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Minimal State-Space Realization in Linear System

Theory: An Overview

B. De Schutter
∗
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Abstract

We give a survey of the results in connection with the minimal state space realization
problem for linear time-invariant systems. We start with a brief historical overview and a
short introduction to linear system theory. Next we present some of the basic algorithms
for the reduction of non-minimal state space realizations and for the minimal state space
realization of infinite or finite sequences of Markov parameters of linear time-invariant
systems. Finally we discuss some extensions of this problem to other classes of systems
and point out some related problems.

1 Introduction

1.1 Overview

In this paper we give an overview of the results in connection with the minimal state space
realization problem for linear time-invariant (LTI) systems. The reason for focusing on LTI
systems is that on the one hand they form a very simple class of systems that can be analyzed
rather easily and for which many analytic and numerical results are available, but that on
the other hand they have been used to solve many problems that appear in practice in a
very satisfactory way. For sake of simplicity and conciseness, we will limit ourselves mainly
to finite-dimensional discrete-time systems with real inputs and outputs in this paper. This
choice is also motivated by the fact that most physical systems have real inputs and by
the fact that some concepts (especially the Markov parameters) have a more natural physical
interpretation for discrete-time systems than for continuous-time systems. Furthermore, most
of the techniques for discrete-time systems with real-valued inputs and outputs are also valid
for systems with complex inputs and outputs and for continuous-time systems.

In general the minimal state space realization problem for LTI systems can be formulated
as follows: “Given some data about an LTI system, find a state space description of minimal
size that explains the given data.” The data are typically the impulse response of the system,
the step response, input-output measurements, frequency response data, or more general
frequency measurements. The minimal state space realization problem starting from impulse
responses (or more general: sequences of Markov parameters) has been studied since the
early 1960s and many algorithms have been developed to solve the problem. In this paper
we will give an overview of some of these algorithms. At the end of the paper we will also
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briefly discuss the minimal state space realization problem for some other classes of dynamical
systems. Furthermore, we will also point out the relation between the minimal state space
realization problem and more involved problems such as model reduction and identification.

This paper is organized as follows. In Sections 1.2 and 1.3 we give a brief overview of the
history of linear system theory and we discuss the main differences between the state space
representation and the transfer function representation of linear systems. In Section 2 we
give a short and informal introduction to some of the basic concepts of linear system theory
that are used in this paper. In Section 3 we treat various aspects of the minimal state space
realization problem for LTI systems and discuss some algorithms for solving this problem.
Finally, we consider some related problems and extensions of the basic minimal state space
realization problem for LTI systems.

In order to limit the already large number of references in the bibliography of this paper
we have selected a small subset of possible references, thereby aiming at historical papers,
seminal papers, survey papers and reference works. Whenever we refer to a general book or
paper, the reference is also intended to encompass the references included in that work.

1.2 Some historic notes on linear system theory and state space models1

Linear systems have already been studied for a long time and from many different points of
view: in physics, mathematics, engineering, and so on. In an engineering context linear sys-
tems have been extensively studied since the 1930s. In those early days most researchers used
frequency domain techniques (i.e. input-output or transfer function descriptions). Moreover,
most of this work was done for single-input single-output (SISO) systems. At first sight the
frequency domain techniques did not seem to extend satisfactorily to the multi-input multi-
output (MIMO) systems that became increasingly important in aerospace, process control,
and econometric applications in the late 1950s. This fact, and the importance of time-varying
systems and time-domain characteristics in aerospace problems, led to a renewed interest in
the state space description of linear systems, triggered by the work of Bellman and Kalman.
The papers [18] and [32] give a good idea of the situation around 1960. The state space
formulation led to many new ideas for systems design and feedback control. In the early
1970s Popov and Rosenbrock [43] have shown that many of the scalar transfer function con-
cepts developed for SISO systems could also be extended to matrix transfer functions for
MIMO systems. Now we could say that transfer functions descriptions (which are basically
frequency domain methods) and state space descriptions (which are more oriented towards
the time domain) are only two extremes of a whole spectrum of possible descriptions of finite-
dimensional LTI systems. We can work exclusively with one description or the other, but we
can also easily translate results from one framework to another, and it really depends on the
application we have in mind which method best suits our needs.

In this paper we will only consider state space descriptions. The minimal realization
problem for transfer functions is related to Padé approximation of rational functions, a topic
that will be discussed in the contributions in this volume by Bultheel and De Moor, Guillaume,
and Wuytack [9, 23, 60] (see also Section 4.1).

In the next section we will briefly discuss some differences between the state space de-
scription and the transfer function description of a linear system.

