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Optimal traffic light control for a single intersection:

Addendum

Bart De Schutter and Bart De Moor

In this addendum we give some extra propositions, proofs and examples in connection
with the model for the evolution of the queue lengths at the switching time instants that we
have derived in Section 2 of the paper “Optimal traffic light control for a single intersection”
(European Journal of Control, vol. 4, no. 3, pp. 260-276, 1998), and in connection with the
design of optimal traffic light switching schemes for this model.

In Section A we derive necessary and sufficient conditions for stability of this system
under a periodic traffic light switching policy. In Section B we consider an oversaturated
intersection, i.e., an intersection for which the queue lengths never become equal to 0 (except
possibly at the end of a green or an amber phase). In Section C we derive expressions that
give the value of the objective functions J1, J2, J3, J4, J5 as a function of the switching
time instants and the queue lengths at the switching time instants. In Section D we discuss
the convexity and the concavity of the objective functions J1, J2, J3, J4 and J5. Finally, in
Section E we discuss another approximation of J1 and J4 that is also strictly monotonous as
a function of the queue length vector.

A Stability

Now we discuss the conditions under which the system is “stable”, i.e., has queue lengths
that remain bounded as k goes to infinity. We assume that after a finite number, say 2K, of
switching cycles the switching scheme reaches a periodic regime, i.e., δ2k = δe and δ2k+1 = δo
for all k > K.
If we consider lane L1, then there arrive λ̄1(δe+δo) vehicles during one complete green-amber-
red cycle and (at most) µ̄1(δo − δamb) + κ̄1δamb vehicles leave lane L1. So in order to prevent
an unlimited growth of the queue length the following condition should hold:

µ̄1(δo − δamb) + κ̄1δamb > λ̄1(δe + δo) .

If we write down similar conditions for the other lanes, we obtain the following necessary and
sufficient conditions for stability:

(µ̄1 − λ̄1)δo − λ̄1δe > (µ̄1 − κ̄1)δamb (39)

−λ̄2δo + (µ̄2 − λ̄2)δe > (µ̄2 − κ̄2)δamb (40)

(µ̄3 − λ̄3)δo − λ̄3δe > (µ̄3 − κ̄3)δamb (41)

−λ̄4δo + (µ̄4 − λ̄4)δe > (µ̄4 − κ̄4)δamb . (42)

Together with the conditions δmin,green,1 6 δo−δamb 6 δmax,green,1 and δmin,green,2 6 δe−δamb 6

δmax,green,2, the conditions (39) – (42) define a convex region in the δo–δe plane. Note that
adding conditions of this form to the conditions (14) - (18) of the optimal traffic light control
problem still leads to an ELCP.
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B Non-saturated versus oversaturated intersections

If we consider an oversaturated network then the queue lengths never become 0 during the
green cycle (except possibly at the end of a green or an amber phase). In that case the
maximum operator in (4) and (5), and thus also in (6) – (7) is not needed any more, and then
we get the following model:

x2k+1 = x2k + b1δ2k + b3 (43)

x2k+2 = x2k+1 + b2δ2k+1 + b4 (44)

for k = 0, 1, 2, . . . with the extra constraints

x2k+1 > b5

x2k+2 > b6

for k = 0, 1, 2, . . . to ensure that the queue lengths are nonnegative at the end of the green
and the amber phase. It is easy to verify that (43) and (44) lead to

x2k+1 = x0 +

k
∑

j=0

b1δ2j +

k−1
∑

j=0

b2δ2j+1 + (k + 1)b3 + kb4

x2k+2 = x0 +
k
∑

j=0

b1δ2j +
k
∑

j=0

b2δ2j+1 + (k + 1)b3 + (k + 1)b4 .

As a consequence, the optimal traffic light control problem now becomes

minimize J

subject to

δmin,green,1 6 δ2k+1 − δamb 6 δmax,green,1 for k = 0, 1, . . . ,

⌊

N

2

⌋

− 1,

δmin,green,2 6 δ2k − δamb 6 δmax,green,2 for k = 0, 1, . . . ,

⌊

N − 1

2

⌋

,

b5 6 x0 +
k
∑

j=0

b1δ2j +
k−1
∑

j=0

b2δ2j+1+

(k + 1)b3 + kb4 6 xmax for k = 0, 1, . . . ,

⌊

N − 1

2

⌋

,

b6 6 x0 +
k
∑

j=0

b1δ2j +
k
∑

j=0

b2δ2j+1+

(k + 1)b3 + (k + 1)b4 6 xmax for k = 0, 1, . . . ,

⌊

N

2

⌋

− 1.
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δ̃∗, x̃∗ J1(δ̃
∗) J̃1(x̃

∗, δ̃∗)

δ∗ELCP,x
∗

ELCP 60.657 64.267

δ̃∗, x̃∗ 60.659 64.264

δ∗lin,x
∗

lin 64.551 67.905

δ∗os,x
∗

os 72.658 74.452

Table 3: The values of the objective functions J1 and J̃1 (up to 3 decimal places) for the
traffic light switching sequences defined by the switching interval vectors δ∗ELCP, δ̃

∗, δ∗lin of
Example 5.1 and the switching interval vector δ∗os of Example B.1. The queue length vectors
x∗ are compatible with the switching interval vectors δ∗ for x0.

