Minimal realizations and state space transformations in the symmetrized max-algebra

R. de Vries, B. De Schutter, and B. De Moor

If you want to cite this report, please use the following reference instead:

*This report can also be downloaded via http://pub.deschutter.info/abs/98_62.html
MINIMAL REALIZATIONS AND STATE SPACE TRANSFORMATIONS IN THE SYMMETRIZED MAX-ALGEBRA

Remco de Vries ∗ Bart De Schutter ∗,1 Bart De Moor ∗,2

∗ Katholieke Universiteit Leuven, Dept. ESAT-SISTA, Kardinaal Mercierlaan 94, 3001 Heverlee, Belgium, Email: {remco.devries,bart.deschutter,bart.demoor}@esat.kuleuven.ac.be

Abstract: State space transformations in the max-algebraic system theory for Discrete Event Systems (DES) are discussed. Some transformations between different realizations of a given impulse response of a DES are suggested and their limitations are illustrated. It is explained why a general result seems hard to prove.

Résumé: Nous discutons certaines transformations d’état dans la théorie des systèmes pour une classe de systèmes à événements discrets (SED). On propose des transformations entre différentes réalisations de la réponse impulsionnelle d’un SED max-algébrique donné. Nous illustrons les limitations de ces transformations et nous expliquons pourquoi un résultat général sera difficile à prouver.

Keywords: discrete event systems, transformation matrices, realization theory

1. INTRODUCTION

A class of Discrete Event Systems (DES), e.g. systems which involve synchronization, can be described by linear models provided that the usual addition is replaced by maximization and multiplication by addition. The resulting algebraic structure is called the max-algebra and a max-algebraic system theory has been developed for this class of DES, see (Baccelli et al., 1992).

One of the problems in the system theory for DES is the minimal realization problem. Given an impulse response of a system, find a state space description of minimal dimension of which the behavior is equal to the given impulse response. The minimal realization problem for DES was introduced in (Olsder, 1986), see also (Olsder and de Vries, 1988). Other results are given in e.g. (Cuninghame-Green, 1991), (Wang et al., 1995), and (De Schutter and De Moor, 1995). Up until now however, no general solution of the minimal realization problem exists.

In conventional system theory a state space transformation always exists between two minimal realizations of a given impulse response. It is investigated whether a similar statement holds true in the max-algebraic system theory of DES. Since in the max-algebra the inverse of a matrix only exists for a small class of matrices, the search for state space transformations will be extended to the symmetrized max-algebra, which is the linear closure of the max-algebra. The symmetrized max-algebra was first introduced in (Max Plus, 1990), see also (Baccelli et al., 1992) and (Gaubert, 1992).

This paper is organized as follows. In section 2 the max-algebra and the symmetrized max-algebra are discussed. Furthermore the linear, in max-algebra sense, models for a class of DES are introduced. In section 3 the minimal realization problem is discussed and it is shown why the similarity transformation problem is of interest. This problem will be discussed

1 Senior Research Assistant with the FWO (Fund for Scientific Research-Flanders)
2 Senior Research Associate with the FWO
in section 4. First some results from conventional system theory are recalled. Then possible similarity transformations for max-algebraic systems are introduced. In section 5 some concluding remarks are made. An extended version of this paper appears as (de Vries et al., 1997).

2. MAX-ALGEBRA AND EXTENSIONS

In this section a brief overview of the max-algebra and of the symmetrized max-algebra is given. For an extensive discussion see (Baccelli et al., 1992).

Let $\varepsilon = -\infty$ and $\mathbb{R}_\varepsilon = \mathbb{R} \cup \{\varepsilon\}$. For $a, b \in \mathbb{R}_\varepsilon$ the operations \oplus and \otimes are defined by

$$ a \oplus b = \max(a, b) $$

$$ a \otimes b = a + b $$

The set \mathbb{R}_ε together with the operations \oplus and \otimes will be denoted by $\mathbb{R}_{\varepsilon\text{max}}$ and is called the max-algebra. In $\mathbb{R}_{\varepsilon\text{max}}$, ε is the neutral element for \oplus while the neutral element for \otimes is 0.

