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Abstract

In this paper we first present a mathematical pro-
gramming problem, the Extended Linear Complemen-
tarity Problem (ELCP). Next we discuss how the
ELCP can be used to solve some basic problems in
the system theory for a class of discrete event sys-
tems that can be modeled using the max-plus algebra,
which has maximization and addition as basic opera-
tions. Finally we show that the ELCP also appears in
the analysis of certain classes of hybrid systems.

1. The Extended Linear Complementarity

Problem

The Extended Linear Complementarity Problem
(ELCP) is an extension of the Linear Complementarity
Problem, which is one of the fundamental problems in
mathematical programming [2]. The ELCP is defined
as follows:

Given A ∈ R
p×n, B ∈ R

q×n, c ∈ R
p, d ∈ R

q and
m subsets φ1, φ2, . . . , φm of {1, 2, . . . , p}, find
x ∈ R

n such that

m
∑

j=1

∏

i∈φj

(Ax− c)i = 0

subject to Ax > c and Bx = d, or show that no
such x exists.

The ELCP can be considered as a system of linear
equations and inequalities (Ax > c, Bx = d), where
we can distinguish m groups of linear inequalities (one
group for each index set φj) such that in each group
at least one inequality should hold with equality (i.e.,
its residue (Ax − c)i should be equal to 0). In [4, 5]
we have developed an algorithm to compute the com-
plete solution set of an ELCP. This algorithm yields a
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description of the solution set of an ELCP by vertices,
extreme rays and a basis of the linear subspace corre-
sponding to the largest affine subspace of the solution
set. In that way it provides a geometrical insight in
the solution set of the ELCP and related problems.
In [4, 5] we have also shown that the general ELCP is
NP-hard.

2. The Extended Linear Complementarity

Problem and discrete event systems

2.1. Discrete event systems

The formulation of the ELCP arose from our work
in the study of discrete event systems (DESs). Typi-
cal examples of DESs are flexible manufacturing sys-
tems, subway traffic networks, parallel processing sys-
tems, telecommunication networks and logistic sys-
tems. The class of the DESs essentially contains man-
made systems that consist of a finite number of re-
sources (e.g., machines, communications channels, or
processors) that are shared by several users (e.g., prod-
uct types, information packets, or jobs) all of which
contribute to the achievement of some common goal
(e.g., the assembly of products, the end-to-end trans-
mission of a set of information packets, or a parallel
computation).
One of the most characteristic features of a DES is

that its dynamics are event-driven as opposed to time-
driven: the behavior of a DES is governed by events
rather than by ticks of a clock. An event corresponds
to the start or the end of an activity. If we consider a
production system then possible events are: the com-
pletion of a part on a machine, a machine breakdown,
or a buffer becoming empty.
In general the description of the behavior of a DES

leads to a model that is nonlinear in conventional al-
gebra. However, there exists a class of DESs for which
the model is “linear” when we express it in the max-
plus algebra [1, 3], which has maximization and addi-
tion as basic operations. DESs that can be described
by such a “linear” model are called max-linear DESs.
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Loosely speaking we could say that the class of max-
linear DESs corresponds to the class of determinis-
tic time-invariant DESs in which only synchronization
and no concurrency occurs.

2.2. The max-plus algebra and max-linear

DESs

The basic operations of the max-plus algebra are the
maximum (represented by ⊕) and the addition (rep-
resented by ⊗):

x⊕ y = max(x, y)

x⊗ y = x+ y

with x, y ∈ R. The operations ⊕ and ⊗ are extended
to matrices in the usual way. So if A,B ∈ R

m×n then
we have

(A⊕B)ij = aij ⊕ bij

for all i, j. If A ∈ R
m×p and B ∈ R

p×n then

(A⊗B)ij =

p
⊕

k=1

aik ⊗ bkj

for all i, j.
Let x, r ∈ R. The rth max-plus-algebraic power of

x is denoted by x⊗
r
and corresponds to rx in conven-

tional algebra.
If we use the notation introduced above we get a

model of the following form for max-linear DESs:

