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Abstract
The topics of this paper are matrix factorizations and

the minimal state space realization problem in the max-
plus algebra, which is one of the modeling frameworks
that can be used to model discrete event systems. We
present a heuristic algorithm to compute a factorization
of a matrix in the max-plus algebra. Next we use this
algorithm to determine the minimal system order (and
to construct a minimal state space realization) of a max-
linear time-invariant discrete event system.

1. Introduction

Typical examples of discrete event systems (DESs) are
flexible manufacturing systems, telecommunication net-
works, parallel processing systems and railroad traffic net-
works. There exists a wide range of frameworks to model
and to analyze DESs: Petri nets, formal languages, com-
puter simulation, perturbation analysis, etc. In this paper
we concentrate on a subclass of DESs that can be de-
scribed using the max-plus algebra [1, 2], which has max-
imization and addition as basic operations. Although the
description of DESs that belong to this subclass is non-
linear in conventional algebra, the model becomes “linear”
when we formulate it in the max-plus algebra. One of the
main advantages of an analytic max-algebraic model of
a DES is that it allows us to derive some properties of
the system (in particular the steady state behavior) fairly
easily, whereas in some cases brute force simulation might
require a large amount of computation time.

Although there are many analogies between the max-
plus algebra and linear algebra (there exist max-algebraic
equivalents of Cramer’s rule, the Cayley-Hamilton theo-
rem, eigenvectors and eigenvalues), there are also some
major differences that prevent a straightforward transla-
tion of properties and algorithms from linear algebra to
the max-plus algebra. As a result many problems that
can be solved rather easily in linear system theory are not
that easy to solve in max-algebraic system theory. In this
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paper we address such a problem: the minimal state space
realization problem in the max-plus algebra.

2. The max-plus algebra

In this section we give a short introduction to the max-
plus algebra. For a more complete overview the interested
reader is referred to [1, 3].

Define ε = −∞ and IRε = IR ∪ {−∞}. The basic
max-algebraic operations are defined as follows:

a⊕ b = max(a, b)

a⊗ b = a+ b

where a, b ∈ IRε. The structure IRmax = (IRε,⊕,⊗) is
called the max-plus algebra. The ⊕ operation is called the
max-algebraic addition and ⊗ is called the max-algebraic
multiplication.

The basic max-algebraic operations are extended to
matrices as follows. If A,B ∈ IRm×n

ε then

(A⊕B)ij = aij ⊕ bij for all i, j;

if A ∈ IRm×p
ε and B ∈ IRp×n

ε then

(A⊗B)ij =

p
⊕

k=1

aik ⊗ bkj for all i, j .

Them by n zero matrix in the max-plus algebra is denoted
by εm×n: (εm×n)ij = ε for all i, j. A square matrix D

is a max-algebraic diagonal matrix if dij = ε for all i, j
with i 6= j. The max-algebraic matrix power of a square
matrix A is defined as follows:

A⊗
k
= A⊗A⊗ . . .⊗A

︸ ︷︷ ︸

k times

for k ∈ IN0 .

We shall also use the min-algebraic operations ⊕′

(min) and ⊗′ (+). These operations are extended to ma-
trices in the same way as ⊕ and ⊗.

Let A ∈ IRm×n
ε and b ∈ IRm

ε . Although the system
A ⊗ x = b does not always have a solution, the largest
solution x̃ of the system A ⊗ x ≤ b always exists. This



unique solution x̃ is called the greatest subsolution of A⊗
x = b and can be computed as x̃ = (−AT )⊗′ b.

If A is a matrix then A.i is the ith column of A. We
use A{1,2,...,n},. to denote the submatrix of A obtained
by removing all rows of A except for the first n rows,
and A.,{1,2,...,m} to denote the submatrix of A obtained by
removing all columns of A except for the first m columns.

The b-norm of a matrix A is defined by ‖A‖b =
∑

i,j

|aij | .

Definition 1 (Max-algebraic weak column rank)
Let A ∈ IRm×n

ε with A 6= εm×n. The max-algebraic weak

column rank of A is defined by

rank⊕,wc (A) = min

{

#I

∣
∣
∣
∣
∣
I ⊆ {1, 2, . . . , n} and

∀k ∈ {1, 2, . . . , n} , ∃l ∈ IN0,

∃i1, i2, . . . , il ∈ I,

∃α1, α2, . . . , αl ∈ IRε

such that A.k =

l⊕

j=1

αj ⊗A.ij

}

.

If A = εm×n then we have rank⊕,wc (A) = 0.

A more formal definition of the max-algebraic weak col-
umn rank can be found in [8]. Efficient methods to com-
pute the max-algebraic weak column rank of a matrix are
described in [3, 8].

