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Abstract. In this paper we show that finding solutions of a system of multivariate polyno-
mial equalities and inequalities in the max algebra is equivalent to solving an Extended Linear
Complementarity Problem. This allows us to find all solutions of such a system of multivariate
polynomial equalities and inequalities and provides a geometrical insight in the structure of the
solution set. We also demonstrate that this enables us to solve many important problems in the
max algebra and the max-min-plus algebra such as matrix decompositions, construction of matri-
ces with a given characteristic polynomial, state space transformations and the (minimal) state
space realization problem.
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space models, extended linear complementarity problem.

1. Introduction

1.1. Overview

There are many ways to model and to analyze discrete event dynamic systems. In
this paper we concentrate on systems that can be modeled using the max algebra.
The elements of the max algebra are the real numbers and −∞, and the admissible
operations are the maximum and the addition. This allows us to give a (max-)linear
description of a subclass of discrete event systems and to develop a max-algebraic
system theory analogous to conventional linear system theory (Baccelli, Cohen,
Olsder and Quadrat, 1992).
In this paper we shall show that finding all solutions of a system of multivari-

ate max-algebraic polynomial equalities and inequalities is equivalent to solving an
Extended Linear Complementarity Problem (ELCP). The ELCP is an extension of
the well-known Linear Complementarity Problem, which is one of the fundamental
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and Culture. The scientific responsibility is assumed by its authors.
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† Senior research associate with the N.F.W.O.



2 DE SCHUTTER AND DE MOOR

problems of mathematical programming. In (De Schutter and De Moor, 1993) we
have developed an algorithm to find all solutions of an ELCP. We shall use this
algorithm to find all solutions of a system of multivariate polynomial equalities and
inequalities in the max algebra and to give a geometrical insight in the structure of
the solution set of this kind of problems. We also show that many other problems
in the max algebra and the max-min-plus algebra such as matrix decompositions,
transformation of state space models, construction of matrices with a given charac-
teristic polynomial, minimal state space realization and so on, can be solved using
the same technique.
This paper is organized as follows: In Section 1 we introduce the notations and

some of the concepts and definitions that will be used in the following sections.
In Section 2 we propose the Extended Linear Complementarity Problem (ELCP).
We give a short description of an algorithm to solve an ELCP and of the resulting
solution set. In Section 3 we demonstrate that finding all solutions of a system of
multivariate polynomial equalities and inequalities in the max algebra is equivalent
to solving an ELCP. Next we give some other applications of the ELCP in the
max algebra and in the max-min-plus algebra. We conclude with an illustrative
example.

1.2. Notations and definitions

If a is a vector then ai represents the ith component of a. If A is an m by n matrix
then the entry on the ith row and the jth column is denoted by aij . We use A.j to
represent the jth column of A. The m by n zero matrix is denoted by Om,n. A zero
column vector is represented by 0. To select submatrices of a matrix we use the
following notation: A([i1, i2, . . . , ik], [j1, j2, . . . , jl]) is the k by l matrix resulting
from A by eliminating all rows except for rows i1, i2, . . . , ik and all columns except
for columns j1, j2, . . . , jl.

Definition. (Polyhedron) A polyhedron is the solution set of a finite system of
linear inequalities.

Definition. (Polyhedral cone) A polyhedral cone is the solution set of a finite
system of homogeneous linear inequalities.

We shall represent the set of all possible combinations of k different numbers out
of the set {1, 2, . . . , n} as Ck

n. The set of all possible permutations of the set
{1, 2, . . . , n} is denoted by Pn.

1.3. The max algebra

One of the mathematical tools used in this paper is the max algebra. In this intro-
duction we explain the notations we use to represent the max-algebraic operations.
We also give some definitions that will be used in the remainder of this paper. A
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complete introduction to the max algebra can be found in (Baccelli, Cohen, Olsder
and Quadrat, 1992) and (Cuninghame-Green, 1979).

1.3.1. The max-algebraic operations

In this paper we use the following notations: a⊕ b = max(a, b) and a⊗ b = a+ b.
The neutral element for ⊕ in Rmax = (R ∪ {−∞},⊕,⊗) is ε = −∞ . Since we
use both linear algebra and max algebra in this paper, we always write the ⊗
sign explicitly to avoid confusion. The max-algebraic power is defined as follows:

a⊗
k
= a⊗ a⊗ . . .⊗ a

︸ ︷︷ ︸

k times

and is equal to ka in linear algebra. The operations ⊕ and

⊗ are extended to matrices in the usual way. The max-algebraic matrix power is

represented by A⊗
k
= A⊗A⊗ . . .⊗A

︸ ︷︷ ︸

k times

. The n by n identity matrix in Rmax is

denoted as En : eij = 0 if i = j and eij = ε if i 6= j.
We also use the extension of the max algebra Smax that was introduced in (Bac-

celli, Cohen, Olsder and Quadrat, 1992) and (Gaubert, 1992) and which is a kind
of symmetrization of Rmax. We shall restrict ourselves to an intuitive introduction
to the most important features of Smax. For a more formal derivation the interested
reader is referred to (Gaubert, 1992).
There are three kinds of elements in Smax: the max-positive elements (S⊕max,

this corresponds to Rmax), the max-negative elements (S⊖max) and the balanced
elements (S•max). The max-positive and the max-negative elements are called signed
(S∨max = S

⊕
max ∪ S

⊖
max). The ⊕ operation is extended to Smax as follows:

a⊕ (⊖b) = a , if a > b ,

a⊕ (⊖b) = ⊖b , if a < b ,

a⊕ (⊖a) = a• ,

where a, b ∈ Rmax. The ⊖ sign corresponds to the − sign in linear algebra. By
analogy we write a⊖ b instead of a⊕ (⊖b).
If a ∈ Smax then it can be written as a = a+ ⊖ a− where a+ is the max-positive
part of a, a− is the max-negative part of a and |a|

⊕
= a+ ⊕ a− is the max-absolute

value of a. There are three possible cases: if a ∈ S
⊕
max then a+ = a and a− = ε, if

a ∈ S
⊖
max then a+ = ε and a− = ⊖a and if a ∈ S

•
max then a+ = a− = |a|

⊕
.

