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Abstract

The max-plus algebra is one of the frameworks that
can be used to model discrete event systems. We
show that many fundamental problems in the max-
plus algebra can be reformulated as a mathematical
programming problem: the Extended Linear Com-
plementarity Problem.

1 Introduction

1.1 Overview

In this paper we present a mathematical program-
ming problem that we have called the Extended Lin-
ear Complementarity Problem (ELCP). We briefly
describe an algorithm to find all solutions of an
ELCP. This algorithm yields a description of the
complete solution set of the ELCP by finite points,
generators for the extreme rays and a basis for the
linear subspace associated with the maximal affine
subspaces of the solution set. In that way it pro-
vides an insight in the geometrical structure of the
solution set of the ELCP and related problems.
Next we indicate how the ELCP can be used to solve
a system of multivariate max-algebraic polynomial
equalities and inequalities in the max-plus algebra.
This allows us to solve many other problems in the
max-plus algebra such as computing max-algebraic
matrix factorizations, constructing matrices with a
given max-algebraic characteristic polynomial, per-
forming state space transformations for max-linear
time-invariant discrete event systems, determining
partial or minimal state space realizations of the im-
pulse response of a max-linear time-invariant discrete
event system, computing singular value decomposi-
tions and QR decompositions of a matrix in the sym-
metrized max-plus algebra and so on.

1.2 The Max-Plus Algebra

One of the frameworks that can be used to model
discrete event systems (DESs) is the max-plus alge-

bra. The basic operations of the max-plus algebra
are the maximum (represented by ⊕) and the addi-
tion (represented by ⊗):

x⊕ y = max(x, y) (1)

x⊗ y = x+ y (2)

with x, y ∈ R∪{−∞}. The reason for choosing these
symbols is that many properties from conventional
linear algebra can be translated to the max-plus al-
gebra simply by replacing + by ⊕ and × by ⊗. The
structure Rmax = (R ∪ {−∞},⊕,⊗) is called the
max-plus algebra. The neutral element for ⊕ in Rmax

is denoted by ε. So ε = −∞. Define Rε = R ∪ {ε}.
Let x, r ∈ R. The rth max-algebraic power of x is
defined as follows:

x⊗
r

= r · x . (3)

We have ε⊗
r
= ε if r > 0. If r < 0 then ε⊗

r
is not

defined. In this paper we have ε⊗
0
= 0 by definition.

The operations ⊕ and ⊗ are extended to matrices
in the usual way. So if A,B ∈ R

m×n
ε then we have

(A⊕ B)ij = aij ⊕ bij for all i, j. If A ∈ R
m×p
ε and

B ∈ R
p×n
ε then (A⊗B)ij =

p
⊕

k=1

aik⊗bkj for all i, j.

If k ∈ N then we have A⊗
k

= A⊗A⊗ . . .⊗A
︸ ︷︷ ︸

k times

.

The matrix En is the n by n max-algebraic identity
matrix: (En)ii = 0 for all i and (En)ij = ε for all i, j
with i 6= j. The m by n zero matrix in the max-plus
algebra is denoted by εm×n: (εm×n)ij = ε for all
i, j.

In general the behavior of DESs is highly non-
linear. However, some of these systems can be de-
scribed by model that is linear in the max-plus alge-
bra [1, 2]: if we limit ourselves to time-invariant de-
terministic DESs in which the sequence of the events
and the duration of the activities are fixed or can be
determined in advance (such as repetitive production
processes), then the behavior of a system with m in-
puts and l outputs can be described by equations of
the form

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (4)

y(k) = C ⊗ x(k) (5)
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where A ∈ R
n×n
ε , B ∈ R

n×m
ε and C ∈ R

l×n
ε with an

initial condition x(0) = x0. The vector x represents
the state, u is the input vector and y is the output
vector of the system. We call DESs that can be de-
scribed by a state space model of the form (4) – (5)
max-linear time-invariant DESs.
The input-output behavior of DES that can be de-
scribed by a model of the form (4) – (5) is given by

y(k) = C⊗A⊗
k
⊗x(0) ⊕

k−1⊕

i=0

C⊗A⊗
k−i−1

⊗B⊗u(i)

for k = 0, 1, 2, . . . .

For more information on the max-plus algebra
and on the use of the max-plus algebra to model
DESs the interested reader is referred to [1, 2, 3].

2 The Extended Linear

Complementarity Problem

Consider the following problem:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and
m subsets φ1, φ2, . . . , φm of {1, 2, . . . , p}, find
x ∈ R

n such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0 (6)

subject to Ax ≥ c and Bx = d .

