the Hankel matrix H8,8. The consecutive column rank of H8,8 is 2. The

determinant of Hsub,2 = H8,8([1, 7], [1, 2]) =

[

0 1
6 8

]

is not balanced. We add one row and

one column and then we look for a solution of the set of linear balances





0 1 2
1 2 3
6 8 10




⊗






a2
a1
a0




 ∇ ǫ .

The solution a0 = 0, a1 = ⊖2, a2 = 3 satisfies the necessary and sufficient conditions for the
coefficients of the characteristic polynomial of a 2 by 2 matrix with elements in Rmax (see [4])
and also corresponds to a stable relation among the columns of H8,8:

H8,8(:, k + 2) ⊕ 3⊗H8,8(:, k) = 2⊗H8,8(:, k + 1) for k ∈ {1, 2, . . . , 6} .

Let us take N = 9. Using the ELCP algorithm of [5] we find the rays of Table 1 and the pairs
of subsets of Table 2. If we take N > 9 we get the same result, but if we take N < 9 some
combinations of the rays lead to a partial realization of the given impulse response (i.e. they
only fit the first N Markov parameters).
Any arbitrary minimal realization can now be expressed as

[ a11 a12 a21 a22 b1 b2 c1 c2 ]
t = λ1x

c
1 + λ2x

c
2 + κ1x

i
i1
+ κ2x

i
i2
+ xfj1 , (11)

with λ1, λ2 ∈ R , κ1, κ2 > 0 and xii1 , x
i
i2
∈ X inf

s , xfj1 ∈ X fin
s for some s ∈ {1, 2, . . . , 8}. Expres-

sion (11) shows that the set of all equivalent minimal state space realizations of the given
impulse response is a union of 8 unbounded polyhedra. ✷

Remark: If we also want to include matrices with components equal to ǫ we have to take
certain precautions, since they will be limit cases of (11) where some of the coefficients go to
∞ in a controlled way. However, since the max operation hides small numbers from larger
numbers, it suffices in practice to replace negative elements that are large enough in absolute
value by ǫ provided that there are no positive elements of the same order of magnitude. See [6]
for a detailed explanation.

For another example, that does not satisfy the assumptions of [9], the interested reader is
referred to [6], where also the proofs of the properties of Section 4 can be found.

6 Conclusions and further research

We have shown that a set of multivariate polynomial equations in the max algebra can be
transformed into an Extended Linear Complementarity Problem (ELCP). This means that
we can use the ELCP algorithm of [5] to solve such a problem. We have applied this technique
to find all minimal state space realizations of a SISO discrete event system given its Markov
parameters.

One of the main characteristics of our ELCP algorithm is that it finds all solutions.
For the minimal realization problem this provides a geometrical insight in all equivalent
(minimal) realizations of an impulse response. On the other hand this also leads to large
computation times and storage space requirements if the number of variables and equations
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is large. Therefore it might be interesting to develop (heuristic) algorithms that only find one
solution.

We also hope to extend the method presented here to find minimal state space realiza-
tions for multiple input multiple output (MIMO) systems. The only problem there is the
determination of the minimal system order. Once this is found the same technique can be
used to get a minimal realization.
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Set X cen X inf X fin

Ray xc1 xc2 xi1 xi2 xi3 xi4 xi5 xi6 xf1 xf2

a11 0 0 0 0 0 0 0 0 2 1
a12 0 1 0 0 0 0 0 0 0 0
a21 0 -1 0 0 -1 -1 0 0 -2 -2
a22 0 0 0 0 0 0 0 0 1 2

b1 1 1 -1 0 0 1 -1 0 -2 -2
b2 1 0 -1 -1 0 0 0 0 0 -6

c1 -1 -1 1 0 0 -1 0 -1 -4 2
c2 -1 0 0 0 0 0 0 0 0 0

Table 1: The rays for Example 5.1 .



s X inf
s X fin

s

1 {xi1, x
i
2} {xf2}

2 {xi1, x
i
3} {xf2}

3 {xi2, x
i
4} {xf2}

4 {xi3, x
i
4} {xf2}

5 {xi3, x
i
4} {xf1}

6 {xi3, x
i
5} {xf1}

7 {xi4, x
i
6} {xf1}

8 {xi5, x
i
6} {xf1}

Table 2: The pairs of subsets for Example 5.1 .