Example: Let a = 3• ∈ S
•
max, then a+ = 3, a− = 3 and |a|

⊕
= 3.

For b = ⊖2 ∈ S
⊖
max we have b+ = ε, b− = 2 and |b|

⊕
= 2.

This symmetrization allows us to “solve” equations that have no solutions in Rmax.
However, since ⊖ is not cancellative – i.e. in general a⊖ a 6= ε, the zero element for
⊕ – we have to introduce balances (∇) instead of equalities. If a, b ∈ Smax then
we have that a ∇ b if and only if a+ ⊕ b− = a− ⊕ b+ . Informally an ⊖ sign in
a balance means that the element should be at the other side. If both sides of a
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balance are signed (max-positive or max-negative) we can replace the balance by
an equality. We shall illustrate these concepts and properties with a few examples.

Example: We have that 3 ∇ 4• since

3 ∇ 4• ⇔ 3 ∇ 4 ⊖ 4 ( definition of 4• )

⇔ 3 ⊕ 4 = 4 ( definition of ∇ )

⇔ 4 = 4

since 3 ⊕ 4 = max (3, 4) = 4 .

Example: We have that 3 ∇/ ⊖ 1 since

3 ∇ ⊖ 1 ⇔ 3 ⊕ 1 = ε

⇔ 3 = ε ,

but 3 6= ε.

Example: If we want to solve x⊕ 4 ∇ 3 , we get x∇ 3⊖ 4 or x∇ ⊖ 4 . If we want
a signed solution the latter balance becomes an equality and this yields x = ⊖4 .

1.3.2. Some definitions

Definition. (Determinant) Consider a matrix A ∈ S
n×n
max . The determinant of

A is defined as

detA =
⊕

σ∈Pn

sgn (σ)⊗
n⊗

i=1

aiσ(i) ,

where Pn is the set of all permutations of {1, . . . , n} , and sgn (σ) = 0 if the per-
mutation σ is even and sgn (σ) = ⊖0 if the permutation is odd.

Definition. (Minor rank) Let A ∈ S
m×n
max . The minor rank of A is defined as

the dimension of the largest square submatrix of A the determinant of which is not
balanced and not equal to ε.

Definition. (Characteristic equation) Let A ∈ S
n×n
max . The characteristic equa-

tion of A is defined as det(A⊖ λ⊗En) ∇ ε.

If we work this out we get

λ⊗
n

⊕
n⊕

p=1

ap ⊗ λ⊗
n−p

∇ ε ,

which will be called a monic balance, since the coefficient of λ⊗
n

is equal to 0
(i.e. the identity element for ⊗).
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2. The Extended Linear Complementarity Problem

2.1. Problem formulation

Consider the following problem:

Given two matrices A ∈ R
p×n,B ∈ R

q×n, two column vectors c ∈ R
p,d ∈ R

q

and m subsets φj of {1, 2, . . . , p}, find a column vector x ∈ R
n such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0 (1)

subject to Ax > c
Bx = d ,

or show that no such vector x exists.

In (De Schutter and De Moor, 1993) we have demonstrated that this problem is an
extension of the Linear Complementarity Problem (Cottle, Pang and Stone, 1992).
Therefore we call it the Extended Linear Complementarity Problem (ELCP).
Equation (1) represents the complementarity condition. One possible interpretation
of this condition is the following: since Ax > c, condition (1) is equivalent to

∏

i∈φj

(Ax− c)i = 0 , ∀j ∈ {1, 2, . . . ,m} . (2)

So we could say that each set φj corresponds to a subgroup of inequalities ofAx > c
and that in each group at least one inequality should hold with equality:

∀j ∈ {1, 2, . . . ,m} : ∃i ∈ φj such that (Ax− c)i = 0 .

We shall use this interpretation in Section 3 to find all solutions of a system of
multivariate polynomial equalities and inequalities in the max algebra.

2.2. The solution set of an ELCP

In (De Schutter and De Moor, 1993) we have made a thorough study of the solution
set of an ELCP and developed an algorithm to find all its solutions. We shall briefly
state the main results of that paper.
In order to solve the ELCP we homogenize it by introducing a scalar α > 0 and

defining

u =

[
x
α

]

, P =

[
A −c
O1,n 1

]

and Q = [B − d ] .

Then we get a homogeneous ELCP of the following form:
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Given two matrices P ∈ R
p×n,Q ∈ R

q×n and m subsets φj of {1, 2, . . . , p}, find
a non-trivial column vector u ∈ R

n such that

m∑

j=1

∏

i∈φj

(Pu)i = 0 (3)

subject to Pu > 0
Qu = 0 ,

or show that no such vector u exists.