The max-algebra operations are extended to matrices as follows. If $A, B \in \mathbb{R}_{\varepsilon\text{max}}^{n \times n}$ then $(A \oplus B)_{ij} = a_{ij} \oplus b_{ij}$ for all i, j. For $A \in \mathbb{R}_{\varepsilon\text{max}}^{p \times n}$ and $B \in \mathbb{R}_{\varepsilon\text{max}}^{n \times q}$, $(A \otimes B)_{ij} = \bigoplus_{k=1}^{q} a_{ik} \otimes b_{kj}$ for all i, j. Let E_n or just E denote the $n \times n$ max-algebraic unit matrix. Its entries are: $E_{ij} = \varepsilon$ for $i \neq j$ and $E_{ii} = 0$ (for $i = 1, \ldots, n$).

A problem with \mathbb{R}_{max} is that there exist no inverse elements w.r.t. \oplus. Therefore, in (Max Plus, 1990) \mathbb{S}_{max}, the linear closure of \mathbb{R}_{max}, is introduced. This structure is called the symmetrized max-plus algebra. Here the basic notions of \mathbb{S}_{max} are given.

The set \mathbb{S} consists of the following three sub-sets: $\mathbb{S}^+ = \mathbb{R}_\varepsilon$, the max-positive numbers; $\mathbb{S}^- = \{\ominus a \mid a \in \mathbb{R}_\varepsilon\}$, the max-negative numbers; and $\mathbb{S}^0 = \{a^* = a \oplus (\ominus a) \mid a \in \mathbb{R}_\varepsilon\}$, the balanced numbers. The elements in the set $\mathbb{S}^0 = \mathbb{S}^+ \cup \mathbb{S}^- \cup \mathbb{S}^0$ will be called signed. For $x, y \in \mathbb{R}_\varepsilon$ let

$$ x \oplus (\ominus y) = x $$

$$ x \oplus (\ominus y) = \ominus y $$

Furthermore, for any $x, y \in \mathbb{S}$ holds

$$ \ominus (x \oplus y) = (\ominus x) \oplus (\ominus y), \quad x \oplus (\ominus y) = \ominus (x \ominus y), \quad (\ominus x) \oplus (\ominus y) = x \ominus y, \quad (\ominus x) \ominus (\ominus y) = x. $$

These properties allow us to write $a \oplus (\ominus b) = a \ominus b$.

Let $a \in \mathbb{S}$. Define its max-positive part a^+ and its max-negative part a^- as follows. If $a \in \mathbb{S}^+$ then $a^+ = a$ and $a^- = \varepsilon$. If $a \in \mathbb{S}^-$ then $a^+ = \varepsilon$ and $a^- = a$. If $a \in \mathbb{S}^0$, then $a^+ = a^-$ and $a^0 = b$. Any element $a \in \mathbb{S}$ can then be written as $a = a^+ \ominus a^-$. Since \ominus is not cancellative, $a \ominus a \neq \varepsilon$ for $a \neq \varepsilon$, balances (\ominus) are used in the symmetrized max-algebra instead of equalities. For $a, b \in \mathbb{S}$ the balance relation is defined as

$$ a \ominus b \iff a^+ \ominus b^+ = a^- \ominus b^- . $$

From this definition it follows that for $a, b, c \in \mathbb{S}$

$$ a \ominus b \ominus c \iff a \ominus b \ominus c . $$

This implies that $a \ominus b \ominus c \iff a \ominus b \ominus c$. For $a, b \in \mathbb{S}^0$ it follows that $a \ominus b \ominus c \iff a = b$. These results imply $a^+ = a \ominus a \ominus c$. A problem with the balance relation is that it is not transitive, e.g. $1 \ominus 1^* \ominus 1$, $1^* \ominus 1 \ominus 1$ but $1 \ominus 1 \ominus 1$.

The extension of \mathbb{S}_{max} to matrices is similar to the extension of \mathbb{R}_{max} to matrices. In \mathbb{S}_{max} the determinant of an $n \times n$ matrix A is defined (as usual) as, see (Baccelli et al., 1992),

$$ \text{det}(A) = \bigoplus_{\sigma} \text{sgn}(\sigma) \bigotimes_{i=1}^{n} A_{\sigma(i)} , $$

where $\text{sgn}(\sigma)$ is the signature of the permutation σ. If σ is even, $\text{sgn}(\sigma) = 0$. If σ is odd, $\text{sgn}(\sigma) = \ominus 0$.