1This section is based on [31].
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1.3 State space models versus transfer functions

The most important differences between the state space representation and the transfer func-
tion representation of a given system are [12, 48]:

• The transfer function of an LTI system describes the relation between the input and
the output of the system under the assumption that the system is initially relaxed
(i.e. the initial state is zero). Hence, if this assumption does not hold, the description
is not applicable2. In contrast to the state space description, the transfer function
representation does not reveal what will happen if the system is not initially relaxed
(e.g. observable modes can be excited due to a nonzero initial state but may not appear
in the transfer function due to pole-zero cancellation).

• The transfer function formulation does not reveal the behavior inside the system, such
as unobservable unstable modes. Therefore, the transfer function matrix cannot always
be used to study the stability properties of an LTI system. This problem of hidden
pole-zero cancellation was not really understood prior to the work of Gilbert [18] and
Kalman [32] who proved that the input-output description reveals only the controllable
and observable part of a dynamical system.

• Although most results that are available for MIMO state space descriptions can now
also be obtained in the transfer function approach, the state space formulation stays the
most elegant way of dealing with generalizations like MIMO systems or nonlinear sys-
tems. Moreover, in practice the state space formulation is very important for numerical
computations and controller design.

• The state space formulation can easily be extended to the time-varying case (see also Sec-
tion 4.7). The extension of the transfer function to the time-varying case has not been
very successful.

2 Linear system theory

In this section we give an informal introduction to some concepts of linear system theory
that will be used in the subsequent sections. The notation used in this section and the
following sections is mainly based on [31]. Unless explicitly indicated otherwise, the proofs of
the theorems and properties given below can be found in [31]. Other introductions to linear
system theory can be found in [12, 50].

2.1 Notation

The set of the real numbers is denoted by R. All the vectors that appear in this paper are
assumed to be column vectors, i.e. matrices with one column. If a is a vector then ai represents
the ith component of a. If A is a matrix then aij and (A)ij represent the entry on the ith row
and the jth column of A. To select rows, columns and submatrices of a given matrix A we use
the following Matlab-like notation. The ith row of A is denoted by A(i, :), and the jth column
by A(:, j). Let i, j with i < j be two row indices of A, and let k, l with k < l be two column

2Note that this assumption does hold for the minimal state space realization problem based on the sequence
of Markov parameters of an LTI system, which is the main topic of this paper.
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indices of A. The submatrix of A consisting of the entries on rows i, i+ 1, . . . , j and columns
k, k + 1, . . . , l is denoted by A(i:j, k :l). The submatrix of A consisting of rows i, i + 1, . . . , j
is denoted by A(i:j, :). Similarly, the submatrix of A consisting of columns k, k + 1, . . . , l is
denoted by A(:, k :l). The n× n identity matrix is denoted by In and the m× n zero matrix
by 0m,n. If the dimensions of the identity matrix or the zero matrix are not indicated, they
should be clear from the context.

2.2 Linear time-invariant systems

A system or model is said to be time-invariant if its response to any arbitrary input signal does
not depend on absolute time. Consider a time-invariant system and let S(u) be the output
of the system if the input signal u is applied to the system. Then we say that the system
is linear if for every input signal u1, u2 and for every c1, c2 ∈ R we have S(c1u1 + c2u2) =
c1S(u1) + c2S(u2). If we know and are interested in the inputs and outputs of the system at
each time instant, then we will use a continuous-time model. On the other hand, in sampled or
digital systems we often only know the signals of the system at certain discrete time instants
(e.g. at integer multiples of the sampling period). This leads to discrete-time models.

The behavior of a continuous-time LTI system with m inputs and l outputs can be de-
scribed by a model of the form

dx(t)

dt
= Ax(t) +Bu(t) (1)

y(t) = Cx(t) +Du(t) (2)

with A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×n and D ∈ R

l×m, and where u is the input of the system,
y the output and x the state. Similarly, the evolution of a discrete-time LTI system can be
described by a model of the form

x(k + 1) = Ax(k) +Bu(k) (3)

y(k) = Cx(k) +Du(k) . (4)

The models (1) – (2) and (3) – (4) are called state space models. The number of components
of the state vector x is called the order of the model. A state space model will be represented
by the 4-tuple (A,B,C,D) of system matrices.

The Markov parameters Gk of an LTI system are defined by

G0 = D and Gk = CAk−1B for k = 1, 2, . . . (5)

We say that (A,B,C,D) is a realization of the sequence {Gk}
∞

k=0
if (5) holds. The realization

is minimal if the model order is minimal. The model order of a minimal realization is called
the minimal system order or sometimes also the McMillan degree of the system.