We call this problem the Extended Linear Comple-
mentarity Problem (ELCP) since it is an extension
of the Linear Complementarity Problem — which is
one of the fundamental problems in mathematical
programming [4]. Equation (6) is called the comple-

mentarity condition of the ELCP. One possible in-
terpretation of this condition is the following. Since
Ax ≥ c, all the terms in (6) are nonnegative. Hence,
condition (6) is equivalent to

∏

i∈φj

(Ax− c)i = 0 for j = 1, 2, . . . ,m .

So we could say that each set φj corresponds to a
group of inequalities of Ax ≥ c and that in each
group at least one inequality should hold with equal-
ity, i.e. the corresponding residue should be equal to
0:

∀j ∈ {1, . . . ,m} : ∃i ∈ φj such that (Ax− c)i = 0 .

In [5, 6] we have developed on algorithm to
solve the ELCP. In this algorithm we take a new
(in)equality into account in each step and we deter-
mine the intersection of the hyperplane or the half-
space defined by the new (in)equality and the poly-
hedron defined by the previous (in)equalities. After

each step we also immediately discard points of the
resulting polyhedron that do not satisfy the comple-
mentarity condition. This finally results in three sets
of vectors X cen, X ext and X fin and a set Λ of ordered
pairs of subsets of X ext and X fin such that a vector
x is a solution of the ELCP if and only if there exists
an ordered pair

(
X ext

s ,X fin
s

)
∈ Λ such that

x =
∑

xc

k
∈X cen

λkx
c
k +

∑

xe

k
∈X ext

s

κkx
e
k +

∑

xf

k
∈X fin

s

µkx
f
k

with λk ∈ R, κk ≥ 0, µk ≥ 0 for all k and
∑

k

µk = 1.

If P is a polyhedron defined by P = {x |Ax ≥ b},
then the lineality space of P is defined by L(P) =
{x |Ax = 0}.
We can give the following geometrical characteriza-
tion to X cen, X ext and X fin and Λ. Let P be the
polyhedron defined by the system of linear equalities
and inequalities of the ELCP.

• X cen is a basis of the lineality space of P.

• There exists a pointed polyhedron — i.e. a
polyhedron with an empty lineality space —
Pred such that X ext is a set of generators of
the extreme rays of Pred that satisfy the com-
plementarity condition, and such that

• X fin is a set of finite vertices of Pred that satisfy
the complementarity condition.

• Each pair
(
X ext

s ,X fin
s

)
∈ Λ determines a face

Fs of Pred that belongs to the solution set of
the ELCP: the elements of X ext

s generate ex-
treme rays of Fs and X fin

s is the set of the finite
vertices of Fs.

This implies that in general the solution set of an
ELCP consists of the union of faces of a polyhedron.

Our ELCP algorithm yields the entire solution set
of the ELCP. This leads to large execution times
and high storage space requirements especially if the
number of variables and equations is large. There-
fore, it might be interesting to develop algorithms
that only find one solution of an ELCP. However, the
ELCP is intrinsically a computationally hard prob-
lem since in [5, 6] we have shown that in general the
ELCP with rational data is an NP-hard problem. So
the ELCP can probably not be solved in polynomial
time — unless the class P would coincide with the
class NP [7].

For a more detailed and precise description of the
ELCP algorithm the interested reader is referred
to [5] and to [6], where also a worked example and
some computational results can be found.
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3 A link between the max-plus

algebra and the ELCP

3.1 Systems of multivariate max-algebraic

polynomial equalities and inequalities

Consider the following problem:

Given p1 + p2 positive integers m1, m2, . . . ,
mp1+p2

and real numbers aki, bk and ckij for
k = 1, 2, . . . , p1 + p2; i = 1, 2, . . . ,mk and j =
1, 2, . . . , n, find x ∈ R

n such that

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk (7)

for k = 1, 2, . . . , p1, and

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

≤ bk (8)

for k = p1 + 1, p1 + 2, . . . , p1 + p2 .

We call (7) – (8) a system of multivariate max-al-

gebraic polynomial equalities and inequalities. Note
that the exponents may be negative or real. In the
next section we shall see that many important max-
algebraic problems can be reformulated as a system
of multivariate max-algebraic polynomial equalities
and inequalities.
In [8] we have proved the following theorem:

Theorem 1 A system of multivariate max-algebraic

polynomial equalities and inequalities is equivalent to

an Extended Linear Complementarity Problem.