The feasible region of this optimization problem is convex, which implies that it can be
solved more efficiently than the optimization problem (13) – (18). However, the following
example shows that in general applying the oversaturated model (43) – (44) to non-saturated
intersections does not lead to an optimal solution. Therefore we could say that the use of
the maximum operator will in the first instance lead to complex optimization problems —
but for which some approximations lead to good suboptimal solutions that can be computed
very efficiently as has been shown in Section 3.2 — whereas omitting the maximum operator
initially leads to simpler models but finally results in control schemes that for non-saturated
intersections have an inferior performance.

Example B.1 Consider the intersection of Figure 1 with the same data as in Example 5.1:
λ̄1 = 0.25, λ̄2 = 0.12, λ̄3 = 0.20, λ̄4 = 0.1, µ̄1 = µ̄3 = 0.5, µ̄2 = µ̄4 = 0.4, κ̄1 = κ̄3 = 0.05,
κ̄2 = κ̄4 = 0.03, x0 = [ 20 19 14 12 ]T , δamb = 3, δmin,green,1 = δmin,green,2 = 6, δmax,green,1 =
δmax,green,2 = 60, xmax = [ 25 20 25 20 ]T and w = [ 2 1 2 1 ]T . Suppose that we want to
compute a traffic light switching sequence t0, t1, . . . , t7 that minimizes J1.
In Example 5.1 we have computed several suboptimal switching interval vectors based on the
model (6) – (7). Let us now compute a minimum δ∗os of the objective function J1 based on the
model (43) – (44) for oversaturated intersections using the e04ucf routine of the NAG library.
This results in1

δ∗os = [ 20.000 45.750 18.600 34.150 38.433 30.122 13.741 ]T .

In Table 3 we have listed the values of the objective functions for the switching interval
vectors δ∗ELCP (the optimal solution of the original problem using the ELCP approach), δ̃∗ (the
optimal solution of the relaxed problem), δ∗lin (the optimal solution of the linear programming
problem) and δ∗os. The evolution of the queue lengths for the various control strategies is
represented in Figures 6 and 8.
Clearly, the suboptimal solutions based on the model (6) – (7) correspond to much lower
values of the objective function J1 than the optimal solution based on the model (43) – (44)
for oversaturated intersections. ✷

1We have listed the best solution over 20 runs with random initial points. The mean of the objective values

of the local minima returned by the minimization routine was 73.717 with a standard deviation of 1.336.
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Figure 8: The queue lengths in the various lanes as a function of time for the traffic light
switching sequence that corresponds to the switching interval vector δ∗os of Example B.1. The
* signs on the time axis correspond to the switching time instants.

C Evaluation of the objective functions

Let x0 ∈ (R+)4, δ∗ ∈ (R+
0 )

4N and let {δk}
N−1
k=0 be the sequence of switching time intervals

that corresponds to δ∗. First we derive a formula that expresses J3(δ
∗) as a function of the

sequence of queue length vectors {xk}
N
k=0 that is compatible with {δk}

N−1
k=0 for a given x0.

We have assumed that κ̄i 6 µ̄i for all i. Recall that this implies that a situation such as in the
left plot of Figure 3 where λ̄i− µ̄i > 0 and λ̄− i− κ̄i < 0 is not possible. So if k ∈ Gi, then the
maximum value of li in the interval (tk, tk+1) where Ti is first green and then amber will be
reached in tk or in tk+1. Furthermore, in an interval (tk+1, tk+2) where Ti is red the maximum
value of li will be reached in tk+1 or in tk+2. Since li(·, δ

∗) is a piecewise-linear function,
this implies that li reaches its maximum over the interval [t0, tN ] in one of the switching time
instants tk. As a consequence, we have

J3(δ
∗) = max

i, k

(

wi(xk)i
)

.

Now we derive a formula for the evaluation of
∫ tN

t0

l1(t) dt =
N−1
∑

k=0

∫ tk+1

tk

l1(t) dt .

Define yk = (xk)1 = l1(tk) for k = 0, 1, . . . , N and ỹ2k+2 = l1(t2k+2 − δamb) for k =

0, 1, . . . ,

⌊

N

2

⌋

− 1. Note that

ỹ2k+2 = max(y2k+1 + (λ̄1 − µ̄1)(δ2k+1 − δamb), 0) .
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Figure 9: Three possible basic cases for the evolution of the queue length l1 as a function of
time t in an interval (t2k, t2k+1) where the traffic light is red, or in an interval (t2k+1, t2k+2 −
δamb) where the traffic light is green.

If we want to evaluate

∫ te

tb

l1(t) dt where tb and te are respectively the beginning and the end

of a red or a green phase, there are three possible basic cases (see Figure 9).

• In an interval of the form (t2k, t2k+1) the light is red, which means that l1 is a nonde-

creasing function. In this case

∫ t2k+1

t2k

l1(t) dt is equal to the surface of the trapezium

defined by the points (t2k, 0), (t2k, y2k), (t2k+1, y2k+1) and (t2k+1, 0). Hence,

∫ t2k+1

t2k

l1(t) dt =
y2k + y2k+1

2
δ2k . (45)

• In an interval of the form (t2k+1, t2k+2 − δamb) the light is green. If the queue length l1
is identically 0 in (t2k+1, t2k+2 − δamb) or if l1 never becomes 0 in (t2k+1, t2k+2 − δamb),
∫ t2k+2−δamb

t2k+1

l1(t) dt is equal the surface of the trapezium defined by the points (t2k+1, 0),

(t2k+1, y2k+1), (t2k+2 − δamb, ỹ2k+2) and (t2k+2 − δamb, 0). So,

∫ t2k+2−δamb

t2k+1

l1(t) dt =
y2k+1 + ỹ2k+2

2
(δ2k+1 − δamb) if ỹ2k+2 6= 0 . (46)