Consider a discrete-time LTI system and assume that x(0) = 0. If we apply a unit impulse
e(·) defined by

e(k) =

{

1 if k = 0
0 otherwise,

to the ith input of the system and if we apply a zero signal to the other inputs, then the
output of the system is given by

y(0) = D(:, i) and y(k) = CAk−1B(:, i) for k = 1, 2, . . .
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This output is called the impulse3 response due to an impulse at the ith input. Note that
y(k) corresponds to the ith column of the matrix CAk−1B for k = 1, 2, 3, . . . Therefore, the
sequence D, CB, CAB, CA2B, . . . is called the impulse response of the system. Note that
the terms of this sequence corresponds to the Markov parameters of the system. So for a
discrete-time LTI system the sequence {Gk}

∞

k=0
of Markov parameters corresponds to the

impulse response of the system.

Remark 2.1 For a continuous-time LTI system the situation is a little bit more complicated:
let yi(t) be the output of a continuous-time LTI system with model (1) – (2) if we apply a
Dirac impulse to the ith input and a zero signal to the other inputs. The matrix-valued
function Y (·) = [ y1(·) y2(·) . . . ym(·) ] is called the impulse response of the system. It can
be shown that the Taylor series expansion of Y (·) around the point t = 0 is given by

Y (t) =
∞
∑

k=0

Gk

tk

k!
.

So for a continuous-time LTI system the relation between the Markov parameters and the
impulse response is given by

Gk =
dk−1Y (t)

dtk−1

∣

∣

∣

∣

∣

t=0

. (6)

2.3 Controllability and observability

Consider a 4-tuple (A,B,C,D) of system matrices of an LTI system and let N be a positive
integer. We define

ON (C,A) =











C

CA
...

CAN−1











CN (B,A) =
[

B AB . . . AN−1B
]

.

If n is the model order of the realization (A,B,C,D) then On(C,A) is called the observability
matrix of the realization and Cn(A,B) is called the controllability matrix.

A realization (A,B,C,D) is called observable if the observability matrix On(C,A) has
full rank. If a realization is observable, then we can always reconstruct the initial state x(0)
from observing the output evolution for k ≥ 0 or t ≥ 0 provided that we also know the input
evolution for k ≥ 0 or t ≥ 0.

A realization is (A,B,C,D) is called controllable if the controllability matrix Cn(A,B)
has full rank. If a realization is controllable, then for any initial state it is always possible to
design an input sequence that steers the system to a desired final state.

The concepts observability and controllability are dual in the sense that a realization
(A,B,C,D) is observable if and only if the dual realization (AT , CT , BT , D) is controllable,
and vice versa.

3Note that some authors prefer to use the term “pulse response” for the discrete-time case and reserve the
term “impulse response” for the continuous-time case. However, in this paper we follow the terminology of
[31] in which the term “impulse response” is used for both the discrete-time and the continuous-time case.
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The following theorem which is due to Kalman gives a characterization of minimal state
space realizations:

Theorem 2.2 A realization (A,B,C,D) is minimal if and only if it is controllable and ob-
servable.

In general, a state space realization of a given LTI system is not unique. Nevertheless,
minimal state space representations are unique up to a change of basis of the state space, or
equivalently, any two minimal state space realizations are connected by a unique similarity
transformation [18, 32]:

Proposition 2.3 If (A,B,C,D) and (Ã, B̃, C̃, D̃) are two minimal state space realizations
of a given LTI system, there exists a unique invertible matrix T such that

Ã = T−1AT, B̃ = T−1B, C̃ = CT and D̃ = D . (7)

Furthermore, the matrix T can be specified as T = CC̃T (C̃C̃T )−1 = ((ÕT Õ)−1ÕTO)−1 with
C = Cρ(A,B), C̃ = Cρ(Ã, B̃), O = Oρ(C,A) and Õ = Oρ(C̃, Ã) where ρ is the minimal system
order.

The similarity transformation (7) corresponds to a transformation of the state x̃(·) = Tx(·)
where x(·) and x̃(·) are the state vectors of the realizations (A,B,C,D) and (Ã, B̃, C̃, D̃)
respectively. Each choice of basis for the state space will lead to another state space repre-
sentation (i.e. other system matrices). This results in several possible canonical forms such as
the observer canonical form, the observability canonical form, the controller canonical form,
etc. [31]. Different properties stand out more clearly in different realizations, and some canon-
ical forms may have advantages in some applications. Note however that the input-output
properties of the system such as the transfer function, the Markov parameters, the impulse
response, and so on are not changed by similarity transformations.

In the next section we turn to the main topic of this paper: the minimal state space
realization problem for LTI systems.