Next, define the transpose of the matrix of cofactors A^T by $A^T = \text{cof}(A)$, where $\text{cof}(A)$ is equal to the determinant of the matrix obtained from A by deleting its j-th row and i-th column. This matrix satisfies $A \otimes A^T \text{det}(A) \ominus E_n$ (Baccelli et al., 1992, Thm. 3.76). The ‘inverse’ of a matrix A, denoted by A^*, is then defined as $A^* \otimes \text{det}(A) = A^T$, provided that $\text{det}(A) \neq 0$.

Within the max-algebra structure, a class of Discrete Event Systems can be described by linear equations, see e.g. (Cohen et al., 1985) and (Baccelli et al., 1992) as follows

$$ x(k + 1) = A \ominus x(k) \ominus B \ominus u(k) \quad (1) $$

$$ y(k) = C \ominus x(k) . \quad (2) $$

For a production network $x_i(k)$ typically denotes the time instant machine i becomes active for the k-th time, $u(k)$ denotes the time instants outside resources become available and $y(k)$ the time instants at which the k-th production cycle is finished. The entries of A, B, and C represent transportation and/or production times. A model of the form (1)–(2) will be characterized by the triple (A, B, C) of system matrices. In this paper only single input single output (SISO) systems are considered.

If a max-algebraic unit impulse, defined by $u(k) = \varepsilon$ for $k \neq 0$ and $u(0) = 0$, is applied to the system (1)–(2) and if $x_0 = \varepsilon$, the output of the system becomes

$$ y(k) = C \ominus A^k \ominus B \ominus k \geq 1 . $$

Define

$$ g_k = C \ominus A^{k-1} \ominus B \quad k = 1, 2, \ldots , (3) $$

These values are called the Markov parameters and the sequence $\{g_k\}^{\infty}_{k=1}$ is the impulse response of the system.

3. THE MINIMAL REALIZATION PROBLEM

The minimal realization problem is the following. Given a sequence of Markov parameters $\{g_k\}^{\infty}_{k=1}$, find
matrices A, B, C such that $C \otimes A^{k-1} \otimes B = g_k$ for $k = 1, 2, \ldots$ and such that the dimension of A is as small as possible.

A starting point is the construction of the semi-infinite Hankel matrix H corresponding with the Markov parameters $\{g_k\}^\infty_{k=1}$ and given by

$$H = \begin{pmatrix} g_1 & g_2 & g_3 & \cdots \\ g_2 & g_3 & g_4 & \cdots \\ g_3 & g_4 & g_5 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Let $H_{,-j}$ denote the j-th column of H.

The following theorem is an adaptation of a similar theorem from conventional linear system theory (see e.g. (Sontag, 1990)).

Theorem 1. Given an impulse response $\{g_k\}^\infty_{k=1}$ such that for the corresponding Hankel matrix

$$H_{,-j} \oplus a_1 \oplus H_{,-j-1} \oplus \cdots \oplus a_n \oplus H_{,-j-n} \nabla \varepsilon,$$

for $i > n$, $a_i \in \mathbb{S}$ and where n is the smallest integer for which this or another dependency of this form is possible. Then the triple

$$A = \begin{pmatrix} \varepsilon & 0 & \varepsilon & \cdots & \varepsilon \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & \varepsilon \\ \varepsilon & \cdots & \cdots & \cdots & 0 \\ \oplus a_n & \cdots & \cdots & \cdots & \oplus a_1 \end{pmatrix}, \quad B = \begin{pmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{pmatrix},$$

$$C = \begin{pmatrix} 0 & \varepsilon & \cdots \end{pmatrix}$$

is a minimal realization of $\{g_k\}^\infty_{k=1}$ which satisfies

$$C \otimes A^{k-1} \otimes B \nabla g_k, \quad k = 1, 2, \ldots$$

PROOF. Direct calculation shows that the impulse response of the given system satisfies the given impulse response. Suppose a lower dimensional realization exists. Then a smaller number of successive columns of the Hankel matrix are linear independent since the resulting A-matrix satisfies its own characteristic equation (see (Olsder and Roos, 1988) and (De Schutter, 1996)) which contradicts the statement of the theorem. □

Remark: Since in general a relation of the form (6) instead of (3) holds, the realization given by (5) will be called a minimal balancing realization. The realization given by (5) will be referred to as the realization in companion form.