x(k + 1) = A⊗ x(k) ⊕ B ⊗ u(k) (1)

y(k) = C ⊗ x(k) , (2)

where the vector x represents the state, u the input
and y the output of the system. For a manufactur-
ing system u(k) would typically represent the time in-
stants at which raw material is fed to the system for
the (k+1)st time; x(k) the time instants at which the
machines start processing the kth batch of intermedi-
ate products; and y(k) the time instants at which the
kth batch of finished products leaves the system.
The reason for choosing the symbols ⊕ and ⊗ to rep-

resent respectively maximization and addition is that
many properties from conventional linear algebra can
be translated to the max-plus algebra simply by re-
placing + by ⊕ and × by ⊗. Note that the model
(1) – (2) closely resembles the state space model for
linear time-invariant discrete-time systems. This anal-
ogy between ⊕ and + and between ⊗ and × allows us
to translate many concepts, properties and techniques
from conventional linear algebra and linear system the-
ory to the max-plus algebra and the system theory for
max-linear DESs. However, there are also some major
differences that prevent a straightforward translation
of properties, concepts and algorithms from conven-
tional linear algebra and linear system theory to max-
plus algebra and max-plus-algebraic system theory for
DESs.

2.3. The max-plus algebra and the ELCP

Consider the following problem:

Given p1 + p2 positive integers m1, m2, . . . ,
mp1+p2

and real numbers aki, bk and ckij for
k = 1, 2, . . . , p1 + p2, i = 1, 2, . . . ,mk and
j = 1, 2, . . . , n, find x ∈ R

n such that

mk
⊕

i=1

aki ⊗

n
⊗

j=1

xj
⊗
ckij

= bk (3)

for k = 1, 2, . . . , p1 , and

mk
⊕

i=1

aki ⊗

n
⊗

j=1

xj
⊗
ckij

6 bk (4)

for k = p1 + 1, p1 + 2, . . . , p1 + p2.

We call (3) – (4) a system of multivariate max-plus-
algebraic polynomial equalities and inequalities. Note
that the exponents may be negative or real.
In [4, 8] we have shown that the problem of solving a

system of multivariate max-plus-algebraic polynomial
equalities and inequalities can be recast as an ELCP.
This allows us to solve many problems in the max-plus
algebra and in the system theory for max-linear DESs
such as computing max-plus-algebraic matrix factor-
izations, computing max-plus-algebraic singular value
decompositions and max-plus-algebraic QR decompo-
sitions, constructing matrices with a given max-plus-
algebraic characteristic polynomial, performing state
space transformations for max-linear DESs, computing
minimal state space realizations of max-linear DESs,
and so on [4, 6, 7]. Although the analogues of these
problems in conventional linear algebra and linear sys-
tem theory are easy to solve, the max-plus-algebraic
problems are not that easy to solve and for almost all
of them the ELCP approach is at present the only way
to solve the problem.
Although the general ELCP is NP-hard we have re-

cently developed some fast heuristic procedures (with
an average execution time that is polynomial in the
size of the problem) to solve some of the problems
mentioned above (see [9]).

3. The Extended Linear Complementarity

Problem and hybrid systems

3.1. Hybrid systems

Hybrid systems arise from the interaction between
DESs and continuous-variable systems (these are sys-
tems that can be modeled using difference or differen-
tial equations). In general we could say that a hybrid
system can be in one of several “regimes” whereby
in each regime the behavior of the system can be de-
scribed by a system of difference or differential equa-
tions — this corresponds to the continuous-variable
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Figure 1: A traffic-light-controlled intersection of two

two-way streets.

Period T1 T2 T3 T4

t0 – t1 red green red green

t1 – t2 green red green red

t2 – t3 red green red green
...

...
...

...
...