3 The minimal state space realization problem for LTI systems

3.1 Overview

The origins of the minimal state space realization problem lie in the early 1960s. The minimal
state space realization problem for (continuous) LTI systems was first stated by Gilbert [18],
who gave an algorithm for transforming a transfer function into a system of differential equa-
tions (i.e. a state space description). A second algorithm for the problem was given around the
same time by Kalman [32]. The approach of Gilbert was based on partial-fraction expansions
and worked under the assumption that each entry of the transfer function matrix has distinct
poles. Kalman’s algorithm was based on the theory of controllability and observability and
reduced a non-minimal state space realization until it became minimal (cf. Theorem 2.2). Ho
and Kalman [26, 27] approached the minimal realization problem from an entirely new point
of view: they solved the problem starting from the sequence of Markov parameters of the
system. Their algorithm will be discussed extensively below. All these algorithms assume
that the entire sequence of Markov parameters is available. However, many times only a
limited number of Markov parameters is available. The corresponding minimal partial state
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space realization problem for MIMO systems was first explored by Kalman [34] and Tether
[54]. Later, Rissanen [42] gave a recursive solution of the SISO version of this problem (which
he claims can easily be extended to the MIMO case).

Most of the early work on the minimal state space realization problem dealt with the
realization given the sequence of Markov parameters of the system. From a system-theoretical
point of view this problem is often regarded as being somewhat academic. Nevertheless, there
are several reasons why the minimal state space realization problem for LTI systems deserves
to be studied :

• This problem is one of the most fundamental problems in system theory and can be
considered as a simplified version of problems with noisy data, nonlinear models, etc.
that occur frequently in practice. Before we deal with these more complex problems,
it is useful to study the simplified version, which might lead to additional insight in
the original problems. As such the solution of the minimal state space realization
problem can also be seen as the first step towards problems such as model reduction
and identification, which are of important practical interest.

• In order to analyze systems it is advantageous to have a compact description of the
system. The aim of the minimal state space realization problem is to find a state space
model of minimal size of the given system. Moreover, minimal realization techniques
can also be used to reduce the order of existing state space models.

• Since the minimal realization is both controllable and observable, it is a good basis for
designing an observer to estimate the states of the system from measurements of the
outputs, and also for subsequently designing a state feedback controller (using e.g. pole
placement).

• Furthermore, the minimal state space realization problem can be solved very elegantly
using linear matrix algebra methods, that can be implemented in a numerically stable
way.

The minimal state space realization problem has attracted much attention since the early
1960s, which has resulted in a wide variety of algorithms to solve the problem. In the next
sections we will discuss some of these minimal state space realization algorithms.

In the remainder of the paper we will only consider discrete-time systems since for these
systems the Markov parameters coincide with the terms of the impulse response, whereas
for continuous-time systems the relation between the Markov parameters and the impulse
response is more complicated (see Remark 2.1). Nevertheless, if we have in some way obtained
the Markov parameters of a continuous-time LTI system then the techniques discussed below
can also be used to obtain a minimal state space realization of that system. Note however
that (6) implies that matching an increasing number of Markov parameters of a continuous-
time system means placing increasing emphasis on the high-frequency behavior of the system,
which is more susceptible to noise.

In general the basic minimal state space realization methods can be classified into two
main groups:

• The first group consists of methods that start with a non-minimal realization which
could be obtained fairly easily and then reduce it to get a realization that is both
controllable and observable and therefore also minimal. These methods will be discussed
in Section 3.2.
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• The second group consists of those methods that start with the impulse response (or
Markov parameters) of the system and obtain the minimal realization directly by suit-
able transformations of the resulting Hankel matrix. These methods are treated in
Section 3.3.

Afterwards we will also consider the minimal partial realization problem in Section 3.4, and
the realization or approximation of noisy measurements of the impulse response (in Section
3.5) and the step response (in Section 3.6).

3.2 Minimal realization based on reduction of non-minimal realizations

Suppose that we have a (not necessarily minimal) nth order state space realization (A,B,C,D)
of a given LTI system. Rosenbrock [43] has developed a procedure to transform this realization
into a minimal realization in two steps. In fact, this algorithm is merely a small modification
to the standard algorithm for reducing matrices to echelon form [37]. Rosenbrock’s method
works as follows. The matrices A, B and C are put in a matrix

P =

[

A B

C 0

]

.

By applying a similarity transformation on P that consists of a sequence of elementary row
operations (such as interchanging two rows or adding the multiple of a row to another row)
on the first n rows of P and the corresponding column operations on the first n columns of
P , the matrix P can be transformed into a matrix of the form

P̃ =





A11 0 0
A21 A22 B2

C1 C2 0





def
=

[

Ã B̃

C̃ 0

]

where (A22, B2, C2, D) is controllable. Since (Ã, B̃, C̃,D) is connected to (A,B,C,D) by a
similarity transformation, it is also a realization of the given system. Furthermore, since
C̃ÃkB̃ = C2A

k
22B2 for k = 0, 1, 2, . . . , the 4-tuple (C2, A22, B2, D) is a (controllable) state

space realization of the given system. By an analogous procedure on the matrix

Q =

[

AT
22 CT

2

BT
2 0

]

we obtain an observable realization. The resulting realization is then both controllable and
observable and therefore also minimal (cf. Theorem 2.2).