The use of Theorem 1 seems to be rather limited since the entries of the matrix A in (5) are not necessarily in \mathbb{R}_ε. The problem now becomes whether from (5) a realization of the given impulse response can be derived such that the entries of the resulting matrices are all in \mathbb{R}_ε. In conventional system theory a state space or similarity transformation is used to transform the realization in companion form to a desired form. Therefore, similarity transformations in the max-algebraic system theory will be discussed.

The following proposition provides another similarity between conventional system theory and the max-algebraic system theory for DES. The result is used in the next section.

Proposition 2. Let the triple (A,B,C) be a minimal balancing realization of order n of a given sequence of Markov parameters $\{g_k\}^\infty_{k=1}$. Define matrices O and R as follows

$$O = \begin{pmatrix} C \\ C \otimes A \\ \vdots \\ C \otimes A^{n-1} \end{pmatrix}, \quad R = \begin{pmatrix} B & A \otimes B & \ldots & A^{n-1} \otimes B \end{pmatrix}. $$

Then $\det(O) \nabla \varepsilon$ and $\det(R) \nabla \varepsilon$.

PROOF. See (de Vries et al., 1997). □

In conventional system theory a minimal realization is both reachable and observable. For max-algebraic systems there is no such interpretation.

Proposition 2 is valid for matrices in \mathbb{S}_{max}. For matrices with entries in \mathbb{R}_ε this proposition only holds if the minimal balancing realization and a minimal realization for which all entries of the system matrices are in \mathbb{R}_ε, are of the same order.

The opposite of Proposition 2 is not true. If a realization is not minimal, this does not necessarily imply that either $\det(O) \nabla \varepsilon$ or $\det(R) \nabla \varepsilon$, see (de Vries et al., 1997).

4. **SIMILARITY TRANSFORMATIONS**

4.1 **Conventional system theory**

In conventional system theory, see e.g. (Sontag, 1990), it is known that when a similarity transformation is applied to the system, represented by the triple (A_1,B_1,C_1), the resulting system (A_2,B_2,C_2) will have the same behavior as the original system. Furthermore, it is known that between any two minimal realizations (A_1,B_1,C_1) and (A_2,B_2,C_2) of a given impulse response a similarity transformation exists. If the similarity transformation is represented by an invertible matrix T then the relation between the two systems is in both cases given by $A_1 = TA_2T^{-1}$, $B_1 = TB_2$, $C_1 = C_2T^{-1}$.

In the max-algebra the inverse of a matrix only exists for matrices which can be written as the product of a diagonal matrix and a permutation matrix. Only for such matrices state space transformations can be defined in a similar way as in the conventional system
theory. Therefore, a more general formulation will be given in which no inverse matrices are needed.

4.2 A transformation in the max-algebra

In (De Schutter, 1996) two transformations are proposed which make it possible to derive system equivalence for a broader class of triples of system matrices. But it is also shown that such transformations may not exist between two different realizations of the same impulse response. Here a more general transformation is introduced.

Proposition 3. Let the triples \((A_1, B_1, C_1)\) and \((A_2, B_2, C_2)\) be such that: \(T \otimes A_2 = A_1 \otimes T, T \otimes B_2 = B_1\) and \(C_2 = C_1 \otimes T\). Then both triples are equivalent (i.e. they exhibit the same input/output behavior).

Proof. It follows that \(C_2 \otimes A_2^T \otimes B_2 = C_1 \otimes A_1^T \otimes B_1\) by substituting the given relations. □

It can also be shown that two triples \((A_1, B_1, C_1)\) and \((A_2, B_2, C_2)\) are equivalent when a matrix \(S\) exists such that \(S \otimes A_1 = A_2 \otimes S, S \otimes B_1 = B_2,\) and \(C_1 = C_2 \otimes S\). The matrices \(S\) and \(T\) do not have to be square. Unfortunately, these transformations may not always exist between two different realizations of the same impulse response.