3. A heuristic algorithm for max-

algebraic matrix factorization

Consider the following problem:

Given a matrix A ∈ IRm×n
ε and an integer r ∈ IN0, find

U ∈ IRm×r
ε and V ∈ IRr×n

ε such that A = U ⊗ V , or
show that no such factorization exists.

In [4, 7] we have shown that this problem can be consid-
ered as a special case of an Extended Linear Complemen-
tarity Problem (ELCP), which is a kind of mathemati-
cal programming problem. However, the general ELCP is
NP-hard [4, 6]. Furthermore, the general ELCP algorithm
that we have developed in [4, 6] would on the average re-
quire a CPU time of the order (mnr)(m+n)r to compute a
factorization U ⊗ V with inner dimension r of an m by n

matrix A. Therefore, we now present a heuristic algorithm
to compute such a matrix factorization.

In this algorithm we start with an initial guess U0 for
U and we compute V as the greatest subsolution of U0 ⊗
X = A. Next we compute U as the greatest subsolution
of X ⊗ V = A. Then we start an iterative procedure in
which in each step we select an entry of U or V , adapt
it and recompute U and V as the greatest subsolution
of respectively X ⊗ V = A and U ⊗ X = A. In that

way we construct a sequence of matrices Uk, Vk such that
‖A− Uk ⊗ Vk‖b decreases monotonously as k increases.

Given a tolerance τ ≥ 0 and an initial guess U0 for U ,
the following algorithm either returns U and V such that
‖A− U ⊗ V ‖b ≤ τ or exits with an error message.

A heuristic algorithm to compute a max-algebraic
matrix factorization

Input: m, n, r, A, U0, τ

Initialization:

V0← (−UT
0 )⊗′ A

U0← A⊗′ (−V T
0 )

D ← A− U0 ⊗ V0

f ← ‖D‖b

Main loop:

while f > τ do

for all pairs (i, j) ∈ {1, 2, . . . ,m}×

{1, 2, . . . , n} do

for k = 1, 2, . . . , r do

Ũ← U

ũik ← aij − vkj

Ṽ ← (−ŨT )⊗′ A

Ũ← A⊗′ (−Ṽ T )

f̃ ← ‖A− Ũ ⊗ Ṽ ‖b
if f̃ < f then

exit from the outer for loop

endif

endfor

for k = 1, 2, . . . , r do

Ṽ ← V

ṽkj ← aij − uik

Ũ← A⊗′ (−Ṽ T )

Ṽ ← (−ŨT )⊗′ A

f̃ ← ‖A− Ũ ⊗ Ṽ ‖b
if f̃ < f then

exit from the outer for loop

endif

endfor

endfor

if f̃ < f then

U ← Ũ

V ← Ṽ

D← A− U ⊗ V

f ← f̃

else

exit (no solution found)

endif

endwhile



Output: U , V , f

We have presented the algorithm in its most elementary
form. Several optimizations are possible: it is obvious that
in the for loops we do not have to consider the combina-
tions of i, j, k for which uik + vkj = aij since then we have

Ũ = U and Ṽ = V . Also note that the b-norm of D and
A− Ũ ⊗ Ṽ is equal to the sum of the entries of the matrix
since the entries of these matrices are always nonnegative
by construction.

We have tested our heuristic algorithm as follows.
Given a number n > 4 we define r =

⌊
n
2

⌋
. Next we con-

struct random matrices P ∈ IRn×r and Q ∈ IRr×n with
entries that are uniformly distributed in the interval [−b, b]
where b is a random integer in the interval [4, 3 + 2rn].
Next we define A = P ⊗Q. Then we scale1 the matrix A

such that the largest entry in each row and in each column
is equal to 0. This yields the matrix Â.

We select an initial Û0 with random entries in the
interval [c, 0] where c is the smallest (negative) entry in
the scaled matrix Â. Then we use our heuristic algorithm
to factorize Â as Û ⊗ V̂ with Û ∈ IRn×r and V̂ ∈ IRr×n. If
the algorithm does not yield a result, we select an initial
V̂0 with entries in the interval [c, 0] and use the algorithm
again (but now on ÂT since Û ⊗ V̂ = Â is equivalent to
V̂ T ⊗ ÛT = ÂT ). If the algorithm still does not yield a
result, we select another Û0 and so on.

If we finally get a solution, we use the inverse scaling
to obtain a factorization U ⊗ V of A.

In Figure 1 we have plotted the average total CPU
time needed by our algorithm to find a factorization of
the matrix A as a function of n (the size of A). This fig-
ure shows that the total CPU time is about 10−8n8 for
this experiment. This is certainly a major improvement
compared with a total CPU time of the order (n2r)2nr

required by an ELCP-based algorithm! The ragged ap-
pearance of the curve on Figure 1 is caused by the fact
that the inner dimension of the product P ⊗Q is equal to
⌊
n
2

⌋
.