• If the queue length l1 becomes 0 in the interval (t2k+1, t2k+2−δamb),

∫ t2k+2−δamb

t2k+1

l1(t) dt

is equal to the surface of the triangle defined by the points (t2k+1, 0), (t2k+1, y2k+1),
(t̂2k+1, 0) where t̂2k+1 is the smallest value of t ∈ (t2k+1, t2k+2−δamb) for which l1(t) = 0
(see Figure 9(c)). Since in this case the absolute value of the slope of l1(t) is equal to
µ̄1 − λ̄1 in (t2k+1, t2k+2 − δamb), we have y2k+1 = (µ̄1 − λ̄1)(t̂2k+1 − t2k+1) and thus

t̂2k+1 − t2k+1 =
y2k+1

µ̄1 − λ̄1

. As consequence, we have

∫ t2k+2−δamb

t2k+1

l1(t) dt =
y22k+1

2(µ̄1 − λ̄1)
if ỹ2k+2 = 0 . (47)
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Before we consider the amber phase, we shall show that the expressions (46) and (47) for the
green phase also cover expression (45) for the red phase if the appropriate changes of variables
are made, i.e., we shall prove that

∫ t2k+1

t2k

l1(t) dt =











y2k + y2k+1

2
δ2k if y2k+1 6= 0 ,

y22k+1

2λ̄1

if y2k+1 = 0 .
(48)

If the queue length y2k+1 at the end of the red phase is different from 0, then (45) corresponds
to the first case of (48). On the other hand, if y2k+1 is equal to 0, then y2k will also be zero
since l1 is nondecreasing in (t2k, t2k+1). So then both (45) and the second case of (48) yield
0.

When the traffic light is amber (i.e., in an interval of the form (t2k+1 − δamb, t2k+2)), we
either have the situation of case (a) if the queue length is nondecreasing in the given interval
(i.e., if λ̄i−κ̄i > 0), or case (b) or (c) if the queue length is decreasing in the given interval (i.e.,
if λ̄i − κ̄i < 0). Since expressions (46) and (47) also cover expression (45) if the appropriate
changes of variables are made, this implies that

∫ t2k+2

t2k+2−δamb

l1(t) dt =















ỹ2k+2 + y2k+2

2
δamb if y2k+2 6= 0 ,

ỹ22k+2

2(κ̄1 − λ̄1)
if y2k+2 = 0 .

So

∫ tN

t0

l1(t) dt =

⌊N−1

2 ⌋
∑

k=0

y2k + y2k+1

2
δ2k +

⌊N
2 ⌋−1
∑

k=0
ỹ2k+2 6=0

y2k+1 + ỹ2k+2

2
(δ2k+1 − δamb) +

⌊N
2 ⌋−1
∑

k=0
ỹ2k+2=0

y22k+1

2(µ̄1 − λ̄1)
+

⌊N
2 ⌋−1
∑

k=0
y2k+2 6=0

ỹ2k+2 + y2k+2

2
δamb +

⌊N
2 ⌋−1
∑

k=0
y2k+2=0

ỹ22k+2

2(κ̄1 − λ̄1)
.

We can write down similar expressions for

∫ tN

t0

li(t) dt for i = 2, 3, 4.

D Convexity or concavity of the objective functions

First we show that J3 is convex as a function of δ∗, which implies that problem (13) – (18)
with J = J3 can be solved efficiently (if there is no upper bound on the queue lengths or if
we introduce a convex penalty term if one or more components of xmax are finite).

Proposition D.1 For given x0, δamb, λ̄i’s, µ̄i’s and κ̄i’s the function J3 is convex as a

function of δ∗.
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Proof : In Section C we have already shown that

J3(δ
∗) = max

i, k

(

wi(xk)i
)

(49)

if x∗ and δ∗ are compatible for a given x0.
Let x0 ∈ (R+)4 and consider δ∗,η∗ ∈ (R+

0 )
N . Let {δk}

N−1
k=0 and {ηk}

N−1
k=0 be the sequences of

switching time intervals that correspond to δ∗ and η∗ respectively. Define y0 = z0 = x0. Let
the sequences {xk}

N
k=0 and {yk}

N
k=0 be compatible with {δk}

N−1
k=0 and {ηk}

N−1
k=0 respectively.

Consider an arbitrary number u ∈ [0, 1] and let the sequence {zk}
N
k=0 be compatible with the

sequence {uδk + (1− u)ηk}
N−1
k=0 .

Note that the sequences {xk}
N
k=0, {yk}

N
k=0 and {zk}

N
k=0 all satisfy recurrence equations of the

form (6) – (7).
Let us now show by induction that

zk 6 uxk + (1− u)yk for k = 0, 1, . . . , N . (50)

We have z0 = ux0 + (1− u)y0 = ux0 + (1− u)x0 = x0.
Now we assume that zk 6 uxk +(1−u)yk for k = 0, 1, . . . ,K with K < N and we show that
zK+1 6 uxK+1 + (1− u)yK+1.
Suppose that K is even. Hence, K = 2l for some integer l. Now we have

ux2l+1 + (1− u)y2l+1

= u max(x2l + b1δ2l + b3, b5)+

(1− u) max(y2l + b1η2l + b3, b5) (by (6))

= max
(

u(x2l + b1δ2l + b3) + (1− u)(y2l + b1η2l + b3),

u(x2l + b1δ2l + b3) + (1− u)b5,

ub5 + (1− u)(y2l + b1η2l + b3), ub5 + (1− u)b5
)

> max
(

u(x2l + b1δ2l + b3) + (1− u)(y2l + b1η2l + b3), b5
)

> max
(

ux2l + (1− u)y2l+

b1
(

uδ2l + (1− u)η2l
)

+ b3, b5

)

> max
(

z2l + b1
(

uδ2l + (1− u)η2l
)

+ b3, b5

)

(by the induction hypothesis)

> z2l+1 .