Example 4. Consider the following triples

\[
A_1 = \begin{pmatrix} 6 & 9 \\ 0 & 5 \end{pmatrix}, \quad B_1 = \begin{pmatrix} 0 \\ -4 \end{pmatrix}, \quad C_1^T = \begin{pmatrix} 9 \\ 15 \end{pmatrix}, \quad (7)
\]

\[
A_2 = \begin{pmatrix} 6 & 10 \\ -1 & 5 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 0 \\ -4 \end{pmatrix}, \quad C_2^T = \begin{pmatrix} 9 \\ 15 \end{pmatrix}. \quad (8)
\]

Both triples are minimal realizations of

\[
\{B_k\}_{k=1} = 11, 16, 21, 27, 33, 39, 45, 51, \ldots \quad (9)
\]

Between \((A_1, B_1, C_1)\) and \((A_2, B_2, C_2)\) a state space transformation \(T\) exists such that \(T \otimes A_2 = A_1 \otimes T, T \otimes B_2 = B_1\) and \(C_2 = C_1 \otimes T\). The matrix

\[
T = \begin{pmatrix} 0 & 4 \\ -6 & 0 \end{pmatrix}\quad (10)
\]

satisfies these relations. It can be shown that no matrix \(S \in \mathbb{R}^{2 \times 2}\) exists such that \(S \otimes A_1 = A_2 \otimes S, S \otimes B_1 = B_2\) and \(C_1 = C_2 \otimes S\).

Another minimal realization of (9) is,

\[
A_3 = \begin{pmatrix} 6 & 10 \\ 0 & 5 \end{pmatrix}, \quad B_3 = \begin{pmatrix} 0 \\ -4 \end{pmatrix}, \quad C_3^T = \begin{pmatrix} 8 \\ 15 \end{pmatrix}. \quad (11)
\]

It turns out that the equations \(T \otimes A_3 = A_1 \otimes T, T \otimes B_3 = B_1\) and \(C_3 = C_1 \otimes T\) with the entries of the matrix \(T\) as the unknowns, do not have a solution. Hence, there is no \(T\)-transformation between \((A_1, B_1, C_1)\) and \((A_3, B_3, C_3)\). It can also be shown that no \(S\)-transformation exists. Since a state space transformation cannot always be found in the max-algebra, we will extend our search to the symmetrized max-algebra.

4.3 Balancing similarity transformations

From conventional system theory it is known (see (Sontag, 1990)) that between two minimal realizations \((A_1, B_1, C_1)\) and \((A_2, B_2, C_2)\) of an impulse response a unique state space transformation exists. The transformation matrix \(T\) is given by (for SISO systems) \(T = (O_i)^{-1} O_2 = R_i (R_j)^{-1}\) in which \(O_i, R_i\) are the observability respectively the controllability matrices of the given systems. In the following similar results are derived for systems in the max-algebra.

Proposition 5. Let the triple \((A', B', C')\) be an \(n\)-dimensional realization of a sequence of Markov parameters \((\varepsilon_i)_{i=1}^\infty\) such that all entries of the matrices are in \(\mathbb{R}_e\). Let \((A, B, C)\) be the \(n\)-dimensional minimal balancing realization of the same sequence in companion form. Assume that \(A'\) satisfies the characteristic equation of \(A\). Then a transformation matrix \(T\) such that \(T \otimes A' \vee A \otimes T, T \otimes B' \vee B, C' \vee C \otimes T\) is given by

\[
T = \begin{pmatrix} C' \otimes A' \\ \vdots \\ C' \otimes (A')^{n-1} \end{pmatrix}. \quad (12)
\]

Proof. Some computations show that \(T \otimes A' \vee A \otimes T\) where it is used that \(A'\) satisfies the characteristic equation of \(A\). Furthermore, it follows immediately that \(T \otimes B' = B\) and \(C \otimes T = C'\). Note that equality holds in these relations. □

In the following conjecture a possible similarity transformation between any two minimal realizations of a given impulse response is given. Only for a part of this conjecture a proof exists yet.

Conjecture 6. Let \((A_1, B_1, C_1)\) and \((A_2, B_2, C_2)\) be two minimal realizations and let \((A, B, C)\) be the minimal balancing realization of a sequence of Markov parameters. If \(A_1\) and \(A_2\) are of the same order as \(A\) and satisfy the characteristic equation of \(A\), then a state space transformation matrix \(T\) exists such that \(T \otimes B_2 \vee B_1\) and \(C_2 \vee C_1 \otimes T\). Under certain conditions \(T\) also satisfies \(T \otimes A_2 \vee A_1 \otimes T\). Transformation matrices are given by \(T = T_o = O_i^T \otimes O_2\) with

\[
O_i = \begin{pmatrix} C_i \\ C_i \otimes A_i \\ \vdots \\ C_i \otimes A_i^{n-1} \end{pmatrix}\quad (13)
\]

\[
R_i = (B_i, A_i, B_i, \ldots, A_i^{n-1}, B_i) \quad (i = 1, 2, \ldots).\]
A relation between those parameters is given by
\[
\text{and } (O_1)^8 \otimes O_1 \otimes B_1 = (O_1)^8 \otimes O_2 \otimes B_2. \text{ Since } (O_1)^8 \otimes O_1 \otimes V E, \text{ this implies } B_1 \nabla T_0 \otimes B_2. \text{ Similarly it is shown that } C_2 \nabla C_1 \otimes T_r.
\]