So now we have a system of homogeneous linear equalities and inequalities subject
to a complementarity condition.
The solution set of the system of homogeneous linear inequalities and equalities

Pu > 0 (4)

Qu = 0 , (5)

is a polyhedral cone P and can be described using two sets of rays: a set of central
rays C and a set of extremal rays E . The set of central rays can be considered as a
basis for the linear subspace of the polyhedral cone P. If c ∈ C then Pc = 0, and
if e ∈ E then Pe 6= 0.
We have that u is a solution of (4) – (5) if and only if it can be written as

u =
∑

ci∈C

αi ci +
∑

ei∈E

βi ei , (6)

with αi ∈ R and βi > 0.
To calculate the sets C and E we use an iterative algorithm that is an adaptation of

the double description method of Motzkin (Motzkin, Raiffa, Thompson and Thrall,
1953). During the iteration we already remove rays that do not satisfy the partial
complementarity condition since such rays cannot yield solutions of the ELCP. In
the kth step the partial complementarity condition is defined as follows:

∏

i∈φj

(Pu)i = 0, ∀j ∈ {1, 2, . . . ,m} such that φj ⊂ {1, 2, . . . , k} . (7)

So we only consider those groups of inequalities that have already been processed
entirely. For k > p the partial complementarity condition (7) coincides with the
full complementarity condition (3). This leads to the following algorithm:

Algorithm 1 : Calculation of the central and extremal rays.

Initialization:

• C0 := {ci | ci = (In).i for i = 1, 2, . . . , n}

• E0 := ∅
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Iteration:

for k := 1, 2, . . . , p+ q ,

• Calculate the intersection of the current polyhedral cone (described by Ck−1

and Ek−1) with the half-space or hyperplane determined by the kth inequal-
ity or equality. This yields a new polyhedral cone described by Ck and Ek.

• Remove the rays that do not satisfy the partial complementarity condition.

Result: C := Cp+q and E := Ep+q

Not every combination of the form (6) satisfies the complementarity condition. Al-
though every linear combination of the central rays satisfies the complementarity
condition, not every positive combination of the extremal rays satisfies the comple-
mentarity condition. Therefore we introduce the concept of cross-complementarity:

Definition. (Cross-complementarity) Let E be the set of extremal rays of an
homogeneous ELCP. A subset Es of E is cross-complementary if every combination
of the form

u =
∑

ei∈Es

βi ei ,

with βi > 0 , satisfies the complementarity condition.

In (De Schutter and De Moor, 1993) we have proven that in order to check whether
a set Es is cross-complementary it suffices to test only one strictly positive com-
bination of the rays in Es, e.g. the combination with ∀i : βi = 1. Now we
can determine Γ, the set of cross-complementary sets of extremal rays: Γ =
{ Es | Es is cross-complementary } .

Algorithm 2 : Determination of the cross-complementary sets of ex-
tremal rays.

Initialization:

• Γ := ∅

• Construct the cross-complementarity graph G with a node ei for each ray
ei ∈ E and an edge between nodes ek and el if the set {ek, el} is cross-
complementary.

• S := {e1}

Depth-first search in G:

• Select a new node enew that is connected by an edge to all nodes of the set
S and add the corresponding ray to the test set: Snew := S ∪ {enew}.
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• if Snew is cross-complementary
then Select a new node and add it to the test set.
else Add S to Γ: Γ := Γ ∪ {S} , and go back to the last point where a

choice was made.
Continue until all possible choices have been considered.

Result: Γ

Once C, E and Γ have been determined, the solution set of the homogeneous ELCP
is given by the following theorem:

Theorem 1 When the set of central rays C, the set of extremal rays E and the set
of cross-complementary sets of extremal rays Γ are given then u is a solution of
the homogeneous ELCP if and only if there exists a set Es ∈ Γ such that u can be
written as

u =
∑

ci∈C

αi ci +
∑

ei∈Es

βi ei , (8)

with αi ∈ R and βi > 0.

Finally we have to extract the solutions of the original ELCP, i.e. we have to retain
solutions of the form (8) that have an α component equal to 1 (uα = 1). We
transform the sets C, E and Γ as follows:

• If c ∈ C then cα = 0. We drop the α component and put the result in the set
X cen, the set of central rays.

• If e ∈ E then there are two possibilities:

– If eα = 0 then we drop the α component and put the result in the set X inf ,
the set of infinite rays.

– If eα > 0 then we normalize e such that eα = 1. Next we drop the α
component and put the result in the set X fin, the set of finite rays.

• For each set Es ∈ Γ we construct the set of corresponding infinite rays X inf
s

and the set of corresponding finite rays X fin
s . If X fin

s 6= ∅ then we add the pair
{
X inf

s ,X fin
s

}
to Λ, the set of pairs of cross-complementary sets of infinite and

finite rays.

Now we can characterize the solution set of the ELCP:

Theorem 2 When X cen, X inf , X fin and Λ are given, then x is a solution of the
ELCP if and only if there exists a pair

{
X inf

s ,X fin
s

}
∈ Λ such that

x =
∑

xk∈X cen

λkxk +
∑

xk∈X inf
s

κkxk +
∑

xk∈X fin
s

µkxk , (9)
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with λk ∈ R, κk > 0, µk > 0 and
∑

k

µk = 1.

This leads to:

Theorem 3 The general solution set of an ELCP consists of the union of (bounded
and unbounded) polyhedra.

When we are not interested in obtaining all solutions of the ELCP we can skip the
calculation of the pairs

{
X inf

s ,X fin
s

}
. Each element of X fin will then be a solution

of the ELCP.
For a more detailed and precise description of the algorithms and for the proofs

of the theorems of this subsection the interested reader is referred to (De Schutter
and De Moor, 1993), where also a worked example can be found.

3. The solution of a system of multivariate polynomial equalities and
inequalities in the max algebra

In this section we consider a system of multivariate polynomial equalities and in-
equalities in the max algebra, which can be seen as a generalized framework for
many important max-algebraic problems such as matrix decompositions, transfor-
mation of state space models, state space realization of impulse responses, con-
struction of matrices with a given characteristic polynomial and so on. These
applications will be treated in detail in Section 4.