A variant of Rosenbrock’s method is implemented in the minreal command of Matlab. A
stabilized version of Rosenbrock’s algorithm is given in [56]. This algorithm is implemented
in the freeware subroutine library SLICOT [7], which provides Fortran implementations of
numerical algorithms for computations in systems and control theory.

3.3 Minimal realization of impulse responses

In this section we consider the problem of constructing a minimal realization starting from
the impulse response {Gk}

∞

k=0
of the system. Note that we always have D = G0. Therefore,

the problem of reconstructing D can be separated from the construction of A, B and C.
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Many algorithms for minimal state space realization of impulse responses use the following
block Hankel matrix:

Hr,r′(G) =















G1 G2 G3 . . . Gr′

G2 G3 G4 . . . Gr′+1

G3 G4 G5 . . . Gr′+2

...
...

...
. . .

...
Gr Gr+1 Gr+2 . . . Gr+r′−1















.

Note that if (A,B,C,D) is a realization of the impulse response G then we have

Hr,r′(G) = Or(C,A)Cr′(A,B) .

We also define the shifted block Hankel matrix HN (G) as

Hr,r′(G) =















G2 G3 G4 . . . Gr′+1

G3 G4 G5 . . . Gr′+2

G4 G5 G6 . . . Gr′+3

...
...

...
. . .

...
Gr+1 Gr+2 Gr+3 . . . Gr+r′















.

The order of any minimal state space realization of the sequence G = {Gk}
∞

k=0
is given by

ρ = rankH∞,∞(G) .

This result was discovered independently by Ho [25, 26, 27], Silverman [47], and Youla and
Tissi [61].

Note that it is not always necessary to build the semi-infinite Hankel matrix H∞,∞(G) to
determine the minimal system order. Indeed, if there is a linear relation between the Markov
parameters of the form

Gr+j =
r−1
∑

k=0

αkGk+j for j = 0, 1, 2, . . . (8)

with α0, α1, . . . , αr−1 ∈ R, then we have ρ = rankHr,r(G) [26, 27]. If the system matrix A of
a (possible non-minimal) realization of the system is available, then a linear relation of the
form (8) can easily be derived from the characteristic equation of the matrix A in combination
with the Cayley-Hamilton theorem.

The use of Hankel matrices in realization theory was developed independently in the work
of Ho and Kalman [25, 26, 27], Silverman [47], and Youla and Tissi [61]. These minimal
realization algorithms can be divided into two groups:

• Some algorithms first determine the observable part of a system, and then the control-
lable part of the resulting system (or vice versa). Since the observability and control-
lability are dual concepts (see Section 2.3), the basic requirement is an algorithm for
determining the controllable part. Most algorithms achieve this by selecting a largest
set of linearly independent columns from the controllability matrix and use this set to
construct a suitable transformation matrix (which removes the uncontrollable part).
The resulting algorithms are quite complex. The algorithm of Silverman, which will be
discussed more extensively below, belongs to this group.

• Another group of algorithms is based on a decomposition of the Hankel matrix. Both
the algorithm of Ho and the algorithm of Youla and Tissi belong to this group.
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3.3.1 Silverman’s algorithm

The following theorem characterizes the sequences of Markov parameters that can be realized
by an LTI system [48]:

Theorem 3.1 An infinite sequence of Markov parameters G = {Gk}
∞

k=0
is realizable by an

LTI state space model if and only if there exist positive integers r, r′ and ρ such that

rankHr,r′(G) = rankHr+1,r′+j(G) = ρ (9)

for j = 1, 2, . . . The integer ρ then is the minimal system order.

In theory, the entire infinite sequence G is needed to determine realizability since in general it
is not true that rankHr,r′+1 = rankHr,r′ implies that (9) holds for all positive integers j [48].
However, for r large enough the rank of the Hankel matrix satisfies rankHr,r(G) = ρ where ρ

is the minimal system order.
Let r, r′ and ρ be determined as in Theorem 3.1. The method of Silverman [48, 49] is

based on finding linearly independent rows in Hr,r′(G). Let G be the submatrix of Hr,r′(G)
formed by the first ρ linearly independent rows of Hr,r′(G), and let G̃ be the submatrix of
Hr+1,r′ positioned l rows below G. Let F be the nonsingular ρ × ρ matrix formed by the
first ρ linearly independent columns of G, and let F̃ be the ρ× ρ matrix occupying the same
column positions in G̃ as does F in G. Let F1 be the l×ρ matrix occupying the same column
positions in H1,r′(G) as does F in G. If we define A = F̃F−1, B = G(:, 1:m), C = F1F

−1,
and D = G0 then (A,B,C,D) is a minimal state space realization of G.

3.3.2 Ho’s algorithm

The celebrated algorithm of Ho [26, 27] can be stated as follows:

1. Determine a linear relation of the form (8) or select r large enough (e.g. larger than or
equal to the order of another — possibly non-minimal — realization if that is available)
and define ρ = rankHr,r(G).