Let \((A, B, C)\) be the realization according to Theorem 1. From Proposition 5 it follows that \(C_1 = C \otimes O_1\) and \(C_2 = C \otimes O_2\). Multiplication of the former equality with \((O_1)^8 \otimes O_2\) yields \(C_1 \otimes (O_1)^8 \otimes O_2 = C \otimes O_1 \otimes (O_1)^8 \otimes O_2 \otimes C \otimes O_2 = C_2\). Analogously it is shown that \(B_1 \nabla T_0 \otimes B_2\).

The relations \(T \otimes A_2 \nabla A_1 \otimes T\) with \(T = T_0\) respectively \(T = T_0\) remain to be shown. A major problem in this case is the fact that the balance relation is not necessarily transitive. In (de Vries et al., 1997) some rather technical conditions are derived which should be satisfied.

Remark: For the triple \((A, B, C)\) given by (5) in Theorem 1 \(O = E_o\). So the transformation in Proposition 5 is a special case of the transformation in Conjecture 6.

Example 7. Consider the triples (7) and (11). In Example 4 it was shown that no \(S-\) or \(T-\)transformation exist between these triples. But
\[
T_o = \begin{pmatrix}
0 & 5 \otimes 5 \\
0 & 0
\end{pmatrix}, \quad (13)
\]
satisfies \(T_o \otimes A_3 \nabla A_1 \otimes T_o, B_1 \nabla T_o \otimes B_3, C_3 \nabla C_1 \otimes T_o\). It turns out that indeed \(T_o = (O_1)^8 \otimes O_5\).

Another transformation matrix between \((A_1, B_1, C_1)\) and \((A_2, B_2, C_2)\) is given by the matrix \(T_r = R_1 \otimes R_2 = \begin{pmatrix} 0 & 4^* \\ -5^* & 0 \end{pmatrix}\). Note that \(T_r \nabla T_o\).

Transformation matrices \(T_o\) and \(T_r\) between \((A_1, B_1, C_1)\) and \((A_2, B_2, C_2)\) given by (8) are
\[
T_o = \begin{pmatrix}
0 & 5^* \\
-5^* & 0
\end{pmatrix} \quad \text{and} \quad T_r = \begin{pmatrix}
0 & 4^* \\
-5^* & 0
\end{pmatrix}.
\]

Again \(T_o \nabla T_r\). Note that the matrix \(T_r\), given by (10), satisfies both \(T_0 \nabla T_r\) and \(T \nabla T_r\). It is conjectured that such a result holds in general.

Example 8. Consider the following sequence of Markov parameters
\[
\{g_k\}_{k=1}^\infty = 3, 5, 8, 9, 14, 15, 20, 21, \ldots \quad (14)
\]
A relation between those parameters is given by \(g_{i+3} \otimes 2 \otimes g_{i+2} \otimes 6 \otimes g_{i+1} \otimes 8 \otimes g_i \nabla e, i = 1, 2, \ldots\). There is no relation of the form (4) between any three consecutive Markov parameters. According to Theorem 1 a minimal balancing realization is given by
\[
A = \begin{pmatrix}
e & 0 & e \\ e & e & 0 \\ 8 & 6 & 2
\end{pmatrix}, \quad B = \begin{pmatrix} 3 \\ 5 \\ 8 \end{pmatrix}, \quad C^T = \begin{pmatrix} 0 & e \\ e & 0 \end{pmatrix}.
\]

A realization of \(\{g_k\}_{k=1}^\infty\) which does have all its entries in \(R_\infty\) is given by the triple
\[
A_1 = \begin{pmatrix} 2 & e & e \\ 0 & 0 & e \\ 0 & 3 & 0 \end{pmatrix}, \quad B_1 = \begin{pmatrix} 0 \\ e \end{pmatrix}, \quad C_1^T = \begin{pmatrix} 2 \end{pmatrix}.
\]

