
K.U.Leuven
Department of Electrical Engineering (ESAT) SISTA

Technical report 98-32

Upper bounds for the index of cyclicity of a
matrix∗

B. De Schutter

July 1999

Revised version.

ESAT-SISTA
K.U.Leuven
Leuven, Belgium
Current URL: https://www.esat.kuleuven.be/stadius

∗ This report can also be downloaded via https://pub.bartdeschutter.org/abs/98_32

https://www.esat.kuleuven.be/stadius
https://pub.bartdeschutter.org/abs/98_32


Upper bounds for the index of cyclicity of a matrix

Bart De Schutter
∗

ESAT-SISTA, K.U.Leuven, Kardinaal Mercierlaan 94,
B-3001 Leuven (Heverlee), Belgium.

tel: +32-16-32.17.99, fax: +32-16-32.19.70

email: bart.deschutter@esat.kuleuven.ac.be

Abstract

We derive upper bounds for the index of cyclicity of a matrix as a function of the size of
the matrix. This result can be used in the characterization of the ultimate behavior of the
sequence of consecutive powers of a matrix in the max-plus algebra, which has maximum
and addition as its basic operations. If the matrix is irreducible then it is well known that
the ultimate behavior is cyclic. For reducible matrices the behavior is more complex, but
it is also cyclic in nature. The length of the cycles corresponds to the index of cyclicity
of the given matrix.

1 Introduction

In this paper consider the sequence of consecutive powers of a matrix in the max-plus algebra,
which has maximum and addition as basic operations. For a general matrix the ultimate
behavior is cyclic. The length of the cycles corresponds to the cyclicity of the given matrix.
We derive upper bounds for the index of cyclicity of a given matrix.

Our main motivation for studying this problem lies in the max-plus-algebraic system
theory for discrete event systems. Typical examples of discrete event systems are flexible
manufacturing systems, telecommunication networks, parallel processing systems, traffic con-
trol systems and logistic systems. The class of discrete event systems essentially consists of
man-made systems that contain a finite number of resources (e.g., machines, communications
channels or processors) that are shared by several users (e.g., product types, information
packets or jobs) all of which contribute to the achievement of some common goal (e.g., the
assembly of products, the end-to-end transmission of a set of information packets, or a parallel
computation).

There are many modeling and analysis techniques for discrete event systems, such as
queuing theory, (extended) state machines, max-plus algebra, formal languages, automata,
temporal logic, generalized semi-Markov processes, Petri nets, perturbation analysis, com-
puter simulation and so on (see [1, 4, 13] and the references cited therein). In general models
that describe the behavior of a discrete event system are nonlinear in conventional algebra.
However, there is a class of discrete event systems – the max-plus-linear discrete event systems
– that can be described by a model that is “linear” in the max-plus algebra [1, 5, 6]. The
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model of a max-plus-linear discrete event system can be characterized by a triple of matrices
(A,B,C), which are called the system matrices of the model.

The index of cyclicity of the system matrix A determines the length of the cycles of the
ultimate cyclic behavior of the max-plus-linear system. We derive an upper bound for the
index of cyclicity of a matrix as a function of the size of the matrix. This corresponds to an
upper bound for the length of the cycles of the ultimate cyclic behavior of a max-plus-linear
discrete event system as a function of the minimal system order.

One of the open problems in the max-plus-algebraic system theory is the minimal realiza-
tion problem, which consists in determining the system matrices of the model of a max-plus-
linear discrete event system starting from its impulse response1 such that the dimensions of
the system matrices are as small as possible. In order to tackle the general minimal realiza-
tion problem it is useful to first study a simplified version: the Boolean minimal realization
problem, in which only models with Boolean system matrices are considered. In combination
with the results of [9] the results on the index of cyclicity of this paper can be used to prove
that the Boolean minimal realization problem in the max-plus algebra is decidable and that
it can be solved in a time that is bounded from above by a function that is exponential in
the minimal system order (see [8]).

This paper is organized as follows. In Section 2 we introduce some of the notations used in
the paper. We also give a short introduction to the max-plus algebra and to graph theory, and
we discuss the connection between max-plus-algebraic matrix operations and graph theory.
We also characterize the ultimate behavior of the sequence of consecutive powers of a general
max-plus-algebraic matrix. In Section 3 we derive a new upper bound for the index of cyclicity
of a matrix. Finally we present some conclusions in Section 4.

2 Notation and definitions

If A is a matrix, then aij or (A)ij is the entry on the ith row and the jth column. If A is
an m by n matrix and if α ⊆ {1, 2, . . . ,m}, β ⊆ {1, 2, . . . , n} then Aαβ is the submatrix of A
obtained by removing all rows that are not indexed by α and all columns that are not indexed
by β.