2. Find nonsingular matrices P and Q such that4

PHr,r(G)Q =

[

Iρ 0
0 0

]

. (10)

3. Now define

A = Eρ,rlPHr,r(G)QET
ρ,rm

B = Eρ,rlPHr,r(G)E
T
m,rm

C = El,rlHr,r(G)QET
ρ,rm

D = G0

where Ep,q is the p× q block matrix [ Ip 0p,q−p ].

4This is a standard problem in linear algebra. Apart from noting that P and Q may be taken to be lower
and upper triangular, Ho and Kalman did not specify a particular matrix decomposition to be used in [26, 27].
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This yields a minimal state space realization (A,B,C,D) of the sequence G. Related algo-
rithms using a reduced (i.e. smaller) Hankel matrix are described in [13, 44].

Note that (10) corresponds to a decomposition of the matrix Hr,r(G) as Hr,r(G) = HoHc

with Ho ∈ R
rl×ρ and Hc ∈ R

ρ×rm full rank matrices (with rank ρ). The algorithm of Youla
and Tissi [61] is also based on such a decomposition of Hr,r(G). It can be shown that for any
full rank matrix decomposition Hr,r(G) = HoHc with Ho ∈ R

rl×ρ and H
ρ×rm
c satisfying

rankHo = rankHc = rankHr,r(G) = ρ ,

there exist matrices A, B, C from a ρ-dimensional state space model such that

Ho = Or(C,A) and Hc = Cr(A,B) .

Furthermore, Hr,r(G) = HoAHc. The matrices A, B and C can then be constructed as follows:
A = H+

o HN (G)H+
c where M+ is the pseudo-inverse of the matrix M , B = Hc(:, 1:m), and

C = Ho(1:l, :).
A numerically very reliable procedure for both the full rank decomposition of Hr,r(G) and

for the construction of the pseudo-inverses H+
o and H+

c is the singular value decomposition
(SVD) [22, 28]. The SVD also yields the most reliable numerical calculation of the rank of
a matrix. The SVD of a matrix M ∈ R

m×n is a decomposition of the form M = UΣV T

with U ∈ R
m×m and V ∈ R

n×n orthogonal matrices and Σ ∈ R
m×n a diagonal matrix with

(Σ)11 ≥ (Σ)22 ≥ . . . ≥ 0. The number of nonzero diagonal entries is equal to the rank of M .
The SVD can be used for the decomposition of the Hankel matrix Hr,r(G) in the second

step of Ho’s algorithm as follows. Compute the SVD of Hr,r(G): Hr,r(G) = UΣV and define

Ho = UΣ
1

2 and Hc = Σ
1

2V T . This yields a decomposition that is equivalent to (10). The
use of the SVD for the decomposition of the Hankel matrix was introduced by Zeiger and
McEwen in their paper [62] in which they considered the problem of determining approximate
state space realizations of noisy data (see also Section 3.5).

Remark 3.2 In general the system matrices A, B, C and D that result from the minimal
realization algorithms discussed above do not exhibit a specific structure, i.e. all the system
matrices are filled with nonzero coefficients. This implies that in general all ρ(ρ+ l+m)+ lm

entries have to be computed where ρ is the minimal system order. This has motivated work
on algorithms that provide state space models with specific canonical structures such as e.g.
the method of Ackerman and Bucy [1]. This method also consists in determining a set of
linearly independent rows in the matrix Hr,r(G). The resulting realization is in the canonical
form of Bucy and has at most ρ(l +m) parameters (the other entries are fixed at either 0 or
1).

3.4 The minimal partial realization problem

Now we assume that only a finite number of Markov parameters is available. So given a
finite sequence GN = {Gk}

N
k=0

we want to find a 4-tuple (A,B,C,D) such that D = G0

and CAk−1B = Gk for k = 1, 2, . . . , N . In that case we say that (A,B,C,D) is a partial
realization of GN . Note that trivially we have D = G0. The 4-tuple (A,B,C,D) is said to
be a minimal partial realization of GN if and only if the size of A is minimal among all other
partial realizations of GN .

Clearly, a minimal partial realization always exists. However, uniqueness (even up to a
similarity transformation) is only guaranteed under certain conditions [54]:
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Proposition 3.3 Given a finite sequence GN = {Gk}
N
k=0

such that

rankHr,r′(GN ) = rankHr+1,r′(GN ) = rankHr,r′+1(GN )

for some positive integers r, r′ with r + r′ = N , then the extension of the sequence GN to the
infinite sequence G∞ = {Gk}

∞

k=N+1
for which

rankHp′,p(G∞) = rankHr′,r(G∞) = rankHr′,r(GN )

with p′ + p = N + k for k = 1, 2, . . ., is unique.