According to Proposition 5 a similarity transformation between \((A, B, C)\) and \((A_1, B_1, C_1)\) is
\[
T = \begin{pmatrix}
C_1 \\ C_1 \otimes A_1 \\ C_1 \otimes A_1^T
\end{pmatrix} = \begin{pmatrix} 2 & e & 2 \\ 5 & e & 4 \\ 6 & 6 & 8 \end{pmatrix}.
\]

With this matrix \(T\) it follows that
\[
T \otimes A_1 = \begin{pmatrix} 4 & 5 & e \\ 6 & 6 & 8 \\ 11 & 1 & 9 \end{pmatrix}, \quad T \otimes A_2 = \begin{pmatrix} 4 & 5 & e \\ 6 & 6 & 8 \\ 10 & 11 & 10 \end{pmatrix}.
\]

and hence \(T \otimes A_1 \nabla A \otimes T\). Since \(A \otimes T\) contains balanced entries \(T \otimes A_1 \neq A \otimes T\). Furthermore, \(T \otimes B_1 = B\) and \(C \otimes T = C_1\).

Another triple which realizes (14) is
\[
A_2 = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 3 \\ 0 & 3 & 1 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 0 \\ -3 \\ -1 \end{pmatrix}, \quad C_2^T = \begin{pmatrix} 3 \\ 1 \end{pmatrix}.
\]

A transformation matrix \(T_o\) between \((A_1, B_1, C_1)\) and \((A_2, B_2, C_2)\) is given by
\[
T_o = O_3^T \otimes O_2 = \begin{pmatrix} 1 & -1^* & 1^* \\ 0^* & 1 & 0^* \\ -1^* & 1 & 1^* \end{pmatrix}.
\]

The matrix \(T_r = R_1 \otimes R_2^*\) is another transformation matrix. It also satisfies \(T_r \nabla T_o\).

It is not completely clear under which conditions Conjecture 6 is valid. In the following example it does not hold.

Example 9. Consider the systems
\[
A_1 = \begin{pmatrix} 5 & -1 & 0 \\ -3 & -3 & 5 \\ -3 & -3 & -4 \end{pmatrix}, \quad B_1 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}, \quad C_1^T = \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}
\]
and
\[
A_2 = \begin{pmatrix} e & e & 5 \\ -2 & -e & 0 \\ 0 & e & 5 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 0 \\ -5 \\ -5 \end{pmatrix}, \quad C_2^T = \begin{pmatrix} 2 \\ 2 \\ 7 \end{pmatrix}.
\]

Both systems are minimal realizations of
\[
\{g_k\}_{k=1}^\infty = 2, 5, 7, 12, 17, 22, 27, 32, 37, 42, \ldots
\]

With matrix \(T_o\) from Conjecture 6 it follows
\[
T_o \otimes A_2 = \begin{pmatrix} 4 & 6 & 9 \\ 5 & 6 & 9^* \\ 2^* & 7^* \end{pmatrix}, \quad A_1 \otimes T_o = \begin{pmatrix} 2 \end{pmatrix}.
\]

So, in this case \(T_0 \otimes A_2 \nabla A_1 \otimes T_o\). A reason could be that between any four consecutive Markov parameters several relations are possible. Therefore, it is possible that there exist two realizations \((A_1, B_1, C_1)\) and
of which A_1 and A_2 have different characteristic equations, as in this example, both satisfy $C_i \otimes A_k^{i-1} \otimes B_i = g_k$ for $i = 1, 2$ and $k = 1, 2, \ldots$. Note that $T \otimes B_2 \nabla B_1$ and $C_2 \nabla C_1 \otimes T$.

5. CONCLUDING REMARKS

In this paper similarity transformations between different realizations of a given impulse response were discussed. In certain cases the existence of a similarity transformation could be proved. The transformations which were found resemble the transformations which exist in the conventional system theory. There is no general result yet. The intransitivity of the balance relation is the major obstacle. It is not obvious how to solve this problem, since the intransitivity of the balance relation follows immediately from its definition.

6. ACKNOWLEDGEMENTS

This research was sponsored by the Concerted Action Project of the Flemish Community GOA-MIPS, by the Belgian program on interuniversity attraction poles (IUAP P4-02 and IUAP P4-24), by the ALAPEDES project of the European Community Training and Mobility of Researchers Program, and by the European Commission Human Capital and Mobility Network SIMONET.

REFERENCES