Note that this implies that the problem of solving
a system of multivariate max-algebraic polynomial
equalities and inequalities is also NP-hard.
We shall illustrate Theorem 1 by an example:

Example 1.

Consider the following system of multivariate poly-
nomial equalities and inequalities:

6⊗ x1 ⊗ x2
⊗
−2

⊗ x3
⊗
4
⊗ x4

⊗
−1

⊕

7⊗ x2
⊗
2
⊗ x3 = 7 (9)

3⊗ x1 ⊗ x2
⊗
−1

⊗ x4
⊗
−1

⊕

2⊗ x1
⊗
−2

⊗ x2
⊗
3
⊗ x3 ⊗ x4

⊗
2

= 2 (10)

with x ∈ R
4.

Consider the first term of (9). Using definitions (2)
and (3) we find that this term is equivalent to

6 + x1 − 2x2 + 4x3 − x4 .

X cen X ext X fin

xc
1 xe

1 xe
2 xe

3 xe
4 xf

1 xf
2

x1 1 0 0 0 0 0 0

x2 0 −4 −9 1 2 2 −2

x3 0 −1 −1 −2 −4 −4 0

x4 1 4 14 −1 −1 −1 3

Table 1: The sets X cen, X ext and X fin of the ELCP
of Example 1.

s X ext
s X fin

s

1 {xe
1} {xf

2}

2 {xe
2} {xf

2}

s X ext
s X fin

s

3 {xe
3} {xf

1}

4 {xe
4} {xf

1}

Table 2: The pairs of subsets (X ext
s ,X fin

s ) that belong
to the set Λ of the ELCP of Example 1.

The other term of (9) can be rewritten in a similar
way. Each term has to be smaller than 7 and at least
one of them has to be equal to 7. So we get a group
of two inequalities in which at least one inequality
should hold with equality. If we also take (10) into
account, we get the following ELCP:

Given

A =







−1 2 −4 1
0 −2 −1 0

−1 1 0 1
2 −3 −1 −2







and c =







−1
0
1
0






,

find x ∈ R
4 such that

(Ax− c)1 (Ax− c)2 + (Ax− c)3 (Ax− c)4 = 0

subject to Ax ≥ c.

Table 1 lists the elements of the sets X cen, X ext and
X fin that are returned by the ELCP algorithm, and
Table 2 contains the elements of the set Λ. Any
solution of the system of multivariate max-algebraic
polynomial equalities (9) – (10) can now be expressed
as

x = λxc
1 + κxe

k + xf
k

for some s ∈ {1, 2, 3, 4} with λ ∈ R, κ ≥ 0, xe
k ∈ X ext

s

and xf
k ∈ X fin

s . ✸

More information on how to retrieve solutions of (7) –
(8) with components that are equal to ε and how to
apply the ELCP approach if some of the coefficients
bk are equal to ε can be found in [6].
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4 Applications

In this section we discuss some important max-
algebraic problems that can be reformulated as a sys-
tem of multivariate max-algebraic polynomial equal-
ities and inequalities. These problems can also be re-
formulated as an ELCP and they can thus be solved
using the ELCP algorithm. In general their solution
set consists of the union of faces of a polyhedron.
Note that for most of these problems the ELCP ap-
proach is at present the only method available to
solve the problem.

4.1 Max-algebraic matrix factorizations

Consider the following problem:

Given a matrix A ∈ R
m×n
ε and l ∈ N0, find

P ∈ R
m×l
ε and Q ∈ R

l×n
ε such that A = P⊗Q .

So we have to find the entries of P and Q such that

l⊕

k=1

pik ⊗ qkj = aij for all i, j ,

and this can clearly be considered as a system of
multivariate max-algebraic polynomial equations in
pik and qkj .

This technique can easily be extended to the factor-
ization of A as a product of three or more matrices of
specified sizes. It is also possible to impose a certain
structure on the composing matrices (e.g. triangular,
diagonal, Hessenberg, . . . ).