If the conditions of this proposition hold, we can still apply the algorithms that are developed
for the full minimal realization problem [34, 54]:

Proposition 3.4 The minimal partial realization problem of the sequence GN = {Gk}
N
k=0

may be solved by Ho’s algorithm if and only if there exist positive integers r and r′ with
r + r′ = N such that

rankHr′,r(GN ) = rankHr′,r(GN ) = rankHr′+1,r(GN ) (11)

The dimension of the minimal partial realization is equal to rankHr′,r.

If the rank condition (11) is satisfied then any pair of two different minimal partial realizations
of the sequence G = {Gk}

N
k=0

are connected by a similarity transformation.
Note that if the rank condition (11) is satisfied and if we have a partial realization of

{Gk}
N
k=0

, then we cannot be sure that this minimal partial realization is also a realization of
the entire sequence G∞ = {Gk}

∞

k=0
since rankHr′,r(G∞) may increase if we increase r or r′.

If we have a finite sequence GN = {Gk}
N
k=0

for which the rank condition (11) does not hold
for any positive integer r, then the only possibility for utilizing Proposition 3.4 is to try to
extend GN to a longer sequence until (11) is satisfied. There could exist many extensions that
satisfy the rank condition and each extension might yield a different minimal system order.
Therefore, we now look for the extension that yields that smallest minimal system order
among all possible extensions of GN that satisfy the rank condition (11). A characterization
of the resulting minimal system order is too complex to state here, but can be found in [34].
A similar result was discovered simultaneously and independently by Tether [54].

The procedure of reduction of a non-minimal state space representation of a finite sequence
GN of Markov parameters to a controllable and observable one does not necessarily lead to a
minimal realization of GN . A compression algorithm to reduce an arbitrary finite realization
of GN to a minimal realization is given in [21]. This paper also provides a criterion for the
minimality of a partial realization and an expression for the minimal system order.

Rissanen [42] has developed a recursive algorithm for the minimal partial state space
realization problem. His algorithm is based on a decomposition of p × q submatrices Hp,q

of the Hankel matrix H∞,∞(G) as PQ with P ∈ R
p×ρ a lower triangular matrix with 1s

on the diagonal and with certain entries of the matrix Q ∈ R
ρ×q set to 0 so that entries

in the lower triangular part of P can be computed recursively one by one and such that
the numbers already calculated do not change if extra rows or columns are added to Hp,q.
This yields an efficient algorithm for subsequently computing minimal partial state space
realizations of the finite sequences {Gk}

N
k=0

, {Gk}
N+1

k=0
, . . . where more data are taken into

account as new measurements become available. In contrast to the other minimal realization
algorithms discussed above, which require a complete recalculation of all parameters each
time a new measurement becomes available, this algorithm has the advantage that only a few
new parameters need to be calculated to extend a partial realization.

12



3.5 Minimal realization of noisy measurements of the impulse response

In practice, we will never have the exact Markov parameters of an LTI system at our disposi-
tion, but we will have measured data which are disturbed by noise. Furthermore, in practice
we will also only have a finite number of terms. Now we ask ourselves how we can extract
the underlying LTI state space model from these noisy measurements.

If the minimal system order of the underlying “real” LTI system is ρ, then the measured
sequence GN = {Gk}

N
k=0

can in general not be generated exactly by a ρth order state space
model. Furthermore, the Hankel matrix Hr,r(G) will generically be of full rank, which implies
that it is not possible to construct a low-order state space realization that exactly matches
the given sequence GN . Therefore, it may be better to make a good low-order approximation
of the sequence GN rather than to try to match it exactly. Here we already enter the field
of identification which will be discussed more extensively in Section 4.3. However, since Ho’s
algorithm can easily be extended to the special case of this section, we already treat it here.
The method presented here is due to Kung [35] and is based on the SVD:

1. Given the sequence GN = {Gk}
N
k=0

, construct a Hankel matrix Hr,r′(G) with r+r′ = N .

2. Compute the SVD of Hr,r′(G): Hr,r′(G) = UΣV T . Look how the singular values (Σ)ii
decrease as a function of the index i, and decide how many singular values are significant.
The remaining singular values will be neglected. Let ρ be the number of singular values
that are retained.

3. Construct Uρ = U(:, 1:ρ), Vρ = V (:, 1:ρ) and Σρ = Σ(1:ρ, 1:ρ).

4. Now apply Ho’s algorithm to the matrix Hred(G) = UρΣρV
T
ρ . Since Hred(G) has rank

ρ, the order of the resulting minimal state space realization will be equal to ρ.

A related algorithm is given in [62] in which the SVD was also used, but no method for
determining the resulting system order was specified.

Since in general the matrix Hred(G) will not have a block Hankel structure, the Markov pa-
rameters of the resulting realization (A,B,C,D) will not exactly match the blocks of Hred(G).