The set of the real numbers is denoted by R, the set of the nonnegative integers by N,
and the set of the positive integers by N0.

If S is a set, then the number of elements of S is denoted by #S. If γ is a set of positive
integers then the least common multiple of the elements of γ is denoted by lcm γ and the
greatest common divisor of the elements of γ is denoted by gcd γ.

2.1 Max-plus algebra

The basic operations of the max-plus algebra are the maximum (represented by ⊕) and the
addition (represented by ⊗):

x⊕ y = max(x, y)

x⊗ y = x+ y

1The impulse response is the output of the system when a certain standardized input sequence is applied
to the system (see [1] for more information).
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with x, y ∈ R ∪ {−∞}. Define ε = −∞ and Rε = R ∪ {ε}. The operations ⊕ and ⊗ are
extended to matrices as follows. If A,B ∈ R

m×n
ε then we have

(A⊕B)ij = aij ⊕ bij

for all i, j. If A ∈ R
m×p
ε and B ∈ R

p×n
ε then

(A⊗B)ij =

p
⊕

k=1

aik ⊗ bkj

for all i, j. Note that these definitions resemble the definitions of the sum and the product
of matrices in linear algebra but with ⊕ instead of + and ⊗ instead of ·. This analogy is one
of the reasons why we call ⊕ the max-plus-algebraic addition and ⊗ the max-plus-algebraic
multiplication.

The rth max-plus-algebraic power of x ∈ R is denoted by x⊗
r
and corresponds to rx in

conventional algebra. If r > 0 then ε⊗
r
= ε. If r < 0 then ε⊗

r
is not defined. In this paper

we have ε⊗
0
= 0 by definition.

The matrix En is the n by n max-plus-algebraic identity matrix: we have (En)ii = 0 for
all i and (En)ij = ε for all i, j with i 6= j. The matrix εm×n is the m by n max-plus-algebraic
zero matrix: (εm×n)ij = ε for all i, j. If the dimensions of the max-plus-algebraic identity
matrix or zero matrix are not indicated, then they should be clear from the context. The
max-plus-algebraic matrix power of the matrix A ∈ R

n×n
ε is defined as follows:

A⊗
0
= En

A⊗
k
= A⊗A⊗

k−1
for k = 1, 2, . . .

If we permute the rows or the columns of the max-plus-algebraic identity matrix, we obtain
a max-plus-algebraic permutation matrix. If P ∈ R

n×n
ε is a max-plus-algebraic permutation

matrix, then we have P ⊗ P T = P T ⊗ P = En.

2.2 Max-plus algebra and graph theory

We assume that the reader is familiar with basic concepts of graph theory such as directed
graph, loop, circuit, elementary circuit and so on (see, e.g., [1]).

A directed graph G is called strongly connected if for any two different2 vertices vi, vj of
G there exists a path from vi to vj . A maximal strongly connected subgraph (m.s.c.s.) Gsub

of a directed graph G is a strongly connected subgraph that is maximal, i.e., if we add an
extra vertex (and some extra arcs) of G to Gsub then Gsub is no longer strongly connected.

If we have a directed graph G with set of vertices V = {1, 2, . . . , n} and if we associate a
real number wij with each arc (j, i) of G, then we say that G is a weighted directed graph.
We call wij the weight of the arc (j, i). Note that the first subscript of wij corresponds to the
final (and not the initial) vertex of the arc (j, i).

With every weighted graph G with set of vertices V = {1, 2, . . . , n} there corresponds a
matrix A ∈ R

n×n
ε such that aij = wij if there is an arc (j, i) in G with weight wij and aij = ε

2Most authors do not add the extra condition that the vertices should be different. However, this definition
which was taken from [1] makes some of the subsequent definitions, theorems and proofs easier to formulate.
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if there is no arc (j, i) in G. We say that G is the precedence graph of A. The precedence
graph of a given matrix A ∈ R

n×n
ε will be denoted by G(A).

Consider a matrix A ∈ R
n×n
ε and its precedence graph G(A). The average weight of a

circuit i1 → i2 → · · · → il → i1 in G(A) is defined as the sum of the weights of the arcs that

compose the circuit divided by the length of the circuit:
1

l
(ai2i1 +ai3i2 + · · ·+ailil−1

+ai1il). A

circuit of G(A) is called critical if it has maximum average weight. The critical graph Gc(A)
consists of those vertices and arcs of G(A) that belong to some critical circuit of G(A).

A matrix A ∈ R
n×n
ε is called irreducible if its precedence graph is strongly connected.