3.1. Problem formulation

Consider the following problem:

Given a set of integers {mk} and three sets of coefficients {aki}, {bk} and {ckij}
with i ∈ {1, . . . ,mk} , j ∈ {1, . . . , n} and k ∈ {1, . . . , p1, p1 + 1, . . . , p1 + p2},
find a vector x ∈ R

n that satisfies

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk , for k = 1, 2, . . . , p1 , (10)

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

6 bk , for k = p1 + 1, p1 + 2, . . . , p1 + p2 , (11)

or show that no such vector x exists.

We call (10) – (11) a system of multivariate polynomial equalities and inequalities
in the max algebra. Note that the exponents can be negative or real. In the next
subsection we shall show that we can use the ELCP algorithm of Section 2 to solve
this problem.
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3.2. Translation to linear algebra

First we consider one equation of the form (10) :

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk .

In linear algebra this is equivalent to the system of linear inequalities

aki + cki1x1 + cki2x2 + . . .+ ckinxn 6 bk , for i = 1, 2, . . . ,mk ,

where at least one inequality should hold with equality.
If we transfer the aki’s to the right hand side and if we define dki = bk − aki , we
get the following system of linear inequalities:

cki1x1 + cki2x2 + . . .+ ckinxn 6 dki , for i = 1, 2, . . . ,mk ,

where at least one inequality should hold with equality. So equation (10) will lead
to p1 groups of linear inequalities, where in each group at least one inequality should
hold with equality.
Using the same reasoning equations of the form (11) can also be transformed into
a system of linear inequalities, but without an extra condition.
If we define p1 + p2 matrices Ck and p1 + p2 column vectors dk such that (Ck)ij =
ckij and (dk)i = dki, then our original problem is equivalent to p1 + p2 groups of
linear inequalities

Ckx 6 dk ,

where there has to be at least one inequality that holds with equality in each group
Ckx 6 dk for k = 1, . . . , p1.

Now we put all Ck’s in one large matrix A =








−C1

−C2

...
−Cp1+p2








and all dk’s in one

large vector c =








−d1

−d2

...
−dp1+p2







. We also define p1 sets φj such that φj = {sj +

1, sj + 2, . . . , sj + mj} , for j = 1, 2, . . . , p1 , where s1 = 0 and sj+1 = sj + mj

for j = 1, 2, . . . , p1 − 1. Our original problem (10) – (11) is then equivalent to the
following ELCP:

Find a column vector x ∈ R
n such that

p1∑

j=1

∏

i∈φj

(Ax− c)i = 0 (12)
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subject to Ax > c ,

or show that no such vector x exists.

Remark. If any of the mk’s in the set of max-algebraic equalities (10) equals 1
then we get a linear equality instead of a system of linear inequalities. All these
equalities can be extracted from Ax > c and from the complementarity condition
and be put in Bx = d. This is not necessary but it will certainly enhance the
efficiency of the ELCP algorithm.

Since some exponents may be negative and to avoid problems arising from 0 · ε
we have assumed that all the coefficients and all the components of x are finite.
However, in some cases we can allow bk’s that are equal to ε. Then we have to
introduce a negative number ξ that is large enough in absolute value and transform

equations of the form
⊕

i

ti = ε into
⊕

i

ti 6 ξ . Afterwards we replace every

negative component of x that has the same order of magnitude as ξ by ε provided
that

• this does not cause any problems arising from taking negative powers of ε,

• x has no positive components of the same order of magnitude as ξ. Positive
components of the same order of magnitude as ξ would have to be replaced by
+∞, but +∞ does not belong to Rmax.

Another way to obtain solutions with components equal to ε is to allow some of
the λk’s or κk’s in (9) to become infinite, but in a controlled way, since we only
allow infinite components that are equal to ε and since negative powers of ε are not
defined. The max operation hides small numbers from larger numbers. Therefore it
suffices in practice to replace negative components that are large enough in absolute
value by ε provided that there are no positive components of the same order of
magnitude.

Theorem 4 A system of multivariate polynomial equalities and inequalities in the
max algebra is equivalent to an extended linear complementarity problem.

Proof: We have already demonstrated how a system of multivariate polynomial
equalities and inequalities in the max algebra can be transformed into an ELCP.

Now we prove that an ELCP can also be transformed into a system of multivariate
polynomial equalities and inequalities in the max algebra.
Consider the following ELCP:

Given two matrices A ∈ R
p×n,B ∈ R

q×n, two vectors c ∈ R
p,d ∈ R

q and m
subsets φj of {1, 2, . . . , p}, find a column vector x ∈ R

n such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0 (13)
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subject to Ax > c
Bx = d .

First we define Φ =

m⋃

j=1

φj and Φc = {1, 2, . . . , p} \ Φ . There are three possible

cases to consider:

1. Groups of linear inequalities where at least one inequality should hold with
equality:

n∑

k=1

aikxk > ci , ∀i ∈ Φ , (14)

with

∏

i∈φj

(Ax− c)i = 0 , ∀j ∈ {1, 2, . . . ,m} , (15)

where we use the alternative formulation of the complementarity condition,
which means that at least one inequality should hold with equality. Equation
(14) is equivalent to

ci +
n∑

k=1

(−aik)xk 6 0 , ∀i ∈ Φ .

If we translate everything into max algebra and if we also take condition (15)
into account, we get m multivariate max-algebraic polynomial equalities:

⊕

i∈φj

ci ⊗
n⊗

k=1

xk
⊗
(−aik)

= 0 , ∀j ∈ {1, 2, . . . ,m} .

2. Linear equalities:

n∑

k=1

bikxk = di , ∀i ∈ {1, 2, . . . , q} .