If K = 2l + 1 is odd, then we can show in a similar way that ux2l+2 + (1− u)y2l+2 > z2l+2.
As a consequence, we have

J3(uδ
∗ + (1− u)η∗) = max

i, k

(

wi(zk)i
)

(by (49))

6 max
i, k

(

wi(uxk + (1− u)yk)i
)

(by (50))

6 umax
i, k

(

wi(xk)i
)

+ (1− u)max
i, k

(

wi(yk)i
)

6 uJ3(δ
∗) + (1− u)J3(η

∗) (by (49)) ,

which implies that J3 is convex as a function of δ∗. ✷
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Proposition D.2 Let the set of feasible solutions of the ELCP that corresponds to a given

optimal traffic light switching problem be characterized by the set of vertices V =

{

[

x∗

i

δ∗i

]

∣

∣

∣

∣

i =

1, 2, . . . , r

}

and the set of index sets Λ. Let φj = {i1, i2, . . . , is} ∈ Λ. Then the function

J3

(

s
∑

j=1

νjδ
∗

ij

)

with νj > 0 for all j and

s
∑

j=1

νj = 1 is a convex function of the νj’s.

Proof : Note that we may assume without loss of generality that φj = {1, 2, . . . , s}. Let

ν =
[

ν1 ν2 . . . νs
]T

with νj > 0 for all j and
s
∑

j=1

νj = 1. Let δ∗(ν) =
s
∑

j=1

νjδ
∗

j and

x∗(ν) =
s
∑

j=1

νjx
∗

j . Let {xj,k}
N
k=1 be the sequence of 4-component queue length vectors that

corresponds to the 4N -component queue length vector x∗

j for j = 1, 2, . . . , s.

Define I3(ν) = J3(δ
∗(ν)) = J3

(

s
∑

j=1

νjδ
∗

j

)

. Now we prove that I3 is a convex function.

Since

[

x∗(ν)

δ∗(ν)

]

is a convex combination of

[

x∗

1

δ∗1

]

,

[

x∗

2

δ∗2

]

, . . . ,

[

x∗

s

δ∗s

]

, it is also a solution

of the ELCP that corresponds to the given optimal traffic light switching problem. As a
consequence, x∗(ν) and δ∗(ν) are compatible for the given x0. This implies that

I3(ν) = max
i, k



wi

(

s
∑

j=1

νj(xj,k)i

)

, wi(x0)i



 (by (49)).

Let η =
[

η1 η2 . . . ηs
]T

with ηj > 0 for all j and
s
∑

j=1

ηj = 1. Let u ∈ [0, 1]. Note that

uνj +(1−u)ηj > 0 for all j and that
s
∑

j=1

uνj +(1−u)ηj = u+(1−u) = 1. As a consequence,

we have

I3(uν + (1− u)η) = max
i, k



wi

(

s
∑

j=1

(uνj + (1− u)ηj)(xj,k)i

)

, wi(x0)i





= max
i, k



u

(

wi

s
∑

j=1

νj(xj,k)i

)

+ (1− u)

(

wi

s
∑

j=1

ηj(xj,k)i

)

,

uwi(x0)i + (1− u)wi(x0)i





6 u max
i, k

(

wi

s
∑

j=1

νj(xj,k)i, wi(x0)i

)

+

viii



(1− u)max
i, k

(

wi

s
∑

j=1

ηj(xj,k)i, wi(x0)i

)

6 uI3(ν) + (1− u)I3(η) .

So I3 is convex. Hence, J3 is a convex function of the νi’s. ✷

Note that the objective functions J1, J2, J4 and J5 do not depend directly on x∗ since for
given λ̄i’s, µ̄i’s, κ̄i’s, x0 and δamb the switching interval vector δ∗ uniquely determines x∗.
The following example shows that J1, J2, J4 and J5 are in general neither convex nor concave
as a function of δ∗. Recall that we use the notation li(·, δ

∗) to indicate that the queue length
function li(·) corresponds to the switching interval vector δ∗.

Example D.3 Let δamb = 3 and λ̄i = 0.25, µ̄i = 0.5, κ̄i = 0 for i, 1, 2, 3, 4. Let

x0 =









2
0
2
0









, w =









1
1
1
1









, δ∗1 =

[

10
10

]

, δ∗2 =

[

10
30

]

and δ∗3 =

[

10
20

]

.

In Figure 10 we have plotted the evolution of l1 as a function of time for the switching

sequences defined by δ∗1, δ
∗

2, δ
∗

3 =
δ∗1 + δ∗2

2
and δ∗4 =

δ∗1 + δ∗3
2

.

Define

f(δ∗) =

∫ tN

t0

l1(t, δ
∗) dt

tN − t0
.

We have f(δ∗1) ≈ 3.363, f(δ∗2) ≈ 1.853,

f
( δ∗1 + δ∗2

2

)

≈ 2.492 and
f(δ∗1) + f(δ∗2)

2
≈ 2.608 .