There are many variations possible in the algorithm
(such as e.g., considering the pairs (i, j) for which dij is the
largest first, or using a different processing order in the in-
ner for loop), but extensive experiments have shown that
the algorithm given above in combination with scaling and
the choice of initial matrices used in the experiment de-
scribed above outperforms other variants with respect to
both timing and the number of successes for the same ini-
tial conditions.

4. State space realization

Consider a DES with m inputs and l outputs that can
be described by an nth order max-linear time invariant

1This can be done by pre- and post-multiplying A by appropriate
max-algebraic diagonal matrices.
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Figure 1: The average CPU time used by our algorithm
to factorize a random n by n matrix as a max-algebraic
product of an n by r and an r by n matrix with r =

⌊
n
2

⌋
.

state space model of the form

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (1)

y(k) = C ⊗ x(k) (2)

with A ∈ IRn×n
ε , B ∈ IRn×m

ε and C ∈ IRl×n
ε . The vector x

represents the state, u is the input vector and y is the out-
put vector of the system. We shall characterize a model
of the form (1) – (2) by the triple (A,B,C) of system ma-
trices. A DES the behavior of which can be described by
equations of the form (1) – (2) will be called a max-linear

time-invariant DES.

If we apply a unit impulse: e(k) = 0 if k = 0, and
e(k) = ε if k 6= 0, to the ith input of the system and if

x(0) = εn×1, we get y(k) = C ⊗ A⊗
k−1
⊗ B.i for k =

1, 2, . . . as the output of the system. We could do this
for all inputs and store the outputs in l by m matrices

Gk = C ⊗ A⊗
k
⊗ B for k = 0, 1, . . . The Gk’s are called

the impulse response matrices, and the sequence {Gk}
∞
k=0

is called the impulse response.

Suppose that A, B and C are unknown, and that we
only know the impulse response. The state space real-

ization problem consists in constructing the system ma-
trices A, B and C starting from the impulse response.
The smallest possible size of the system matrix A over all
triples (A,B,C) of state space realizations of the impulse
response is called the minimal system order and the cor-
responding triple (A,B,C) is called a minimal state space

realization.

If {Gk}
∞
k=0 is the impulse response of a max-linear



time-invariant DES and N ∈ IN0 ∪ {∞} then we define

HN
def
=










G0 G1 G2 . . . GN−1

G1 G2 G3 . . . GN

G2 G3 G4 . . . GN+1

...
...

...
. . .

...
GN−1 GN . . . . . . G2N−2










.

If we want to compute a minimal state space realiza-
tion of a max-linear time-invariant DES starting from its
impulse response {Gk}

∞
k=0, we first have to determine the

minimal system order n.

We could use max-algebraic matrix ranks of H∞ (or
HN , where N is a large integer with N ≫ n) to determine
upper and lower bounds for the minimal system order the
max-algebraic weak column rank ofH∞ is an upper bound
for the minimal system order and the max-algebraic minor
rank is a lower bound for the minimal system order [8, 9].
However, at present there does not exist an efficient poly-
nomial time algorithm to compute the max-algebraic mi-
nor matrix rank. Therefore, we propose to use our heuris-
tic algorithm to compute a lower bound r for the minimal
system order.

We shall use the following proposition which is a gen-
eralization to the multiple-input multiple-output case of
Proposition 2.3.1 of [8, p. 175]. It is also an adaptation
to max-linear systems of a similar theorem for linear non-
negative systems [10, Theorem 5.4.10].

Proposition 2 Let {G}∞k=0 be the impulse response of a

max-linear time-invariant DES with m inputs and l out-

puts. Let n be the smallest integer for which there exist

matrices A ∈ IRn×n
ε , U ∈ IR∞×n

ε and V ∈ IRn×∞
ε such

that

H∞ = U ⊗ V (3)

U ⊗A = U (4)

where U is the matrix obtained by removing the first l rows

of U . Then n is equal to the minimal system order.

Remark: This proposition also holds if we replace H∞

in (3) by the matrix that contains the first m columns of
H∞ and if V is an n by m matrix. However, we have
noticed that the weaker formulation given above leads to
better results if we use our heuristic matrix factorization
algorithm to determine the minimal system order and the
system matrices of a minimal state space realization.

It is easy to verify that if we have a minimal de-
composition of the form (3) – (4) of H∞ then the triple
(A, V.,{1,2,...,m}, U{1,2,...,l},.) is a minimal state space real-
ization of the given impulse response.