4.2 Transformation of state space models

Consider a DES that can be described by a state
space model of the form

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (11)

y(k) = C ⊗ x(k) (12)

with initial condition x(0) = x0.
Suppose that we want to find another state space
model with system matrices Ã, B̃, C̃ and with initial
condition x̃(0) = x̃0 that describes the same input-
output behavior as the original state space model.
This can be done as follows.
If we can find a common factor L of A and C such
that A = Â ⊗ L and C = Ĉ ⊗ L and if we define
Ã = L⊗Â , B̃ = L⊗B , C̃ = Ĉ and x̃0 = L⊗x0 ,
then the state space model

x̃(k + 1) = Ã⊗ x̃(k) ⊕ B̃ ⊗ u(k)

y(k) = C̃ ⊗ x̃(k)

with initial condition x̃(0) = x̃0 describes the same
input-output behavior as the model (11) – (12) with

initial condition x(0) = x0 [8, 9].
If M is a common factor of A, B and x0 such that
A = M ⊗ Â, B = M ⊗ B̂ and x0 = M ⊗ x̂0, then
the state space model with Ã = Â ⊗M , B̃ = B̂ ,
C̃ = C ⊗M and x̃0 = x̂0 also describes the same
input-output behavior as the model (11) – (12) with
initial condition x(0) = x0 [9].

So to obtain another state space realization of the
given system, we try to find a factorization

[
A

C

]

=

[
Â

Ĉ

]

⊗ L

or
[
A B x0

]
= M ⊗

[

Â B̂ x̂0

]
.

As has been shown in Section 4.1 these matrix fac-
torizations can be considered as systems of multivari-
ate max-algebraic polynomial equalities. So we can
also use the ELCP approach to perform state space
transformations for max-linear time-invariant DESs.

4.3 State space realization

Consider a DES that can be described an nth order
state space model of the form (11) – (12) with A ∈
R

n×n
ε , B ∈ R

n×m
ε and C ∈ R

l×n
ε .

If we apply a max-algebraic unit impulse: e(k) = 0
if k = 0, and e(k) = ε if k 6= 0, to the ith input of
the system and if x(0) = εn×1, we get

y(k) = C ⊗A⊗
k−1

⊗B.,i

for k = 1, 2, . . . as the output of the system. Note
that this output corresponds to the ith column of

the matrix Gk−1 = C ⊗A⊗
k−1

⊗B for k = 1, 2, . . . .
Therefore, the sequence {Gk}

∞

k=0
is called the im-

pulse response of the DES. The Gk’s are called the
impulse response matrices or Markov parameters.
Suppose that A, B and C are unknown, and that we
only know the Markov parameters, e.g. from experi-
ments. How can we construct A, B and C from the
Gk’s? This process is called state space realization.
If we make the dimension of A minimal, we have a
minimal state space realization.

We assume that the DES can be described by
an rth order state space model (see e.g. [10, 11] for
methods to determine lower and upper bounds for
the minimal system order). For sake of simplicity we
shall only consider the partial realization problem:
i.e. we look for a realization that only fits the first,
say N , Markov parameters. State space realizations
of the entire impulse response can be found by using
a limit procedure in which we determine how the set
of the partial state space realizations evolves as N

goes to ∞ (See [6]). So we try to find A ∈ R
r×r
ε ,

B ∈ R
r×m
ε and C ∈ R

l×r
ε such that

C ⊗A⊗
k
⊗B = Gk for k = 0, 1, . . . , N − 1 .
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If we write out these equations, we get

r⊕

p=1

cip ⊗ bpj = (G0)ij (13)

for all i, j, and

r⊕

p=1

r⊕

q=1

cip ⊗ (A⊗
k
)pq ⊗ bqj = (Gk)ij

for all i, j and k = 1, 2, . . . , N − 1. Since

(A⊗
k
)pq

=
r⊕

i1=1

r⊕

i2=1

. . .

r⊕

ik−1=1

api1 ⊗ ai1i2 ⊗ . . .⊗ aik−1q ,

this can be rewritten as

r⊕

p=1

r⊕

q=1

rk−1

⊕

s=1

cip ⊗

(
r⊗

u=1

r⊗

v=1

auv
⊗
γkpqsuv

)

⊗ bqj

= (Gk)ij (14)

for all i, j and k = 1, 2, . . . , N − 1, where γkpqsuv is
the number of times that auv appears in the sth term

of (A⊗
k
)pq. Clearly, (13) – (14) is a system of multi-

variate max-algebraic polynomial equations with the
entries of A, B and C as unknowns.

For more information on this method to construct
minimal state space realizations and for some worked
examples the interested reader is referred to [6, 9, 12,
13].

4.4 Max-max problems

Now we consider systems of max-algebraic equations
that also have multivariate max-algebraic polyno-
mials (instead of constants) on the right-hand side.
Since in general there do not exist inverse elements
w.r.t. ⊕ in Rmax, we cannot simply transfer terms
from the right-hand side to the left-hand side as we
would do in conventional algebra. However, these
problems can also be solved using the ELCP ap-
proach.