So

f
( δ∗1 + δ∗2

2

)

<
f(δ∗1) + f(δ∗2)

2
,

which implies that f is not concave.
On the other hand, we have f(δ∗1) ≈ 3.363, f(δ∗3) ≈ 2.492,

f
( δ∗1 + δ∗3

2

)

= 2.965 and
f(δ∗1) + f(δ∗3)

2
≈ 2.927 .

So

f
( δ∗1 + δ∗3

2

)

>
f(δ∗1) + f(δ∗3)

2
,

which implies that f is not convex.
As a consequence, the objective functions J1, J2, J4 and J5 are in general neither convex

nor concave.
Indeed, we have

Jl

( δ∗1 + δ∗2
2

)

<
Jl(δ

∗

1) + Jl(δ
∗

2)

2
and

Jl

( δ∗1 + δ∗3
2

)

>
Jl(δ

∗

1) + Jl(δ
∗

3)

2
for l = 1, 2, 4, 5 (see Table 4). ✷
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Figure 10: The evolution of the queue length in lane L1 as a function of time for the switching

interval vectors δ∗1, δ
∗

2, δ
∗

3 =
δ∗1 + δ∗2

2
and δ∗4 =

δ∗1 + δ∗3
2

of Example D.3. The * signs on the

time axis correspond to the switching time instants.

Let us now look at the convexity or concavity of the objective functions over the faces that
constitute the solution set of the ELCP defined by (26) – (29).

In the next proposition we shall make the following extra assumption:

• in each lane, the average departure rate when the light is amber is less than the average
arrival rate of vehicles, i.e., κ̄i < λ̄i.

Note that this is again a reasonable assumption if we take into account that designing optimal
traffic light switching schemes is only useful if the arrival rates λ̄i are high and that under
normal circumstances κ̄i is very small. This assumption implies that the net queue growth
rate during the amber phase λ̄i − κ̄i is positive. Therefore, the queue length at the end of a
green phase is given by: li(tk+1 − δamb) = li(tk+1)− (λ̄i − κ̄i)δamb where k ∈ Gi(N).

Proposition D.4 Consider an optimal traffic light switching problem with κ̄i < λ̄i for all

i. Let the set of feasible solutions of the ELCP that corresponds to the given problem be

characterized by the set of vertices V =

{[

x∗

i

δ∗i

] ∣

∣

∣

∣

i = 1, 2, . . . , r

}

and the set of index sets Λ.

x



l Jl(δ
∗

1) Jl(δ
∗

2) Jl

( δ∗1 + δ∗2
2

) Jl(δ
∗

1) + Jl(δ
∗

2)

2

1 8.838 10.513 9.392 9.675

2 3.363 3.403 2.492 3.383

4 35.350 42.050 37.567 38.700

5 13.450 13.613 9.967 13.531

l Jl(δ
∗

1) Jl(δ
∗

3) Jl

( δ∗1 + δ∗3
2

) Jl(δ
∗

1) + Jl(δ
∗

3)

2

1 8.838 9.392 9.170 9.115

2 3.363 2.492 2.965 2.927

4 35.350 37.567 36.680 36.458

5 13.450 9.967 11.860 11.708

Table 4: The values of the objective functions J1, J2, J4 and J5 (up to 3 decimal places) for

the switching time vectors δ∗1, δ
∗

2, δ
∗

3 =
δ∗1 + δ∗2

2
and δ∗4 =

δ∗1 + δ∗3
2

of Example D.3.

Let φj = {i1, i2, . . . , is} ∈ Λ. Consider a vector ν ∈ R
s with νj > 0 for all j and

s
∑

j=1

νj = 1.

Define δ∗(ν) =

s
∑

j=1

νjδ
∗

ij
. Then the function Ii defined by Ii(ν) =

∫ tN

t0

li
(

t, δ∗(ν)
)

dt is a

convex function of ν.

Proof : We may assume without loss of generality that i = 1 and φj = {1, 2, . . . , s}. Define

x∗(ν) =
s
∑

j=1

νjx
∗

j . Since

[

x∗(ν)
δ∗(ν)

]

is a convex combination of the vertices of V that are

indexed by φj , it is a solution of the ELCP that corresponds to the given optimal traffic
light switching problem. So x∗(ν) and δ∗(ν) are compatible for the given x0. For each x∗

i

with i ∈ φj we define a sequence yi,0, yi,1, . . . , yi,N that contains the components of x0 and
x∗

i that correspond to the queue length in lane L1: yi,0 = (x0)1 and yi,j = (x∗

i )4(j−1)+1 for
j = 1, 2, . . . , N . Let y0 = (x0)1 and yj = (x∗)1 for j = 1, 2, . . . , N . Define δi,k = (δ∗i )k+1 for

i = 1, 2, . . . , s and k = 0, 1, . . . , N − 1. Note that
s
∑

j=1

νjyj,0 = y0 = (x0)1.

Since κ̄1 < λ̄1 we have

ỹ2k+2
def
= l1(t2k+2 − δamb) = y2k+2 − (λ̄1 − κ̄1)δamb .

If we define
ỹj,2k+2 = yj,2k+2 − (λ̄1 − κ̄1)δamb

xi



for all j, k, then we have

s
∑

j=1

νj ỹj,2k+2 =
s
∑

j=1

νj
(

yj,2k+2 − (λ̄1 − κ̄1)δamb

)

=
s
∑

j=1

νjyj,2k+2 −
(

s
∑

j=1

νj

)

(λ̄1 − κ̄1)δamb

= y2k+2 − (λ̄1 − κ̄1)δamb

= ỹ2k+2 .