Note that the 1 by 1 max-plus-algebraic zero matrix [ε ] is the only max-plus-algebraic zero
matrix that is irreducible.

The index of cyclicity [2] or cyclicity [1] or index of imprimitivity3 [3, 10] of an m.s.c.s. is
the greatest common divisor of the lengths of all the elementary circuits of the given m.s.c.s. If
an m.s.c.s. or a graph contains no circuits then its index of cyclicity is equal to 1 by definition.
The index of cyclicity c(G) of a graph G is the least common multiple of the indices of cyclicity
of its m.s.c.s.’s. Consider a matrix A ∈ R

n×n
ε . The cyclicity of a matrix A ∈ R

n×n
ε is denoted

by c(A) and is equal to the cyclicity of the critical graph of the precedence graph of A. So
c(A) = c(Gc(A)).

The following theorem gives a relation between the index of cyclicity of an irreducible

max-plus algebraic matrix A and the ultimate behavior of the sequence {A⊗
k}∞k=0.

Theorem 2.1 If A ∈ R
n×n
ε is irreducible, then

∃λ ∈ Rε, ∃k0 ∈ N such that ∀k > k0 : A⊗
k+c

= λ⊗
c ⊗A⊗

k

where c is the cyclicity of A.

Proof : See, e.g., [1, 5, 11]. �

The following theorem is the max-plus-algebraic analogue of a well-known result from matrix
algebra that states that any square matrix can be transformed into a block upper diagonal
matrix with irreducible blocks by simultaneously reordering the rows and columns of the
matrix (see, e.g., [1, 2, 3, 10, 12] for the proof of this theorem):

Theorem 2.2 If A ∈ R
n×n
ε then there exists a max-plus-algebraic permutation matrix P ∈

R
n×n
ε such that the matrix Â = P ⊗ A ⊗ P T is a max-plus-algebraic block upper triangular

matrix of the form

Â =











Â11 Â12 . . . Â1l

ε Â22 . . . Â2l
...

...
. . .

...

ε ε . . . Âll











(1)

with l > 1 and where the matrices Â11, Â22, . . . , Âll are square and irreducible. The matrices
Â11, Â22, . . . , Âll are uniquely determined to within simultaneous permutation of their rows
and columns, but their ordering in (1) is not necessarily unique.

3We prefer to use the word “index of cyclicity” in this paper in order to avoid confusion with the concept
“index of primitivity” [2, 20] of a nonnegative matrix A, which is defined to be the least positive integer γ(A)
such that all the entries of Aγ(A) are positive.
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The form in (1) is called the max-plus-algebraic Frobenius normal form of the matrix A. If A
is irreducible then there is only one block in (1) and then A is a max-plus-algebraic Frobenius
normal form of itself. Each diagonal block of Â corresponds to an m.s.c.s. of the precedence
graph of Â. If Â = P ⊗A⊗P T is the max-plus-algebraic Frobenius normal form of A ∈ R

n×n
ε

where P is a max-plus-algebraic permutation matrix, then we have A = P T ⊗ Â⊗P . Hence,

A⊗
k
= (P T ⊗ Â⊗ P )

⊗
k

= P T ⊗ Â⊗
k ⊗ P

for all k ∈ N. Therefore, we may consider without loss of generality the sequence {Â⊗
k}∞k=0

instead of {A⊗
k}∞k=0. Furthermore, since the transformation from A to Â corresponds to a

simultaneous reordering of the rows and columns of A (or to a reordering of the vertices of

G(A)), we have c(A) = c(Â). For the ultimate behavior of the sequence {Â⊗
k}∞k=0 we have:

Theorem 2.3 Let Â ∈ R
n×n
ε be a matrix of the form (1) where the matrices Â11, Â22, . . . ,

Âll are square and irreducible. Let λi and ci be respectively the max-plus-algebraic eigenvalue
and the cyclicity of Âii for i = 1, 2, . . . , l. Define sets α1, α2, . . . , αl such that Âαiαj

= Âij

for all i, j with i 6 j. Define

Sij =
{

{i0, i1, . . . , is} ⊆ {1, 2, . . . , l}
∣

∣ i = i0 < i1 < . . . < is = j and

Âirir+1 6= ε for r = 0, 1, . . . , s− 1
}

Γij =
{

t
∣

∣ ∃γ ∈ Sij such that t ∈ γ
}

Λij =











⋃

t∈Γij

{λt } if Γij 6= ∅ ,

{ε} if Γij = ∅ ,

cij =

{

lcm{ct | t ∈ Γij } if Γij 6= ∅ ,
1 otherwise ,

for all i, j with i < j. We have

∀i, j ∈ {1, 2, . . . , l}with i > j :
(

Â⊗
k
)

αiαj

= ε for all k ∈ N .