These can be transformed into q multivariate max-algebraic polynomial equal-
ities:

di ⊗
n⊗

k=1

xk
⊗
(−bik)

= 0 , ∀i ∈ {1, 2, . . . , q} .
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3. The remaining linear inequalities:

n∑

k=1

aikxk > ci , ∀i ∈ Φc ,

can be transformed into one multivariate polynomial inequality in the max
algebra:

⊕

i∈Φc

ci ⊗
n⊗

k=1

xk
⊗
(−aik)

6 0 .

So an ELCP can be transformed into a system of multivariate polynomial equalities
and inequalities in the max algebra.

Theorem 5 The general solution set of a system of multivariate max-algebraic
polynomial equalities and inequalities is the union of a set of bounded and unbounded
polyhedra (some of which may be degenerate).

Proof: This is a direct consequence of Theorem 3 and Theorem 4.

4. Applications

In this section we treat some important problems in the max algebra that can be
reformulated as a system of multivariate max-algebraic polynomial equalities and
inequalities. These problems can thus be solved using the ELCP algorithm. In
general their solution set consists of the union of a set of polyhedra.

4.1. Matrix decompositions

Consider the following problem:

Given a matrix A ∈ R
m×n
max and an integer p > 0, find B ∈ R

m×p
max and C ∈ R

p×n
max

such that

A = B⊗C ,

or show that no such decomposition exists.

So we have to find bik and ckj for i ∈ {1, . . . ,m} , j ∈ {1, . . . , n} and k ∈ {1, . . . , p}
such that

p
⊕

k=1

bik ⊗ ckj = aij , ∀i ∈ {1, . . . ,m} , ∀j ∈ {1, . . . , n} ,
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and this can clearly be considered as a system of multivariate polynomial equations
in bik and ckj . It is obvious that if we take p too small, this problem will not have
any solutions.
This technique can easily be extended to the decomposition of A into the product
of any number of matrices of a specified size:

Given a matrix A ∈ R
m×n
max and a set of p + 1 strictly positive integers {mi}

with m1 = m and mp+1 = n, find p matrices Pi ∈ R
mi×mi+1
max such that

A =

p
⊗

i=1

Pi .

It is also possible to impose a certain structure on the composing matrices (e.g. tri-
angular, diagonal, Hessenberg, . . . ).

4.2. Transformation of state space models

Consider a discrete event system that can be described by the following nth order
state space model:

x(k + 1) = A⊗ x(k) ⊕ B⊗ u(k) (16)

y(k) = C⊗ x(k) , (17)

where A ∈ R
n×n
max , B ∈ R

n×l
max and C ∈ R

p×n
max . The vector x represents the state, u

is the input and y is the output of the system.
In contrast to linear algebra, where we can use similarity transformations to

change the basis of the state space, this is not always possible in the max algebra.
Moreover, since only permuted diagonal matrices are invertible, max-algebraic sim-
ilarity transformations have a limited scope.
We could transfer our problem from Rmax to Smax since it is possible to define

a similarity transformation in Smax. But this approach has two major drawbacks:
first of all we get balances instead of equalities in Smax. Moreover, it is not clear
how to find a similarity transformation such that the resulting matrices are max-
positive (i.e. have entries in S

⊕
max = Rmax). This means that in general we cannot

transfer the results back to Rmax.
Therefore we propose an approach that is entirely based on Rmax. We transform

a given state space model into another state space model that has the same input-
output behavior. This approach was hinted at, but not proven, in (Moller, 1986)
and we extend it such that the dimension of the state space vector can also change.
Suppose that our system is described by the state space model (16) – (17). If we

can find a common factor L ∈ R
r×n
max of A and C with A = Â⊗ L and C = Ĉ⊗ L

then we can transform the state space model into

L⊗ x(k + 1) = L⊗ Â⊗ L⊗ x(k) ⊕ L⊗B⊗ u(k)

y(k) = Ĉ⊗ L⊗ x(k)
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or

x̃(k + 1) = Ã⊗ x̃(k) ⊕ B̃⊗ u(k)

y(k) = C̃⊗ x̃(k)

with

Ã = L⊗ Â (18)

B̃ = L⊗B (19)

C̃ = Ĉ (20)

x̃(k) = L⊗ x(k) . (21)

Now we prove that this system has the same input-output behavior as the first
system provided that we also adapt the initial state by setting x̃(0) = L⊗ x(0).
The output of system (16) – (17) is given by

y(k) = C⊗A⊗
k
⊗ x(0) ⊕

k−1⊕

i=0

Gi ⊗ u(k − 1− i) , for k > 0 ,

with

Gi = C⊗A⊗
i
⊗B

= Ĉ⊗ L⊗
(

Â⊗ L
)⊗

i

⊗B

= Ĉ⊗
(

L⊗ Â
)⊗

i

⊗ L⊗B

= C̃⊗ Ã⊗
i
⊗ B̃

= G̃i

and

C⊗A⊗
k
⊗ x(0) = Ĉ⊗ L⊗

(

Â⊗ L
)⊗

k

⊗ x(0)

= Ĉ⊗
(

L⊗ Â
)⊗

k

⊗ L⊗ x(0)

= C̃⊗ Ã⊗
k
⊗ x̃(0) .