Now we make the following assumptions:

• the entries of all the Gk’s are finite,

• the DES exhibits a periodic steady state behavior of
the following kind:

∃n0, d ∈ IN, ∃c ∈ IR such that

∀n > n0 : Gn+d = c⊗
d
⊗Gn . (5)

It can be shown [1, 8] that a sufficient condition for (5)
to hold is that the system matrix A is irreducible, i.e.,

(A ⊕ A⊗
2
⊕ . . . ⊕ A⊗

n
)ij 6= ε for all i, j. This will, e.g.,

be the case for DESs without separate independent sub-
systems and with a cyclic behavior or with feedback from
the output to the input like, e.g., flexible production sys-
tems in which the parts are carried around on a limited
number of pallets that circulate in the system. The kind
of steady state behavior mentioned above can also occur
if the system matrix A is not irreducible.

If the assumptions stated above hold, then it can be
proved [4] that the partial realization problem — in which
we look for a realization that only fits the first, say, N
Markov parameters — if solvable, always admits a solution
with finite entries (which is necessary in order to apply
our heuristic algorithm). If N is large enough then every
partial realization will also be a realization of the entire
impulse response. In practice it appears that we should
at least include the transient behavior and the first cycles
of the steady state behavior.

Now we use our heuristic algorithm in combination
with a binary search procedure to compute a lower bound
r for the minimal system order. We start with two extreme
values for r: l = 1 and u = rank⊕,wc (HN ). Then we
set r =

⌊
l+u
2

⌋
and we try to decompose HN as U ⊗ V

with inner dimension r. If this is possible, we set u = r;
otherwise, we set l = r+1. We repeat the above procedure
until we finally find the smallest integer r such that HN

can be decomposed as U ⊗ V with U ∈ IRNl×r and V ∈
IRr×Nm. As a consequence of Proposition 2, r will be a
lower bound for the minimal system order. Note that even
if we do not take N large enough, r will still be less than
or equal to the minimal system order.

Experiments in which random triples of system ma-
trices were constructed using a method similar to the one
described in Section 3 have shown that our heuristic al-
gorithm performs significantly better for matrices of the
form HN than for general, arbitrary matrices: the average
CPU time needed to compute a factorization is several or-
ders of magnitude smaller, and in almost all cases (99.9%)
only one run or initial matrix U0 is needed to find a fac-
torization.

Once (a lower bound for) the minimal system order
has been determined, we can determine the system matri-
ces. In [4, 5] we have developed an ELCP-based approach
to compute the system matrices (but this requires CPU
times that on the average depend exponentially on n, m
and l, and polynomially on N). Therefore, it would cer-
tainly be useful to extend our heuristic algorithm such



that condition (4) is also taken into account. This will be
a topic for further research.

However, in our experiments we have noticed that the
results of our binary search procedure can often directly
be used to determine A, B and C. In general the matrices
U and V that result from this binary procedure only sat-
isfy (3). However, if we define A = (−UT )⊗′U where U is
the matrix obtained by removing the last l rows of U , then
many times A and U also satisfy (4): e.g., in a generic ex-
periment with single-input single-output systems this held
true for 95% of the cases with n = 6 and decreased al-
most linearly to 50% for n = 20. Note that if necessary
we could augment these percentages significantly by re-
peating the last step of the binary search procedure with
an other initial matrix U0.

Note that if assumption (5) does not hold we could
compute a finite realization of a finite number N of im-
pulse response matrices and we see how the entries of the
resulting matrices A, B and C evolve as N becomes larger
and larger. A similar limit procedure could be used if some
of the entries of the Gk’s are equal to ε.

5. Conclusions and future research

We have presented a heuristic algorithm that can be
used to compute a max-algebraic matrix factorization of a
given matrix. Experiments indicate that the average CPU
time needed by this algorithm is polynomial in the size
of the given matrix, which is a significant improvement
over the existing algorithm for computing max-algebraic
matrix factorizations, which requires a CPU time that in-
creases exponentially as the size of the given matrix in-
creases.

We have shown how our algorithm can be used to
determine a lower bound for the minimal system order of
a max-linear time-invariant DES starting from its impulse
response. Experiments have shown that our algorithm
performs significantly faster on the matrices that appear in
this procedure than on arbitrary matrices. Moreover, our
procedure for determining a lower bound for the minimal
system order can often also be used to compute the system
matrices of a minimal state space realization.

Future research topics are: improvement of the cur-
rent algorithm, further investigation of the effects of pre-
processing and an appropriate choice for the initial matri-
ces, and development of algorithms that will always gen-
erate the exact minimal system order (instead of a lower
bound) and the corresponding system matrices.
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