Moreover, there exists an integer K ∈ N such that

∀i ∈ {1, 2, . . . , l} :
(

Â⊗
k+ci

)

αiαi

= λi
⊗
ci ⊗

(

Â⊗
k
)

αiαi

for all k > K

and

∀i, j ∈ {1, 2, . . . , l}with i < j, ∀p ∈ αi, ∀q ∈ αj , ∃γ0, γ1, . . . , γcij−1 ∈ Λij such that
(

Â⊗
kcij+cij+s

)

pq
= γs

⊗
cij ⊗

(

Â⊗
kcij+s

)

pq
(2)

for all k > K and for s = 0, 1, . . . , cij − 1 .
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For each combination i, j, p, q with i < j, p ∈ αi and q ∈ αj, there exists at least one index
s ∈ {0, 1, . . . , cij − 1} such that the smallest γs for which (2) holds is equal to maxΛij.
Furthermore, there exists an integer K such that

∀i, j ∈ {1, . . . , l}with i > j, ∀p ∈ αi, ∀q ∈ αj , ∃s ∈ {0, . . . , cij − 1} such that
(

Â⊗
kcij+s+cij ⊕ Â⊗

kcij+s+cij+1 ⊕ . . . ⊕ Â⊗
kcij+s+2cij−1

)

pq
=

λij
⊗
cij ⊗

(

Â⊗
kcij+s ⊕ Â⊗

kcij+s+1 ⊕ . . . ⊕ Â⊗
kcij+s+cij−1

)

pq
for all k > K , (3)

where λij = maxΛij.

Proof : See [7]. �

Note that the largest possible value for cij in this theorem is equal to c(A). Furthermore, (2)
and (3) also hold if we replace cij by c. Therefore, we will study c in more detail in the next
section.

Remark 2.4 In this section we have treated the connection between max-plus-algebraic
matrices and graphs. For nonnegative matrices we can introduce similar definitions (see,
e.g., [3]). The precedence graph of a real matrix A ∈ R

n×n is a graph with set of vertices
{1, 2, . . . , n} and an arc (j, i) with weight aij for every nonzero entry aij . So here the absence of
the arc (j, i) corresponds to a weight aij = 0, whereas for a max-plus-algebraic the absence of
the arc (j, i) corresponds to a weight aij = ε (Note that 0 is the zero element in conventional
algebra and that ε is the zero element in the max-plus algebra). In [2, 3, 20] the index
of cyclicity or index of imprimitivity is defined for an irreducible nonnegative real matrix
A ∈ R

n×n. It corresponds to the index of cyclicity of the precedence graph of A and is also
equal to the number of eigenvalues of maximum modulus of A. Note however that in the
max-plus algebra the index of cyclicity is also defined for reducible matrices. ✸

3 Upper bounds for the index of cyclicity of a matrix

3.1 Tight upper bounds

In this section we consider tight upper bounds for the index of cyclicity of a matrix.

Lemma 3.1 If a graph G with n vertices is strongly connected then we have c(G) 6 n.

Proof : If G contains only one vertex and no loop then we have c(G) = 1 6 1 = n.
From now on we assume that there is at least one arc in G. Since G is strongly connected,
it contains only one m.s.c.s. Hence, c(G) is the greatest common divisor of the lengths of
the elementary circuits in G. Since the maximal possible length of an elementary circuit of a
graph with n vertices is n, c(G) is maximal if there is only one circuit in G and if this circuit
has length n. In that case we have c(G) = n. In the other cases, c(G) will be less than n. �

Example 3.2

Let n ∈ N0 and consider the circuit graph Gcirc,n with set of vertices {1, 2, . . . , n} and arcs
1 → 2, 2 → 3, . . . , n− 1 → n and n → 1 where all the arcs have weight 0 (see Figure 1). We
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1

2

3

n− 2

n− 1

n

G(A)

Figure 1: The circuit graph Gcirc,n is a graph with set of vertices {1, 2, . . . , n} and arcs 1 → 2,
2 → 3, . . . , n− 1 → n and n → 1. All the arcs have weight 0.

have c(Gcirc,n) = n. Furthermore, it is easy to verify that Gcirc,n is the precedence graph of
the max-plus-algebraic matrix

A =















ε ε . . . ε 0
0 ε . . . ε ε

ε 0 . . . ε ε
...

...
. . .

...
...