So both systems have indeed the same input-output behavior.
We see that L is not necessarily invertible (at least not in Rmax) even if r = n,

so this transformation is not a similarity transformation. But if we do the same
operations in Smax, then L is invertible (provided that L is square and detL ∇/ ε)
and then we have a similarity transformation since equations (18) – (20) can be
transformed into

Ã ∇ L⊗A⊗ L⊗
−1

B̃ ∇ L⊗B

C̃ ∇ C⊗ L⊗
−1

.
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So to get another equivalent state space model of the system described by equa-
tions (16) – (17) all we have to do is find a decomposition

[
A
C

]

=

[
Â

Ĉ

]

⊗ L ,

with L ∈ R
r×n
max , Â ∈ R

n×r
max and Ĉ ∈ R

p×r
max. This is a matrix decomposition that can

be considered as a system of multivariate max-algebraic equalities as was shown in
the previous subsection. If r = n then L will be square and the new model will
also be an nth order model. If we take a rectangular L matrix, we can change the
dimension of the state space vector and get an rth order state space model instead
of an nth order state space model.
It is obvious that the first dimension of L should be greater than or equal to the

minimal system order otherwise we cannot find a common factor of A and C (see
also the remark at the end of the next subsection).
In (De Schutter and De Moor, 1994b) we have shown that the decomposition tech-

nique of this subsection does not yield the entire set of all state space realizations
of given input-output behavior. In the next subsection we shall demonstrate how
we can use the ELCP algorithm to find the entire set of all state space realizations
of a given impulse response.

4.3. Minimal state space realization

Consider a single input single output (SISO) discrete event system that can be
described by the following nth order state space model:

x(k + 1) = A⊗ x(k) ⊕ b⊗ u(k)

y(k) = c⊗ x(k) ,

with A ∈ R
n×n
max , b ∈ R

n×1
max and c ∈ R

1×n
max .

If we apply a unit impulse: e(k) = 0 if k = 0 ,
= ε otherwise ,

to the system and if we assume that the initial state x(0) satisfies x(0) = ε or
A⊗ x(0) 6 b, we get the impulse response as the output of the system:

y(k) = c⊗A⊗
k−1

⊗ b , for k > 0 .

Let gk = c⊗A⊗
k
⊗ b. The gk’s are called the Markov parameters.

Suppose that A, b and c are unknown, and that we only know the Markov pa-
rameters (e.g. from experiments – where we assume that the system is max-linear
and time-invariant and that there is no noise present). How can we construct A, b
and c from the gk’s? This process is called state space realization. If we make the
dimension of A minimal, we have a minimal state space realization.
First we need a lower bound for the minimal system order. In (De Schutter

and De Moor, 1995) and (De Schutter and De Moor, 1994a) we have presented a
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procedure for finding such a lower bound. We could also use the following theorem
of (Gaubert, 1992) which also yields a lower bound:

Theorem 6 Let {gk}
∞
k=0 be the impulse response of a SISO time-invariant max-

linear system. Then the minor rank of the Hankel matrix

H =








g0 g1 g2 . . .
g1 g2 g3 . . .
g2 g3 g4 . . .
...

...
...

. . .








is a lower bound for the minimal system order.

We start with r equal to this lower bound. Now we try to find an rth order
state space realization of the given impulse response. We have to find A ∈ R

r×r
max,

b ∈ R
r×1
max and c ∈ R

1×r
max such that

c⊗A⊗
k
⊗ b = gk , for k = 0, 1, 2, . . . , N − 1 , (22)

for N large enough. If we work out the equations of the form (22) we get for k = 0:

r⊕

i=1

ci ⊗ bi = g0 ,

and for k > 0:

r⊕

i=1

r⊕

j=1

tkij = gk

with

tkij =

r⊕

i1=1

. . .

r⊕

ik−1=1

ci ⊗ aii1 ⊗ ai1i2 ⊗ . . .⊗ aik−1j ⊗ bj .

This can be rewritten as

r⊕

i=1

r⊕

j=1

rk−1
⊕

l=1

ci ⊗
r⊗

u=1

r⊗

v=1

auv
⊗
γkijluv

⊗ bj = gk ,

where γkijluv is the number of times that auv appears in the lth subterm of term
tkij . If auv does not appear in that subterm we take γkijluv = 0 , since we have that

a⊗
0
= 0 · a = 0, the identity element for ⊗. At first sight one could think that we

are then left with rk+1 terms. However, some of these are the same and can thus
be left out. If we use the fact that ∀x, y ∈ Rmax : x ⊗ y 6 x ⊗ x ⊕ y ⊗ y , we can
again remove many redundant terms. Then we are left with, say, wk terms where
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wk 6 rk+1.
If we put all unknowns in one large vector x of length r(r + 2) we have to solve a
system of multivariate max-algebraic polynomial equations of the following form:

r⊕

i=1

r(r+2)
⊗

j=1

xj
⊗
κ0ij

= g0 (23)

wk⊕

i=1

r(r+2)
⊗

j=1

xj
⊗
κkij

= gk , for k = 1, 2, . . . , N − 1 . (24)

If we do not get any solutions, this means that r is less than the minimal system
order, i.e. the lower bound is not tight. Then we have to augment our estimate of
the minimal system order and repeat the above procedure but with r + 1 instead
of r. We continue until we find a solution of (23) – (24). This will then yield a
minimal state space realization of the given impulse response.
For a detailed description of how to find a lower bound of the system order and for

an example the interested reader is referred to (De Schutter and De Moor, 1995).

Remark. If we already have a state space realization of the given impulse response,
we could try to use the state space transformation technique of Section 4.2 with
the lower bound r as the number of rows of L to get a minimal realization. If we
do not get any solutions, we augment r and repeat the procedure until we get a
solution. However, in (De Schutter and De Moor, 1994b) we have shown that it is
not always possible to obtain a minimal state space realization in this way, i.e. it
is possible that the system order of the final solution obtained with the state space
transformation technique of Section 4.2 is larger than the minimal system order.

