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Abstract. We present an overview of our research on the use of general-
ized linear complementarity problems (LCPs) for analysis of continuously
variable systems and discrete event systems. We indicate how the Gen-
eralized LCP can be used to analyze piecewise-linear resistive electrical
circuits. Next we discuss how the Extended LCP can be used to solve
some fundamental problems that arise in max-algebraic system theory
for discrete event systems. This shows that generalized LCPs appear
in the analysis and modeling of certain continuously variable systems
and discrete event systems. Since hybrid systems exhibit characteristics
of both continuously variable systems and discrete event systems, this
leads to the question as to whether generalized LCPs can also play a role
in the modeling and analysis of certain classes of hybrid systems.

1 Introduction

In our research we have developed extensions of the linear complementarity prob-
lem (LCP), which is one of the basic problems in mathematical programming.
We have used one extension in the analysis of electrical circuits with piecewise-
linear characteristics [5, 13], which can be considered as examples of continuously
variable systems (CVSs). Another extension of the LCP has been used in the
analysis of a class of discrete event systems (DESs) that can be described by a
state space model that is linear in the max-plus algebra [8, 9]. In this paper we
present an overview of this research. Since hybrid systems exhibit characteristics
of both CVSs and DESs, this suggests that extensions of the LCP will probably
also be useful in the analysis of hybrid systems.

2 Generalized and Extended Linear Complementarity

Problems

One of the possible formulations of the Linear Complementarity Problem (LCP)
is the following [3]:
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Given M ∈ IRn×n and q ∈ IRn, find w, z ∈ IRn such that w ≥ 0, z ≥ 0,
w = q +Mz and zTw = 0.

The LCP has numerous applications such as quadratic programming problems,
determination of the Nash equilibrium of a bimatrix game problem, the market
equilibrium problem, the optimal invariant capital stock problem, the optimal
stopping problem, etc. [3].

In [4, 5] De Moor introduced the following generalization of the LCP:

Given Z ∈ IRp×n and m subsets φ1, . . . , φm of {1, . . . , n}, find a non-

trivial u ∈ IRn such that
m∑

j=1

∏

i∈φj

ui = 0 subject to u ≥ 0 and Zu = 0 .

This problem is called the Generalized LCP (GLCP). In Sect. 3 we shall see that
the GLCP can be used to determine operating points and transfer characteristics
of piecewise-linear resistive electrical circuits.

Another extension of the LCP, the Extended LCP (ELCP), is defined as
follows [6, 7]:

Given A ∈ IRp×n, B ∈ IRq×n, c ∈ IRp, d ∈ IRq and m subsets φ1, . . . ,

φm of {1, . . . , p}, find x ∈ IRn such that

m∑

j=1

∏

i∈φj

(Ax− c)i = 0 subject

to Ax ≥ c and Bx = d.

In Sect. 4 we shall see that the ELCP can be used to solve many problems that
arise in the system theory for max-linear time-invariant DESs.

It can be shown that the ELCP is a generalization of the GLCP and that
the homogeneous ELCP and the GLCP are equivalent [6, 7]. In [4] De Moor has
developed an algorithm to compute the complete solution set of a GLCP. In [7]
we have extended this algorithm in order to compute the complete solution set
of an ELCP.

3 The GLCP and Piecewise-Linear Resistive Electrical

Circuits

In this section we consider electrical circuits that may contain the following el-
ements: linear resistive elements, piecewise-linear (PWL) resistors (the resistors
are not required to be either voltage or current controlled), and PWL controlled
sources (all four types) with one controlling variable (the characteristics may be
multi-valued). The key idea behind the reformulation of the equations that de-
scribe the relations between the voltages and currents in the circuit as a (special
case of a) GLCP is an intelligent parameterization of the PWL characteristics.

If x is a vector, then we define x+ = max(x, 0) and x− = max(−x, 0), where
the operations are performed componentwise. An equivalent definition is:

x = x+ − x− , x+, x− ≥ 0 , (x+)Tx− = 0 .
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Fig. 1. A one-dimensional PWL curve.

For sake of simplicity we consider only two-terminal resistors since they can
be described by a one-dimensional PWL manifold3. It is easy to verify that a
one-dimensional PWL curve characterized by n+ 1 breakpoints x0, . . . , xn and
two directions d0 and d1 (see Fig. 1) can be parameterized as follows [4, 13]:

x = x0 + d0 λ
− + (x1 − x0)λ

+ +

n∑

k=2

(xk − 2xk−1 + xk−2)(λ− k + 1)+ +

(d1 − xn + xn−1)(λ− n)+ . (1)

Introducing auxiliary variables λi = λ − i yields a description of the following
form:

x = x0 +Ay− +B y+

C (y+ − y−) = d

y+, y− ≥ 0

(y+)T y− = 0

where y = [λ λ1 . . . λn ]
T
.

If we extract all nonlinear resistors out of the electrical circuit, the resulting
N -port contains only linear resistive elements and independent sources. As a
consequence, the relation between the branch currents and voltages of this N -
port is described by a system of linear equations. If we combine these equations
with the PWL descriptions (1) of the nonlinear resistors, we finally get a system
of the form:

Mw+ +Nw− = q , w+, w− ≥ 0 , (w+)T (w−) = 0 , (2)

where the vector w contains the parameters λ and λi of the PWL descriptions
of all the nonlinear resistors. It is easy to verify that after multiplying q by
a nonnegative homogenization parameter α and including the extra condition

3 If we also allow multi-terminal nonlinear resistors, which can be modeled by higher-
dimensional PWL manifolds, we shall obtain the general GLCP that has been defined
in Sect. 2 instead of the special GLCP of (2) (See [4]).