ε ε . . . 0 ε















. (4)

Since Gc(A) coincides with G(A), we have c(A) = c(Gc(A)) = c(G(A)) = c(Gcirc,n) = n. ✷

Let n, s ∈ N0 with s 6 n. Define

Faux(n, s) = max
li∈{1,2,...,n}
l1+···+ls6n

lcm(l1, l2, . . . , ls) (5)

and

F (n) = max
16s6n

Faux(n, s) . (6)

The values of Faux(n, s) and F (n) for n, s = 1, 2, . . . , 10 are listed in Table 1.

Proposition 3.3 For any n ∈ N0 F (n) is an upper bound for the index of cyclicity of any
n by n max-plus-algebraic matrix. Furthermore, this upper bound is tight, i.e., there exists a
matrix A ∈ R

n×n
ε such that c(A) = F (n).

Proof : Let us first prove that F (n) is an upper bound for the index of cyclicity of an
arbitrary n by n max-plus-algebraic matrix (see also [19, Theorem 2.2]). Consider a matrix
A ∈ R

n×n
ε . Let C1, C2, . . . , Cs be the m.s.c.s.’s of Gc(A) that have more than one vertex

or that contain at least one circuit. Note that the other m.s.c.s.’s have cyclicity 1. So
they do not influence the value of c(Gc(A)). If li is the number of vertices of Ci, then
we have c(Ci) 6 li by Lemma 3.1. Since c(A) = lcm(c(C1), c(C2), . . . , c(Cs)) and since
c(C1) + c(C2) + · · ·+ c(Cs) 6 l1 + l2 + · · ·+ ls 6 n, we have c(A) 6 Faux(n, s) 6 F (n).

Now we prove that there exists a matrix A ∈ R
n×n
ε such that c(A) = F (n). Let l1, l2, . . . , ls

be a combination for which F (n) and Faux(n, s) reach their maximum. Define m1 = 0 and
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Faux s

n 1 2 3 4 5 6 7 8 9 10 F (n)

1 1 − − − − − − − − − 1

2 2 1 − − − − − − − − 2

3 3 2 1 − − − − − − − 3

4 4 3 2 1 − − − − − − 4

5 5 6 3 2 1 − − − − − 6

6 6 6 6 3 2 1 − − − − 6

7 7 12 6 6 3 2 1 − − − 12

8 8 15 12 6 6 3 2 1 − − 15

9 9 20 15 12 6 6 3 2 1 − 20

10 10 21 30 15 12 6 6 3 2 1 30

Table 1: The values of Faux(n, s) and F (n) for n = 1, 2, . . . , 10 and s = 1, 2, . . . , n.

mi = l1 + l2 + · · · + li−1 for all i > 1. Now consider a graph G consisting of separate (i.e.,
mutually not connected) subgraphs C1, C2, . . . , Cs,D1,D2, . . . ,Dn−ms+1 , where Ci is a circuit
graph with set of vertices {vmi+1, vmi+2, . . . , vmi+li} and arcs vmi+1 → vmi+2, vmi+2 → vmi+3,
. . . , vmi+li−1 → vmi+li , vmi+li → vmi+1, and where Di is a graph with only one vertex vms+1+i

and no arc. The index of cyclicity of G is then equal to lcm(l1, l2, . . . , ls) = F (n).
If all the arcs in G have weight 0, then G is the precedence graph of the max-plus-algebraic
matrix

A =















A11 ε . . . ε ε
ε A22 . . . ε ε
...

...
. . .

...
...

ε ε . . . Ass ε
ε ε . . . ε En−ms+1















,

where Aii is an li by li matrix of the form (4) for i = 1, 2, . . . , s. Hence, c(A) = c(G) = F (n). �

Example 3.4 We have F (10) = 30. For n = 30 the maximum in (6) is reached for s = 3,
l1 = 2, l2 = 3 and l3 = 5. Now consider the matrix

A =



































ε 0 ε ε ε ε ε ε ε ε

0 ε ε ε ε ε ε ε ε ε

ε ε ε ε 0 ε ε ε ε ε

ε ε 0 ε ε ε ε ε ε ε

ε ε ε 0 ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε 0
ε ε ε ε ε 0 ε ε ε ε

ε ε ε ε ε ε 0 ε ε ε

ε ε ε ε ε ε ε 0 ε ε

ε ε ε ε ε ε ε ε 0 ε



































.

This matrix is in max-plus-algebraic Frobenius normal form and its block structure is in-
dicated by the vertical and horizontal lines. The precedence graph of A is represented in
Figure 2. We have c(A) = c(G(A)) = lcm(2, 3, 5) = 30. ✷
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1

2

3

4

5

6

7

89

10

G(A)

Figure 2: The precedence graph G(A) of the matrix A of Example 3.4. All the arcs have
weight 0.

In [17, 18] an efficient method is given to compute F without making use of Faux (see also
Appendix A). In general there does not exist a closed form expression for F .