Consider the following problem:

Given integers mk, pk ∈ N0 for k = 1, 2, . . . , q
and real numbers aki, bkij , ckl and dklj for k =
1, 2, . . . , q; i = 1, 2, . . . ,mk; j = 1, 2, . . . , n and
l = 1, 2, . . . , pk, find x ∈ R

n such that

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
bkij

=

pk⊕

l=1

ckl ⊗
n⊗

j=1

xj
⊗
dklj

(15)
for k = 1, 2, . . . , q.

If we define dummy variables t1, t2, . . . , tq such that

mk⊕

i=1

aki ⊗

n⊗

j=1

xj
⊗
bkij

= tk

for k = 1, 2, . . . , q , then the given problem is equiv-
alent to

mk⊕

i=1

aki ⊗

n⊗

j=1

xj
⊗
bkij

⊗ tk
⊗
−1

= 0

pk⊕

l=1

ckl ⊗

n⊗

j=1

xj
⊗
dklj

⊗ tk
⊗
−1

= 0

for k = 1, 2, . . . , q . This is a system of multivari-
ate max-algebraic polynomial equalities that can be
transformed into an ELCP.

4.5 Mixed max-min problems

We can also use the ELCP to solve mixed max-min
problems. First we introduce the ⊕′ operation: x⊕′

y = min(x, y) with x, y ∈ Rε.
Now we consider the following problem:

Given integers mk,mkl1 ∈ N0 for k = 1, 2, . . . ,m
and l1 = 1, 2, . . . ,mk and real numbers akl1l2 , bk
and ckl1l2j for k = 1, 2, . . . ,m; l1 = 1, 2, . . . ,mk;
l2 = 1, 2, . . . ,mkl1 and j = 1, 2, . . . , n, find x ∈
R

n such that

mk⊕

l1=1

′

mkl1⊕

l2=1

akl1l2 ⊗

n⊗

j=1

xj
⊗
ckl1l2j

= bk

for k = 1, 2, . . . ,m .

Using a technique that is similar to the one that has
been used in Section 4.4 this problem can also be
transformed into an ELCP.
We can also use this technique to transform systems
of combined max-min equations of the following form
into an ELCP:

⊕

l1

′ ⊕

l2

⊕

l3

′

. . .
⊕

lq

akl1l2...lq ⊗

n⊗

j=1

xi
⊗
ckl1l2...lqj

= bk

for k = 1, 2, . . . ,m, or analogous equations but with
⊕

replaced by
⊕′

and vice versa or when some of
the equalities are replaced by inequalities.
Furthermore, we can also use this technique to solve
systems of form (15) but with some of the max-
algebraic summations

⊕
replaced by min-algebraic

summations
⊕′

and/or with some of the equalities
replaced by inequalities.

4.6 Problems in the symmetrized max-plus

algebra

Although there exist no inverse elements with respect
to ⊕ in Rmax, it is possible to construct a kind of
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symmetrization of the max-plus algebra [1, 10]. We
can also use the ELCP to solve problems in this sym-
metrized max-plus algebra such as constructing ma-
trices with a given max-algebraic characteristic poly-
nomial, determining max-algebraic singular value de-
compositions and max-algebraic QR decompositions
of a matrix, and so on. However, it would lead us
too far to go further into this matter.

For more information on this subject (and on the
other problems that were discussed in this section)
the reader is referred to [6, 8].

5 Conclusions and Future Research

In this paper we have introduced the Extended Lin-
ear Complementarity Problem (ELCP). The algo-
rithm we use to solve the ELCP yields all solutions
and in that way it provides a geometrical insight in
the solution set of the ELCP and other problems that
can be reduced to an ELCP. However, we are not al-
ways interested in obtaining all solutions of an ELCP.
Therefore, our further research efforts will concen-
trate on algorithms that yield only one solution.
We have demonstrated that the ELCP can be used
to solve a system of multivariate max-algebraic poly-
nomial equalities and inequalities. This allows us
to solve many problems in the max-plus algebra.
Furthermore, we can also use the ELCP to solve
problems in the max-min-plus algebra and the sym-
metrized max-plus algebra. Therefore, the ELCP
is a powerful mathematical tool for solving max-
algebraic problems. It would be interesting to make
a more thorough study of the class of problems that
can be reduced to solving a system of multivariate
max-algebraic polynomial equalities and inequalities.
Every instance of this class can then be reformulated
as an ELCP.
Although in general solving an ELCP and solving
a system of multivariate max-algebraic polynomial
equalities and inequalities are NP-hard problems, it
may be interesting to determine which subclasses of
these problems can be solved with a polynomial time
algorithm.
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