Furthermore, the assumption κ̄1 < λ̄1 also implies that y2k+2 6= 0 and yi,2k+2 6= 0 for all i, k.
Recall that x∗(ν) and δ∗(ν) are compatible for x0. As a consequence, we have (cf. Section C)

I1(ν) = S1(ν) + S2,1(ν)− S2,2(ν) + S3(ν) + S4(ν)

with

S1(ν) =

⌊N−1

2 ⌋
∑

k=0





s
∑

j=1

νj yj,2k



+





s
∑

j=1

νj yj,2k+1





2





s
∑

j=1

νj δj,2k





S2,1(ν) =

⌊N
2 ⌋−1
∑

k=0
∑s

j=1
νj ỹj,2k+2 6=0





s
∑

j=1

νj yj,2k+1



+





s
∑

j=1

νj ỹj,2k+2





2





s
∑

j=1

νj δj,2k+1





S2,2(ν) =

⌊N
2 ⌋−1
∑

k=0
∑s

j=1
νj ỹj,2k+2 6=0





s
∑

j=1

νj yj,2k+1



+





s
∑

j=1

νj ỹj,2k+2





2
δamb

S3(ν) =

⌊N
2 ⌋−1
∑

k=0
∑s

j=1
νj ỹj,2k+2=0





s
∑

j=1

νj yj,2k+1





2

2 (µ̄1 − λ̄1)

S4(ν) =

⌊N
2 ⌋−1
∑

k=0





s
∑

j=1

νj ỹj,2k+2



+





s
∑

j=1

νj yj,2k+2





2
δamb .
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It easy to verify that S3 is a convex, quadratic function of ν. Furthermore, S2,2 and S4 are
linear functions of ν, which implies that they are also convex. So from now on, we only
consider S1 and S2,1. Since S1 and S2,1 are continuous functions of the νj ’s, it is sufficient
to prove that S1 and S2,1 are convex functions in the relative interior of the feasible region,

i.e., for positive νj ’s. As a consequence, we have
s
∑

j=1

νj ỹj,2k+2 6= 0 if and only if there exists

an index i ∈ {1, 2, , . . . , s} such that ỹi,2k+2 6= 0. Note that is condition is independent of the
values of the νj ’s (provided that they are positive). If we define

zj,2k = yj,2k + yj,2k+1

zj,2k+1 =

{

yj,2k+1 + ỹj,2k+2 if ∃i ∈ {1, 2, , . . . , s} such that ỹi,2k+2 6= 0 ,

0 otherwise ,

for all j, k, then we have

S1(ν) + S2,1(ν) =
N
∑

k=0





s
∑

j=1

νjzj,k









s
∑

j=1

νjδj,k





2

=
N
∑

k=0

1

2
νT Qk ν .

with

Qk =











z1,k
z2,k
...

zs,k











[

δ1,k δ2,k . . . δs,k

]

.

So Qk is a matrix of rank 1 with nonnegative entries. This implies that Qk is a positive
semi-definite matrix and that S1 + S2,1 is a convex, quadratic function.
Hence, I1 = S1 + S2,1 − S2,2 + S3 + S4 is a convex, quadratic function of ν. ✷

Note that in order to obtain J1, J2, J4 or J5 we have to divide

∫ tN

t0

l1(t, δ
∗(ν)) dt by tN−t0 =

N−1
∑

k=0

s
∑

j=1

νjδij ,k which is a linear function of ν. As a consequence, J1, J2, J4 and J5 are in

general not convex functions of ν. However, computational experiments have shown that in
most cases J1, J2, J4 and J5 are very smooth functions of ν (for many faces they are even
almost linear or almost convex). This means that finding the combination ν1, ν2, . . . , νs for

which Jl

( s
∑

j=1

νjδ
∗

ij

)

with l = 1, 2, 4 or 5 reaches a global minimum is a well-behaved problem

in the sense that for almost all initial starting points the same numerical solution (within a
certain tolerance) will be obtained.

Since there exist very efficient algorithms to minimize convex objective functions over a
convex feasible sets, we now examine whether the approximate objective functions J̃1 and

xiii



J̃4 are convex over the feasible set of the relaxed problem P̃. Note that it makes only sense
to determine convexity (or concavity) for objective functions that are strictly monotonous
functions of x∗, since only for these objective functions we can use Proposition 3.2 to minimize
over the convex feasible set of the relaxed problem P̃ instead of over the feasible set of the
original problem P.

The following example shows that the approximate objective functions J̃1 and J̃4 are in
general neither convex nor concave as a function of x∗ and δ∗.

Example D.5 Let δamb = 4 and λ̄i = 0.25, µ̄i = 0.5, κ̄i = 0 for i = 1, 2, 3, 4. Let

x0 =









4
0
4
0









, w =









1
1
1
1









, δ∗1 =

[

12
12

]

, δ∗2 =

[

12
32

]

, δ∗3 =

[

12
40

]

,

y∗

1 =

[

7
6

]

and y∗

2 = y∗

3 =

[

7
1

]

.

Note that the queue length sequence that corresponds to y∗

1 is compatible with δ∗1 for l1(0) =

y0
def
= (x0)1. This also holds for y∗

2 and δ∗2, and for y∗

3 and δ∗3. In Figure 11 we have plotted
the evolution of l1 as a function of time for the switching sequences defined by δ∗1, δ

∗

2, δ
∗

3,

δ∗4 =
δ∗1 + δ∗2

2
and δ∗5 =

δ∗2 + δ∗3
2

.