Although F (n) is a tight upper bound for the index of cyclicity of an n by n matrix, there
does not exist a closed-form expression for F (n). Therefore, we closed-form upper bounds for
the index of cyclicity of a matrix as a function of the size of the matrix in the next section.

3.2 Closed-form upper bounds for the index of cyclicity

For large-sized matrices the following proposition yields a rather tight upper bound for the
index of cyclicity (see Figure 3):

Proposition 3.5 For all n > 4 we have

F (n) 6 Gm(n)
def
= exp

(

√

n log n

(

1 +
log log n− 0.975

2 log n

)

)

.

Proof : Let n ∈ N. Let us denote the maximum order4 of a permutation of n elements by
g(n). If we consider all distinct representations of n as a sum of positive integers and if for each
representation we consider the least common multiple of the integers in the representation,
then g(n) is equal to the maximum of these least common multiples (see, e.g., [16] or the
references therein). Hence, F (n) = g(n). Furthermore, in [15] it has been shown that g(n) 6
Gm(n) if n > 4. �

Remark 3.6 In fact Theorem 2 of [15] erroneously states that g(n) 6 Gm(n) if n > 3, but
g(n) 6 Gm(n) only holds if n > 3 since g(3) = 3 > 2.967 ≈ Gm(3) (see also Figure 4).
Other (less tight) upper bounds for g(n) can be found in [14, 15]. ✸

Now we shall derive another upper bound for F (n) that is more tight than the upper bound
of Proposition 3.5 if n is small.

Lemma 3.7 If A ∈ R
n×n
ε then we have c(A) 6 exp

(n

e

)

.

Proof : Let Gc be the critical graph of G(A). So c(A) = c(Gc). Recall that if we have an
m.s.c.s. with m vertices in Gc then the index of cyclicity of this m.s.c.s. is less than or equal

4The order of a permutation is the least common multiple of the lengths of the disjoint cycles that compose
the permutation.
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Figure 3: The plots of n versus the logarithm of the functions F , exp
(n

e

)

and Gm.

to m by Lemma 3.1.
The index of cyclicity c of Gc is equal to the least common multiple of the indices of cyclicity
of its m.s.c.s.’s. So if Gc has r m.s.c.s.’s and if mi is the number of vertices of m.s.c.s. i, then
we have

c 6 m1m2 . . . mr . (7)

Note that 1 6 r 6 n. Let us now compute the maximal value of the right-hand side of (7)
subject to mi > 0 for i = 1, 2, . . . , r and m1 +m2 + · · ·+mr = n for a fixed value of r. Since
mr = n−m1 −m2 − · · · −mr−1 , this leads to the following optimization problem:

max
m1,...,mr−1>0

f(m1,m2, . . . ,mr−1)

with
f(m1,m2, . . . ,mr−1) = m1m2 . . . mr−1 (n−m1 −m2 − · · · −mr−1) .

If we consider a point on the border of the feasible region, i.e., a point with mj = 0 for
some j, then the value of the objective function is equal to 0, which is clearly not the largest
possible value of f over the feasible region. Therefore, we now look for unconstrained maxima
of f that lie in the interior of the feasible region. A necessary condition for an unconstrained

maximum is that the gradient of f is equal to the zero vector, or equivalently,
∂f

∂mj

= 0 for

all j. We have

∂f

∂mj

= m1m2 . . . mj−1mj+1 . . . mr−1 (n−m1 −m2 − · · · −mr−1) +m1m2 . . . mr−1 (−1)
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Figure 4: The plots of n versus the logarithm of the functions F , exp
(n

e

)

and Gm for small

values of n. The two latter functions have been plotted as continuous functions of n. The

functions exp
(n

e

)

and Gm intersect for n ≈ 25.391. Note that Gm(n) > g(n) does not hold

for n = 2 and n = 3 (cf. Proposition 3.5 and Remark 3.6).

= m1m2 . . . mj−1mj+1 . . . mr−1 (n−m1 −m2 − · · · −mr−1 −mj)

= m1m2 . . . mj−1mj+1 . . . mr−1 (n− s−mj) ,

with

s = m1 +m2 + · · ·+mr−1 . (8)

If we consider a point for which mk = 0 for some k ∈ {1, 2, . . . , r − 1} then the value of the
objective function f will be equal to 0, which is clearly not the maximal value. The only
other point for which the gradient of f is equal to the zero vector is defined by

n− s−mj = 0 for all j .