4.4. Construction of matrices with a given characteristic polynomial

Consider the following problem:

Given a monic polynomial in Smax

λ⊗
n

⊕
n⊗

p=1

bp ⊗ λ⊗
n−p

,

find a matrix A ∈ R
n×n
max such that the characteristic polynomial of A is equal

to the given polynomial.

The coefficients of the characteristic polynomial of a matrix A are given by

ap = (⊖0)
⊗
p

⊗
⊕

ϕ∈C
p
n

detA([i1, i2, . . . , ip], [i1, i2, . . . , ip]) ,
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where Cp
n is the set of all combinations of p different numbers out of the set {1, . . . , n}

and ϕ = {i1, i2, . . . , ip}. If we consider the max-positive and the max-negative parts
of the coefficients of the characteristic polynomial of a matrix A ∈ R

n×n
max (without

simplifying ⊖) we have for k > 0 :

a+2k =
⊕

ϕ∈C2k
n

⊕

σ∈P2k,even

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2kiσ(2k)
(25)

a−2k =
⊕

ϕ∈C2k
n

⊕

σ∈P2k,odd

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2kiσ(2k)
(26)

a+2k+1 =
⊕

ϕ∈C
2k+1
n

⊕

σ∈P2k+1,odd

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2k+1iσ(2k+1)
(27)

a−2k+1 =
⊕

ϕ∈C
2k+1
n

⊕

σ∈P2k+1,even

ai1iσ(1)
⊗ ai2iσ(2)

⊗ . . .⊗ ai2k+1iσ(2k+1)
, (28)

where Pk,even is the set of all permutations of {1, 2, . . . , k} with even parity and
Pk,odd is the set of all permutations of {1, 2, . . . , k} with odd parity.
Now we have to find the elements of the matrix A such that a+p ⊖ a−p = bp.
There are three possible cases for each p > 1:

1. if bp ∈ S
⊕
max we should have that

{
a+p = |bp|⊕
a−p < |bp|⊕ ,

2. if bp ∈ S
⊖
max we should have that

{
a+p < |bp|⊕
a−p = |bp|⊕ ,

3. if bp ∈ S
•
max we should have that

{
a+p = |bp|⊕
a−p = |bp|⊕ .

Remark. For a matrix A ∈ R
n×n
max we always have that a1 ∈ S

⊖
max .

It is always possible to transform the strict inequalities into non-strict inequalities
by subtracting a small positive number of the right hand sides. This leads to
a combination of multivariate polynomial equalities and inequalities in the max
algebra.

Since not every nth order monic polynomial in Smax corresponds to a character-
istic equation of a matrix A ∈ R

n×n
max , it is useful to be able to determine whether

a solution exists or not before starting the algorithm. In (De Schutter and De
Moor, 1994a) we have presented some necessary conditions for a monic polynomial
in Smax to be the characteristic equation of a matrix with elements in Rmax. In (De
Schutter and De Moor, 1994a) we have also outlined a heuristic algorithm to find
such a matrix.
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4.5. Mixed max-min problems

We can also use the technique of Section 3 to solve mixed max-min problems. First
we introduce the ⊕′ operation: a ⊕′ b = min(a, b). The neutral element for ⊕′ is
+∞. We have to extend Rmax to R = (R ∪ {−∞} ∪ {+∞},⊕,⊕′,⊗) and define the
⊗ operation for all elements in R. For more information about this max-min-plus
algebra, the interested reader is referred to (Cuninghame-Green, 1979) or (Olsder,
1991).
Now we consider the following problem:

Given two sets of integers {mk} and {mkl1} and three sets of coefficients
{akl1l2}, {bk} and {ckl1l2j} with k ∈ {1, . . . ,m} , l1 ∈ {1, . . . ,mk} , l2 ∈ {1, . . . ,

mkl1} and j ∈ {1, . . . , n}, find a vector x ∈ R
n
that satisfies

mk⊕

l1=1

′
mkl1⊕

l2=1

akl1l2 ⊗
n⊗

j=1

xj
⊗
ckl1l2j

= bk , for k = 1, 2, . . . ,m , (29)

or show that no such vector x exists.

If we define

tkl1 =

mkl1⊕

l2=1

akl1l2 ⊗
n⊗

j=1

xj
⊗
ckl1l2j

, (30)

we get

mk⊕

l1=1

′

tkl1 = bk , for k = 1, 2, . . . ,m . (31)

If we assume that the bk’s are finite, then also the tkl1 ’s are finite. Therefore their
inverses exist and (30) becomes

mkl1⊕

l2=1

akl1l2 ⊗
n⊗

j=1

xj
⊗
ckl1l2j

⊗ tkl1
⊗
−1

= 0 , for k = 1, 2, . . . ,m
and l1 = 1, 2, . . . ,mk .

(32)

Now we consider an equation of the form (31). This is equivalent to

tkl1 > bk , for l1 = 1, 2, . . . ,mk ,

where at least one inequality should hold with equality. So the min equations will
yield m groups of inequalities where in each group at least one inequality should
hold with equality.
Equations of the form (32) are multivariate polynomial equations in the max

algebra and can thus also be written as groups of linear inequalities with in each
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group at least one inequality that should hold with equality.
This means that the combined max-min problem (29) can be transformed into an
ELCP.
We can also use this technique for systems of combined max-min equations of the
form

⊕

l1

′ ⊕

l2

⊕

l3

′

. . .
⊕

lq

akl1l2...lq ⊗
n⊗

j=1

xi
⊗
ckl1l2...lqj

= bk , for k = 1, . . . ,m ,

or for analogous equations but with ⊕ replaced by ⊕′ and vice versa or when some
of the equalities are replaced by inequalities.