Table 1: The traffic light switching scheme.

aspect of the hybrid system, — and that the system
switches from one regime to another due to the occur-
rence of events — this corresponds to the DES aspect
of the hybrid system.

3.2. Traffic-light-controlled intersections

Consider a single intersection of two two-way streets
with controllable traffic lights on each corner (see Fig-
ure 1). There are four lanes L1, L2, L3 and L4, and on
each corner of the intersection there are traffic lights
(T1, T2, T3 and T4). For sake of simplicity we assume
that the traffic lights can be either green or red. The
average arrival rate of cars in lane Li is λi. When the
traffic light is green, the average departure rate in lane
Li is µi. Let t0, t1, t2, t3, . . . be the time instants at
which the traffic lights switch from green to red or vice
versa. The traffic light switching scheme is shown in
Table 1. Define δk = tk+1 − tk. Let li(t) be the queue
length (i.e., the number of cars waiting) in lane Li at
time instant t.
Let us now write down a model that describes the

evolution of the queue lengths (as continuous vari-
ables) as a function of time. This will then yield the
equations that give the relation between the switching
time instants and the queue lengths at the switching
time instants.
Consider lane L1. When the traffic light T1 is red,

there are arrivals at lane L1 and no departures. As a

consequence, we have

dl1(t)

dt
= λ1 (5)

for t ∈ (t2k, t2k+1) with k ∈ N, and

l1(t2k+1) = l1(t2k) + λ1δ2k

for k = 0, 1, 2, . . . When the traffic light T1 is green,
there are arrivals and departures at lane L1. Since the
net arrival rate is λ1 − µ1 and since the queue length
l1(t) cannot be negative, we have:

dl1(t)

dt
=

{

λ1 − µ1 if l1(t) > 0
0 if l1(t) = 0

(6)

for t ∈ (t2k+1, t2k+2) with k ∈ N. So

l1(t2k+2) = max
(

l1(t2k+1) + (λ1 − µ1)δ2k+1, 0
)

for k = 0, 1, 2, . . . Note that we also have

l1(t2k+1) = max
(

l1(t2k) + λ1δ2k, 0
)

for k = 0, 1, 2, . . . since l1(t) > 0 for all t.
We can write down similar equations for l2(tk), l3(tk)
and l4(tk). So if we define

xk =
[

l1(tk) l2(tk) l3(tk) l4(tk)
]T

b1 =
[

λ1 λ2 − µ2 λ3 λ4 − µ4

]T

b2 =
[

λ1 − µ1 λ2 λ3 − µ3 λ4

]T
,

then we have

x2k+1 = max(x2k + b1δ2k, 0) (7)

x2k+2 = max(x2k+1 + b2δ2k+1, 0) (8)

for k = 0, 1, 2, . . .
The traffic-light-controlled intersection can be con-

sidered as a hybrid system with time and the queue
lengths as state variables. The system can operate in
two regimes characterized by differential equations of
the form (5) or (6) depending on the value of a dis-
crete control variable that can have the value “red”
or “green”. The events in this hybrid system are the
switchings from “red” to “green” or vice versa.
Now we show that the system (7) – (8) can be re-

formulated as an ELCP. First consider (7) for an ar-
bitrary index k. This equation can be rewritten as
follows:

x2k+1 > x2k + b1δ2k

x2k+1 > 0

(x2k+1)i = (x2k + b1δ2k)i or (x2k+1)i = 0

for i = 1, 2, 3, 4 ,

or equivalently

x2k+1 − x2k − b1δ2k > 0

x2k+1 > 0

(x2k+1 − x2k − b1δ2k)i (x2k+1)i = 0 for all i .

3



Since a sum of nonnegative numbers is equal to 0 if
and only if all the numbers are equal to 0, this system
of equations is equivalent to:

x2k+1 − x2k − b1δ2k > 0

x2k+1 > 0
4

∑

i=1

(x2k+1 − x2k − b1δ2k)i (x2k+1)i = 0 .