α ≥ 0, (2) can be considered as a special case of the GLCP. If we solve (2), we
get the complete set of operating points of the electrical circuit.

In a similar way we can determine the driving-point characteristic (iin versus
vin) and transfer characteristics of the electrical circuit [13].

The behavior of an electrical network consisting of linear resistors, capacitors,
inductors, transformers, gyrators and ideal diodes can be described by a model
of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

subject to the conditions

y(t) ≥ 0, u(t) ≥ 0, (y(t))Tu(t) = 0 (3)

(see e.g., [12]). In order to compute the stationary points of such an electrical
circuit, we add the condition ẋ(t) = 0, which leads to an LCP [12]. If we replace
(3) by more general conditions of the form wi ≥ 0, zi ≥ 0, wi zi = 0, where wi

and zi are components of u, y or x, then we get (a special case of) an ELCP.

4 The ELCP and Max-Linear Time-Invariant DESs

In general the description of DESs is nonlinear. However, there exists a class of
DESs — the so-called max-linear DESs — for which the description becomes
“linear” when we express it in the max-plus algebra [1, 2]. Loosely speaking
we could say that this subclass corresponds to the class of deterministic time-
invariant DESs in which only synchronization and no concurrency occurs.

The basic operations of the max-plus algebra are maximization (represented
by ⊕) and addition (represented by ⊗). There exists a remarkable analogy be-
tween the basic operations of the max-plus algebra on the one hand, and the
basic operations of conventional algebra (addition and multiplication) on the
other hand. As a consequence many concepts and properties of conventional al-
gebra (such as Cramer’s rule, eigenvectors and eigenvalues, the Cayley-Hamilton
theorem, . . . ) also have a max-algebraic analogue. Furthermore, this analogy also
allows us to translate many concepts, properties and techniques from conven-
tional linear system theory to system theory for max-linear time-invariant DESs.
However, there are also some major differences that prevent a straightforward
translation of properties, concepts and algorithms from conventional linear al-
gebra and linear system theory to max-plus algebra and max-algebraic system
theory for DESs.

If we write down a model for a max-linear DES and if we use the symbols
⊕ and ⊗ to denote maximization and addition, we obtain a description of the
following form:

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (4)

y(k) = C ⊗ x(k) , (5)



where x is the state vector, u the input vector and y the output vector. For a
manufacturing system u(k) would typically represent the time instants at which
raw material is fed to the system for the (k + 1)st time; x(k) the time instants
at which the machines start processing the kth batch of intermediate products;
and y(k) the time instants at which the kth batch of finished products leaves the
system. In analogy with the state space model for linear time-invariant discrete-
time systems, a model of the form (4) – (5) is called a max-linear time-invariant

state space model.
Let x, r ∈ IR. The rth max-algebraic power of x is denoted by x⊗

r
and

corresponds to rx in conventional algebra.
Now consider the following problem:

Given p1 + p2 positive integers m1, . . . , mp1+p2
and real numbers aki,

bk and ckij for k = 1, . . . , p1 + p2, i = 1, . . . ,mk and j = 1, . . . , n, find
x ∈ IRn such that

mk⊕

i=1

aki ⊗
n⊗

j=1

xj
⊗
ckij

= bk for k = 1, . . . , p1 , (6)

mk⊕

i=1

aki ⊗

n⊗

j=1

xj
⊗
ckij

≤ bk for k = p1 + 1, . . . , p1 + p2 . (7)

We call (6) – (7) a system of multivariate max-algebraic polynomial equalities and

inequalities. Note that the exponents may be negative or real.
In [6, 10] we have shown that the problem of solving a system of multivariate

max-algebraic polynomial equalities and inequalities can be recast as an ELCP.
This enables us to solve many important problems that arise in the max-plus
algebra and in the system theory for max-linear DESs such as: computing max-
algebraic matrix factorizations, performing max-algebraic state space transfor-
mations, computing state space realizations of the impulse response of a max-
linear time-invariant DES, constructing matrices with a given max-algebraic
characteristic polynomial, computing max-algebraic singular value decomposi-
tions and QR decompositions, and so on [6, 7, 8, 9, 10].

Although the analogues of these problems in conventional algebra and linear
system theory are easy to solve, the max-algebraic problems are not that easy
to solve and for almost all of them the ELCP approach is at present the only
way to solve the problem.

5 Conclusions and Future Research

We have defined two extensions of the linear complementarity problem (LCP):
the Generalized Linear Complementarity Problem (GLCP) and the Extended
Linear Complementarity Problem (ELCP). First we have indicated how the
GLCP can be used to analyze piecewise-linear resistive electrical circuits, which
are examples of continuously variable systems (CVSs). Next we have indicated



how the ELCP can be used to solve some problems that arise in the max-
algebraic system theory for max-linear discrete event systems (DESs). So gen-
eralized LCPs appear in the analysis and modeling of certain classes of CVSs
and DESs. Since hybrid systems exhibit characteristics of both CVSs and DESs,
it would be interesting to determine whether the GLCP, the ELCP or other —
even more general — generalized LCPs also play a role in the modeling and
analysis of certain classes of hybrid systems. The results of [11] seem to indicate
that this is indeed the case.
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