If y0 ∈ R
+, y∗ ∈ (R+)N and δ∗ ∈ (R+

0 )
N , then l̃1(·,y

∗, δ∗) is the piecewise-linear function
that interpolates in the points (t0, y0), (t1, y

∗
1), . . . , (tN , y∗N ). Define

f̃(y∗, δ∗) =

∫ tN

t0

l̃1(t,y
∗, δ∗) dt

tN − t0
.

We have f̃(y∗

1, δ
∗

1) = 6, f̃(y∗

2, δ
∗

2) ≈ 4.409,

f̃
( y∗

1 + y∗

2

2
,
δ∗1 + δ∗2

2

)

≈ 5.338 and
f̃(y∗

1, δ
∗

1) + f̃(y∗

2, δ
∗

2)

2
≈ 5.205 .

So

f̃
( y∗

1 + y∗

2

2
,
δ∗1 + δ∗2

2

)

>
f̃(y∗

1, δ
∗

1) + f̃(y∗

2, δ
∗

2)

2
,

which implies that f̃ is not convex.
On the other hand, we have f̃(y∗

2, δ
∗

2) ≈ 4.409, f̃(y∗

3, δ
∗

3) ≈ 4.346,

f̃
( y∗

2 + y∗3

2
,
δ∗2 + δ∗3

2

)

= 4.375 and
f̃(y∗

2, δ
∗

2) + f̃(y∗

3, δ
∗

3)

2
≈ 4.378 .

So

f̃
( y∗

2 + y∗

3

2
,
δ∗2 + δ∗3

2

)

<
f̃(y∗

2, δ
∗

2) + f̃(y∗

3, δ
∗

3)

2
,

which implies that f̃ is not concave.
As a consequence, the objective functions J̃1 and J̃4 are in general neither convex nor

concave.
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Figure 11: The evolution of the queue length in lane L1 as a function of time t for the

switching interval vectors δ∗1, δ
∗

2, δ
∗

3, δ
∗

4 =
δ∗1 + δ∗2

2
and δ∗5 =

δ∗2 + δ∗3
2

of Example D.5. The

* signs on the time axis correspond to the switching time instants.

Indeed, for the queue length vectors x∗

1, x
∗

2 and x∗

3 that are compatible with respectively
δ∗1, δ

∗

2 and δ∗3 for x0, we have

J̃l

( x∗

1 + x∗

2

2
,
δ∗1 + δ∗2

2

)

>
J̃l(x

∗

1, δ
∗

1) + J̃l(x
∗

2, δ
∗

2)

2

and

J̃l

( x∗

2 + x∗

3

2
,
δ∗2 + δ∗3

2

)

<
J̃l(x

∗

2, δ
∗

2) + J̃l(x
∗

3, δ
∗

3)

2

for l = 1 and 4 (see Table 5). ✷

E Another approximation for the objective functions J1, J2,

J3, J4 and J5

In this section we make again the following extra assumption:

xv



l J̃l(x
∗

1, δ
∗

1) J̃l(x
∗

2, δ
∗

2) J̃l

( x∗

1 + x∗

2

2
,
δ∗1 + δ∗2

2

) J̃l(x
∗

1, δ
∗

1) + J̃l(x
∗

2, δ
∗

2)

2

1 15.000 16.364 15.882 15.682

4 60.000 65.455 63.529 62.727

l J̃l(x
∗

2, δ
∗

2) J̃l(x
∗

3, δ
∗

3) J̃l

( x∗

2 + x∗

3

2
,
δ∗2 + δ∗3

2

) J̃l(x
∗

2, δ
∗

2) + J̃l(x
∗

3, δ
∗

3)

2

1 16.364 18.154 17.250 17.259

4 65.455 72.615 69.000 69.035

Table 5: The values of the objective functions J̃1 and J̃4 (up to 3 decimal places) for the
queue length vectors x∗

1, x∗

2 and x∗

3 that are compatible with respectively the switching
interval vectors δ∗1, δ

∗

2 and δ∗3 of Example D.5.

• in each lane, the average departure rate when the light is amber is less than the average
arrival rate of vehicles, i.e., κ̄i < λ̄i.

Recall that this assumption implies that the net queue growth rate during the amber phase
λ̄i−κ̄i is positive. As a consequence, the queue length at the end of the green phase (tk, tk+1−
δamb) with k ∈ Gi(N) is given by: li(tk+1 − δamb) = li(tk+1) − (λ̄i − κ̄i)δamb and the queue
length at the end of the subsequent amber phase li(tk+1) is positive.

For a given x0 and t0, we define the function ľi(·,x
∗, δ∗) — or ľi(·) for short — as the

piecewise-linear function that interpolates in the points (t0, li(t0)), (tk+1−δamb, li(tk+1−δamb))
for k ∈ Gi(N) — i.e., the points at the beginning and the end of the green phase for Ti — and
the point (tN , li(tN )). The approximate objective functions J̌l for l = 1, 2, 3, 4, 5, are defined
as in (8) – (12) but with li replaced by ľi.
The values of J3 and J̌3 always coincide. Now let l ∈ {1, 2, 4, 5}. Recall that the value of Jl
and J̌l is determined by the surface under the functions li and ľi respectively. If the queue
lengths never become zero during the green phases and if no vehicles depart when the traffic
light is amber (i.e., κ̄i = 0 for all i), then the functions li and ľi and the values of Jl and J̌l
coincide (cf. Figure 12). In practice, the departure rate during the amber phase will be small.
Moreover, the length of the amber phase will also be small compared to the length of the green
or the red phase. Furthermore, if we have an optimal traffic light switching scheme, then the
periods during which the queue length in some lane is equal to 0 are in general short. As a
consequence, for traffic light switching schemes in the neighborhood of the optimal scheme J̌l
will be a good approximation of Jl. It is easy to verify that under normal circumstances J̌l
will be a better approximation of Jl than J̃l (cf. Figures 2 and 12). However, in general (i.e.,
if we allow large values for δamb) we cannot impose a relative order on J̃l and J̌l.