Hence, mj = n− s for all j. From (8) it follows that s = (r− 1)(n− s) or s = n− n

r
. Hence,

f will reach its maximal value over the feasible region in the point with mj = n− s =
n

r
for

all j, and the value of f in this point is
(n

r

)r

. As a consequence, we have

c 6 max
r∈{1,2,,...,n}

(n

r

)r

6 max
r∈[1,n]

(n

r

)r

. (9)
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Figure 5: The precedence graph of the matrix A of Example 3.8. All the arcs have weight 0.

Now we determine the maximal value of g(r) =
(n

r

)r

= exp
(

r log
n

r

)

= exp
(

−r log
r

n

)

for

r ∈ [1, n]. We have

dg

dr
= exp

(

−r log
r

n

)

(

− log
r

n
− r

n

r

1

n

)

=
(n

r

)r (

− log
r

n
− 1
)

.

We have
dg(r)

dr
= 0 if r =

n

e
. Furthermore,

dg(r)

dr
> 0 if r 6

n

e
, and

dg(r)

dr
6 0 if r >

n

e
. So

g reaches its maximum on the interval [1, n] for r =
n

e
. Since g

(n

e

)

= exp
(n

e

)

, it follows

from (9) that c 6 exp
(n

e

)

. �

Example 3.8 Consider the matrix

A =













ε 0 ε ε ε

ε ε 0 ε ε

0 ε ε ε 0
ε ε ε ε 0
ε ε ε 0 ε













.

The precedence graph of A is represented in Figure 5. This graph has two m.s.c.s.’s: G1 with
vertices 1, 2 and 3 and G2 with vertices 4 and 5. We have c(G1) = 3 and c(G2) = 2. Hence,

c(G) = 6. Note that c(G) 6 exp

(

5

e

)

≈ 6.29. ✷

In Figures 4 and 3 we have plotted the functions F , exp
(n

e

)

and Gm. Clearly, for large

values of n the function Gm yields an upper bound for F that is tighter than exp
(n

e

)

. On

the other hand for n 6 25 the upper bound exp
(n

e

)

is tighter than Gm(n).

4 Conclusions

In this paper we have derived upper bounds for the index of cyclicity of a general matrix in
the max-plus algebra as a function of the size of the matrix. These results can be used in the
max-plus-algebraic system theory for discrete event systems: they can be used to prove that

12



the Boolean minimal realization problem in the max-plus algebra can be solved in a time that
is bounded from above by a function that is exponential in the minimal system order [8].

Topics for future research include the derivation of tighter upper bounds for the index of
cyclicity of an n by n max-plus-algebraic matrix for small values of n.
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Appendix A: A recursion-based method for computing F

Let pi be the ith prime number. So p1 = 2, p2 = 3, p3 = 5, . . .
Note that computing F using formulas (5) and (6) is computationally quite demand-

ing. Therefore, and for sake of completeness, we now repeat the recursion-based method for
computing F that has been derived in [17, 18] and which is based on the following lemma.

Lemma A.1 Let N ∈ N and let pqn be the largest prime that is less than or equal to n for
n = 1, 2, . . . , N . Consider the set of functions H1, H2, . . . , HqN that are defined by the
following recursion formula:

Hk(n) = max
(

Hk−1(n), max
{

pikHk−1(n− pik)
∣

∣ i ∈ N0, p
i
k 6 n

}

)

(10)

for k = 2, 3, . . . , qN and n = 0, 1, . . . , N where max ∅ = 1 by definition, and by the following
boundary condition:

H1(n) = max
{

2i
∣

∣ i ∈ N0, 2
i
6 n

}

(11)

for n = 0, 1, . . . , N where max ∅ = 1 by definition. If we define the function H by H(n) =
H(qn)(n) for n = 1, 2, . . . , N , then we have

H(n) = max

{

s
∏

r=1

pαr

ir

∣

∣

∣

∣

∣

s ∈ N0, i1, i2, . . . , is, α1, α2, . . . , αs ∈ N0,

s
∑

r=1

pαr

ir
6 n

}

(12)

for n = 1, 2, . . . , N where max ∅ = 1 by definition.
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Proof : Define Hk(0) = Hk(1) = {1} and

Hk(n) =

{

s
∏

r=1

pαr

ir

∣

∣

∣

∣

∣

s ∈ N0, i1, i2, . . . , is ∈ {1, 2, . . . , k} , α1, α2, . . . , αs ∈ N0,

s
∑

r=1

pαr

ir
6 n

}

for k = 1, 2, . . . , qN and n = 2, 3, . . . , N . Let us show by induction that

Hk(n) = max Hk(n) (13)

for k = 1, 2, . . . , qN and n = 1, 2, . . . , N . Note that we have Hk(0) = Hk(1) = 1 for all k since
max ∅ = 1 by definition.
Since p1 = 2 and since max ∅ = 1 by definition, it follows from (11) that (13) holds for k = 1
and n = 1, 2, . . . , N .
Let K ∈ {1, 2, . . . , qN − 1}. Now we assume that (13) holds for k = 1, 2, . . . ,K and n =
1, 2, . . . , N , and we show that it also holds for k = K + 1 and n = 1, 2, . . . , N .
We have

max HK+1(n)