4.6. Max-max and max-min problems

In this section we consider systems of equations where the right hand sides are also
multivariate max-algebraic polynomials. Since we are working in Rmax we cannot
simply transfer terms from the right hand side to the left hand side as we would
do in linear algebra. However, these problems can also be solved using a technique
similar to that of Section 4.5.
We consider the following problem:

Given two sets of integers {mk} and {pk} and four sets of coefficients {aki},
{bkij}, {ckl} and {dklj} with k ∈ {1, . . . , q}, i ∈ {1, . . . ,mk}, l ∈ {1, . . . , pk}
and j ∈ {1, . . . , n}, find a vector x ∈ R

n that satisfies

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
bkij

=

pk⊕

l=1

ckl ⊗
n⊗

j=1

xj
⊗
dklj

, for k = 1, . . . , q . (33)

We define q dummy variables tk such that

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
bkij

= tk , for k = 1, 2, . . . q .

Since we know that x is finite the tk’s will also be finite and their inverse will exist.
So problem (33) is equivalent to

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
bkij

⊗ tk
⊗
−1

= 0 , for k = 1, 2, . . . q ,

pk⊕

l=1

ckl ⊗
n⊗

j=1

xj
⊗
dklj

⊗ tk
⊗
−1

= 0 , for k = 1, 2, . . . q ,

which is again a system of multivariate max-algebraic polynomial equalities and
can thus be transformed into an ELCP.
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Using an analogous reasoning we can also solve problems that contain a mixture
of equations of the following forms:

•
⊕

i

′

li(x) =
⊕

i

ri(x)

•
⊕

i

′

li(x) =
⊕

i

′

ri(x)

•
⊕

i

′

li(x) 6
⊕

i

ri(x)

•
⊕

i

′

li(x) >
⊕

i

ri(x)

•
⊕

i

li(x) 6
⊕

i

ri(x)

•
⊕

i

′

li(x) 6
⊕

i

′

ri(x) ,

where li(x) and ri(x) are max-algebraic monomials of the form ai ⊗
n⊗

j=1

xj
⊗
bij

.

Remark. It is obvious that e.g. systems of max-linear equations and eigenvalue
problems in the max algebra can also be transformed into an ELCP, but for these
problems there are other algorithms that are more efficient, especially if we only
want one solution (Baccelli, Cohen, Olsder and Quadrat, 1992), (Braker, 1993),
(Cuninghame-Green, 1979).

5. An example

Consider the following system of multivariate polynomial equalities and inequalities:







4⊗ x1 ⊗ x3 ⊗ x4
⊗
−2

⊕ 3⊗ x1
⊗
2
⊗ x4 ⊕ x2

⊗
3
⊗ x3

⊗
−1

⊗ x5
⊗
−3

= 1

2⊗ x1 ⊗ x3
⊗
2
⊕ 1⊗ x2

⊗
−1

⊗ x3 ⊗ x4
⊗
2
⊗ x5 = 0

x1
⊗
2
⊗ x3

⊗
−3

⊗ x4 6 2

with x ∈ R
5.

This can be transformed into the following ELCP:

Given

A =











−1 0 −1 2 0
−2 0 0 −1 0
0 −3 1 0 3

−1 0 −2 0 0
0 1 −1 −2 −1

−2 0 3 −1 0











and c =











3
2

−1
2
1

−2











,
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Table 1. The rays of the solution set.

Set X cen X inf Xfin

Ray xc

1
xi

1
xi

2
xi

3
xi

4
xi

5
xf

1
xf

2

x1 0 -12 -4 -6 -1 -5 -12 -1.25

x2 1 0 0 0 0 0 0 0

x3 0 6 2 3 -1 -3 5 -1.45

x4 0 -3 -1 -1 -1 1 -2 0.15

x5 1 -2 0 -1 3 1 -2 0.15

Table 2. The pairs of cross-complementary
sets.

s X inf
s

Xfin
s

1 {xi

1
,xi

2
} {xf

1
}

2 {xi

1
,xi

3
} {xf

1
}

3 {xi

2
,xi

4
} {xf

1
,xf

2
}

4 {xi

3
,xi

5
} {xf

1
,xf

2
}

find a column vector x ∈ R
5 such that

(Ax− c)1 (Ax− c)2 (Ax− c)3 + (Ax− c)4 (Ax− c)5 = 0

subject to Ax > c .

The ELCP algorithm yields the rays of Table 1 and the pairs of cross-complementary
sets of Table 2.
Any arbitrary solution of the system of multivariate polynomial equalities and in-
equalities can now be expressed as

x = λ1x
c
1 +

∑

x
i
k
∈X inf

s

κkx
i
k +

∑

x
f
k
∈X fin

s

µkx
f
k ,

for some s ∈ {1, . . . , 4} with λ1 ∈ R , κk > 0, µk > 0 and
∑

k

µk = 1 .

6. Conclusions and further research

We have demonstrated that many problems in the max algebra and the max-min-
plus algebra can be transformed into an ELCP. These problems can then be solved
using our ELCP algorithm. One of the main characteristics of this ELCP algorithm
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is that it finds all solutions and that it gives a geometrical insight in the solution set
of the problems we considered. On the other hand this also leads to large computa-
tion times and storage space requirements if the number of variables and equations
is large. Therefore it might be interesting to develop (heuristic) algorithms that
only find one solution as we have done for the minimal realization problem in (De
Schutter and De Moor, 1994a).
It could also be interesting to make a more thorough study of the class of problems

that can be reduced to solving a system of multivariate max-algebraic polynomial
equalities and inequalities. Every instance of this class can then be solved using
our ELCP algorithm.
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