Using proofs that are similar to those of Propositions 3.1 and 3.3 it can be shown that
the following two propositions hold:

Proposition E.1 Let x0 ∈ (R+)4, x∗ ∈ (R+)4N and δ∗ ∈ (R+
0 )

N . If x∗ and δ∗ are compat-

ible for x0 then we have J3(δ
∗) = J̌3(x

∗, δ∗), and Jl(δ
∗) 6 J̌l(x

∗, δ∗) for l = 1, 2, 4, 5.
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Figure 12: The functions li (full line) and ľi (dashed line). The left plot shows a situation in
which the queue length does not become 0 during the green phase and then li and ľi coincide
during the green phase. The right plot shows a situation where the queue length becomes 0
during the green phase.

Proposition E.2 For given x0, δamb, λ̄i’s, µ̄i’s, κ̄i’s and a given δ∗ the functions J̌1 and J̌4
are strictly monotonous functions of x∗.

So for J̌1 and J̌4 we can compute optimal traffic light switching schemes using the relaxed
problem P̃ instead of the original problem P.
Let us now derive a formula for the evaluation of

∫ tN

t0

ľ1(t,x
∗, δ∗) dt =

N−1
∑

k=0

∫ tk+1

tk

ľ1(t,x
∗, δ∗) dt .

Define yk = (xk)1 = l1(tk) for k = 0, 1, . . . , N and ỹ2k+2 = l1(t2k+2 − δamb) for k =

0, 1, . . . ,

⌊

N

2

⌋

− 1. Let the function even be defined by

even(n) =

{

1 if n is an even integer,

0 otherwise.

Now it is easy to verify that

∫ tN

t0

ľ1(t,x
∗, δ∗) dt =

y0 + y1

2
δ0 +

⌊ N
2 ⌋−1
∑

k=0

y2k+1 + ỹ2k+2

2
(δ2k+1 − δamb) +

⌊ N−3

2 ⌋
∑

k=0

ỹ2k+2 + y2k+3

2
(δ2k+2 + δamb) + even(n)

ỹN + yN

2
δamb .

Note that in contrast to J̃1 and J̃4 making the assumption δk ≈
tN − t0

N
does not lead a

linear objective function for J̌1 and J̌4.
Let us now compute a suboptimal traffic light switching scheme based on the objective

function J̌1 for the set-up of Example 5.1.
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δ∗,x∗ J1(δ
∗) J̌1(x

∗, δ∗) J̃1(x
∗, δ∗) Ĵ1(x

∗, δ∗) Jlin(x
∗) CPU time

δ̌∗, x̌∗ 60.669 62.768 64.268 69.036 433.751 4.01

δ∗ELCP,x
∗

ELCP 60.657 62.780 64.267 69.190 434.827 404.83

δ∗pen,x
∗

pen 61.150 63.258 64.740 69.916 439.909 78.69

δ∗mul,x
∗

mul 61.613 63.513 65.118 67.881 425.664 13.83

δ̃∗, x̃∗ 60.659 62.772 64.264 69.117 434.319 2.49

δ∗lin,x
∗

lin 64.551 66.239 67.905 67.199 420.895 0.94

δ∗con,x
∗

con 63.101 64.741 66.363 67.565 423.455 96.40

Table 6: The values of the objective functions J1, J̌1, J̃1, Ĵ1 and Jlin (up to 3 decimal places)
and the CPU time (up to 2 decimal places) needed to compute the suboptimal switching
interval vector δ̌∗ of Example E.3 and the (sub)optimal switching interval vectors δ∗ELCP,

δ∗pen, δ
∗

mul, δ̃
∗, δ∗lin and δ∗con of Example 5.1. The queue length vectors x∗ are compatible with

the switching interval vectors δ∗ for x0.

Example E.3 Consider the intersection of Figure 1 with the same data as in Example 5.1.
Suppose that we want to compute a traffic light switching sequence t0, t1, . . . , t7 that mini-
mizes J1. We use the e04ucf routine of the NAG library to compute a solution x̌∗, δ̌∗ that
minimizes the approximate objective function J̌1 (using the relaxed problem P̃). This yields2:

δ̌∗ = [ 20.000 45.750 30.964 63.000 30.964 63.000 55.509 ]T .

In Table 6 we have listed the values of the various objective functions for the switching interval
vector δ̌∗ and for the switching interval vectors of Example 5.1. The evolution of the queue
lengths for the traffic light control strategy that corresponds to δ̌∗ is represented in Figure 13.
Clearly, the δ̃∗ solution also offers a good trade-off between optimality and efficiency. Note
that for all the switching interval vectors of Table 6 the value of the objective function J̌1 is
lower than the value of the objective function J̃1. ✷

2In this case using different starting points always leads to more or less the same numerical value of the

optimal objective function: in an experiment with 20 random starting points the first 12 decimal places of

the final objective function always had the same value. Therefore, we have only performed one run with an

arbitrary random initial point here.
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Figure 13: The queue lengths in the various lanes as a function of time for the traffic light
switching sequence that corresponds to the switching interval vector δ̌∗ of Example E.3. The
* signs on the time axis correspond to the switching time instants.
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