We can repeat this reasoning for (8) and for each index
k.
So if we consider N switching time instants and if we
define

x∗ =
[

xT
1 xT

2 · · · xT
N

]T

δ∗ =
[

δ0 δ1 · · · δN−1

]T
,

we finally get a description of the form

Ax∗ +Bδ∗ + c > 0 (9)

x∗ > 0 (10)

(Ax∗ +Bδ∗ + c)Tx∗ = 0 . (11)

It is easy to verify that the system (9) – (11) is a special
case of an ELCP.
Now we can compute traffic light switching schemes

that minimize objective functions such as average
queue length, worst case queue length, average wait-
ing time, and so on. Furthermore, we can impose ex-
tra conditions such as minimum and maximum dura-
tions for the green and the red time1, maximum queue
lengths2, and so on. Define

α(N) =

{

0, 1, . . . ,

⌊

N − 1

2

⌋}

β(N) =

{

0, 1, . . . ,

⌊

N

2

⌋

− 1

}

.

Using the procedure given above the extra conditions

δmin,r 6 δ2k 6 δmax,r for k ∈ α(N)

δmin,g 6 δ2k+1 6 δmax,g for k ∈ β(N)

xk 6 xmax for k = 1, 2, . . . , N,

can be rewritten as a system of inequalities of the form

Ex∗ +Dδ∗ + f > 0 .

This finally leads to the following problem:

minimize J

1A green time that is too short is wasteful. If the red time
is too long, drivers tend to believe that the signals have broken
down.

2This could correspond to an upper bound on the available
storage space due to the distance to the preceding junction or
to the layout of the intersection.

subject to

Ax∗ +Bδ∗ + c > 0 (12)

x∗ > 0 (13)

Ex∗ +Dδ∗ + f > 0 (14)

(Ax∗ +Bδ∗ + c)Tx∗ = 0 . (15)

Note that the system (12) – (15) is a special case of
an ELCP. In order to determine the optimal traffic
light switching scheme we have to minimize the objec-
tive function J over the solution set of this ELCP. The
algorithm of [4, 5] to compute the solution set of a gen-
eral ELCP requires exponential execution times. How-
ever, in [10] we have developed efficient methods to
determine suboptimal traffic light switching schemes
for the model (12) – (15).
Remark: The model we have derived is different from
the models used by most other researchers due to the
fact that we consider red-green cycle lengths that may
vary from cycle to cycle. Furthermore, we also con-
sider non-saturated intersections, i.e., we allow queue
lengths to become equal to 0 during the green cycle.
For more information on other models that describe
the evolution of the queue lengths at a traffic-light-
controlled intersection and on optimal traffic light con-
trol the interested reader is referred to [12, 13, 14, 16]
and the references given therein. ✸

3.3. Complementary-slackness problems

In [15, 17, 18] Schumacher and van der Schaft con-
sider a class of hybrid systems — the “complementary-
slackness systems” — typical examples of which are
electrical networks with diodes, or mechanical systems
subject to geometric inequality constraints. They de-
velop a method to determine the uniqueness of smooth
continuations and to solve the associated mode selec-
tion problem for these complementary-slackness sys-
tems. When the underlying system is a linear system,
then this leads to a Linear Dynamic Complementarity
Problem which can also be considered as a special case
of the ELCP (see [11]).

4. Conclusions and further research

We have introduced the Extended Linear Comple-
mentarity Problem (ELCP) and indicated how it can
be used in the modeling and analysis of certain classes
of discrete event systems and hybrid systems. Topics
for further research include: development of efficient
algorithms for the special cases of the ELCP that ap-
pear in the analysis of discrete event systems and hy-
brid systems, investigation of the use of the ELCP to
model and to analyze other classes of hybrid systems,
and extension of our model for a traffic-light-controlled
intersection to networks of intersections.
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