= max

(

max HK(n), max
{

piK+1

∣

∣ i ∈ N0, p
i
K+1 6 n

}

,

max

{

piK+1

s−1
∏

r=1

piir

∣

∣

∣

∣

s ∈ N \ {0, 1}, i1, i2, . . . , is−1 ∈ {1, 2, . . . ,K} ,

α1, α2, . . . , αs−1, i ∈ N0, p
i
K+1 +

s
∑

r=1

pαr

ir
6 n

}

)

(14)

= max

(

HK(n), max
{

piK+1max HK(n− piK+1)
∣

∣

∣
i ∈ N0, p

i
K+1 6 n

}

)

(15)

= max

(

HK(n), max
{

piK+1HK(n− piK+1)
∣

∣

∣
i ∈ N0, p

i
K+1 6 n

}

)

= HK+1(n, s) (by (10)).

In (15) we have used the fact that Hk(0) = Hk(1) = {1} to merge the second and the third
set that appear on the right-hand of (14). So (13) holds for k = K + 1 and n = 1, 2, . . . , N .
As a consequence, (13) holds for k = 2, 3, . . . , qN and n = 1, 2, . . . , N .
Since pk > n if k > qn, indices ir with ir > qn do not contribute to the set that appears on
the right-hand side of (12). Hence, (12) holds for n = 1, 2, . . . , N . �

Remark A.2 Note that we have pqn 6 n. However, it can be shown [17, 18] that (12) already
holds if we define the function H by H(n) = H(rn)(n) for n = 1, 2, . . . , N , where prn is the

largest prime that divides H(n). We have lim
n→∞

prn√
n log n

= 1. Furthermore, there exists a

constant c > 1 such that prn 6 c
√
n log n for all n [17, 18]5. ✸

Proposition A.3 We have F (n) = H(n) for n = 1, 2, . . .

5It can be verified experimentally that if we take c = 1.2 then we have prn 6 c
√

n log n for all n > 3.
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Proof : We have F (1) = H(1). Now we show that we also have F (n) = H(n) for n > 2.
Let n ∈ N \ {0, 1} and l1, l2, . . . , ls be a combination for which F (n) reaches its maximum.
Note that if we have l1 = 1 for some i, or li = lj for some i, j with i 6= j, then there are
redundant terms in the combination l1, l2, . . . , ls that can be removed without changing the
value of lcm(l1, l2, . . . , ls). Therefore, we may assume without loss of generality that li 6= 1
for all i and that li 6= lj for all i, j with i 6= j.
Let us now show that we may also assume without loss of generality that gcd(li, lj) = 1 for

all i, j with i 6= j. Indeed, assume that gcd(l1, l2) = w > 1. Then there exist integers l̂1 and
l̂2 such that l1 = wl̂1, l2 = wl̂2 and gcd(l̂1, l̂2) = 1. Hence, lcm(l1, l2) = wl̂1l̂2 = lcm(l̂1, l2).
Furthermore, l̂1+ l2+ · · ·+ ls < l1+ l2+ · · ·+ ls 6 n and lcm(l̂1, l2, . . . , ls) = lcm(l1, l2, . . . , ls).
As a consequence, we also have F (n) = lcm(l̂1, l2, . . . , ls).
So from now on we assume that gcd(li, lj) = 1 for all i, j with i 6= j. This implies that
the li’s can be written as products of powers of mutually different prime numbers and that

F (n) = lcm(l1, l2, . . . , ls) = l1l2 . . . ls. Assume that li =

vi
∏

j=ui

p
αj

kj
for i = 1, 2, . . . , s with ki 6= kj

for all i, j with i 6= j, with αj ∈ N0 for all j, and with u1 = 1, ui+1 = vi+1 for i = 1, 2, . . . , s−1.

Now we have F (n) =
s
∏

i=1

li =

vs
∏

i=1

pαi

ki
. Furthermore, since pαi

ki
+p

αj

kj
6 pαi

ki
p
αj

kj
for all i, j, we have

ŝ
∑

i=1

pαi

ki
6

s
∑

i=1

li 6 n. Hence, it follows from Lemma A.1 that F (n) 6 H(n). Furthermore,

from the definition of F and H it follows that F (n) > H(n). Hence, F (n) = H(n). �
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