3.6 Minimal realization based on step response data

In many industrial processes we have step response measurements available instead of im-
pulse response data. A straightforward way to do the realization then is to construct impulse
response data by differencing or differentiating the step response data. However, this oper-
ation is not attractive since it will introduce an amplification of high-frequency noise in the
data. As an alternative approach for discrete-time LTI systems, it is possible to use the step
response data directly in a realization method that is a modified version of the Kung method.
This modification is due to Van Helmont, Van der Weiden and Anneveld [57], and consists in
applying similar operations as the Kung algorithm of Section 3.5 but this time on the matrix

Tr,r′ =















S1 S2 S3 . . . Sr′

S2 S3 S4 . . . Sr′+1

S3 S4 S5 . . . Sr′+2

...
...

...
. . .

...
Sr Sr+1 Sr+2 . . . Sr+r′−1















−















S0 S0 S0 . . . S0

S1 S1 S1 . . . S1

S2 S2 S2 . . . S2

...
...

. . .
...

Sr−1 Sr−1 Sr−1 . . . Sr−1
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with r + r′ = N + 1 where {Sk}
N
k=0

is the measured step response.
In practice, the measurements that are available will not necessarily be impulse response

or step response data, but general input-output data. Since these data will in general always
contain noise, an exact realization of the data by an LTI model (of low order) will not
be possible. This brings us to the topic of identification, which will be discussed in the
next section together with other related problems and extensions of the minimal state space
realization problem for LTI systems.

4 Related problems and extensions

4.1 Rational approximation

If we apply the z-transform to the discrete-time LTI state space model (3) – (4) and if we
assume that the initial condition of the system is x(0) = 0, then we obtain the following
relation between the input and the output of the system:

Y (z) = H(z)U(z)

with the transfer function H(·) of the system given by

H(z) = C(zI −A)−1B +D =
∞
∑

k=0

Gkz
−k . (12)

Since

H(z) =
1

det(zI −A)
C adj(zI −A)B +D

where adj(M) represents the adjoint matrix of M , the transfer function will always be a
rational (matrix) function.

If we have a state space representation of a system, then the transfer function can be
computed using (12). On the other hand, if we have a SISO transfer function

H(z) =

n
∑

i=0

an−iz
i

n
∑

i=0

bn−izi

of a discrete-time LTI system with b0 normalized to 1, then a possible state space represen-
tation is given by the 4-tuple (A,B,C,D) with

A =















−b1 −b2 . . . −bn−1 −bn
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
...

0 0 . . . 1 0















, B =











1
0
...
0











,

C =
[

a1 − b1a0 a2 − b2a0 . . . an − bna0
]

and D = a0 .
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A similar result holds for SISO continuous-time LTI models. For the MIMO case, the SISO
state space models that correspond to the individual transfer functions from each input to
each output, could be stacked into one large MIMO state space model. However, the result-
ing state space models will in general certainly not be minimal. Therefore, several authors
have developed methods to transform transfer function matrices into a minimal state space
realization (see e.g. [33, 41]).

Since the state space representation can be converted into a transfer function and vice
versa, we can also rephrase the minimal realization problem of Section 3.3 as follows: “Given
the sequence of Markov parameters of an LTI system, determine the transfer function of the
system with minimal McMillan degree.” Since this transfer function is a rational function,
this leads to the problem of approximation a given series by a rational function. This problem
is related to the Padé approximation problem. For more information on this topic the reader
is referred to [10, 11] and the contributions of Bultheel and De Moor, Guillaume, and Wuytack
in this volume [9, 23, 60].

4.2 Model reduction

In many practical applications high-order LTI state space models are obtained (e.g. by com-
bining models of separate components to build the model of a large plant, as the result of
a filter or controller design, and so on). It is often desirable to replace them by lower-order
models without introducing too much errors. Consequently, a wide variety of model reduction
methods have been proposed. We shall concentrate on one method since it is connected to
Ho’s algorithm. It can be shown that the state space model obtained using Ho’s algorithm
with SVD will be “balanced”. The idea of balanced realizations of systems has first been
introduced to the control area by Moore [39] and uses similarity transformations to put the
system in a form from which reduced models can be obtained. Loosely speaking, in a balanced
realization every state is as controllable as it is observable. As a consequence, the states can
be ordered in terms of their contribution to the input-output properties of the system. In
order to model reduction the states with the least contribution can be removed.

More information on this topic can be found in [19].

4.3 Identification

In practice the input-output measurements of a system will be disturbed by sensor and process
noise. Furthermore, there will be nonlinear effects, modeling errors and so on, which makes
that the given data can almost never be explained by a linear model. This brings us to the
topic of identification, where we want to determine a linear model that explains the given
data as well as possible (and that has also good generalization properties).

There are several approaches to generate a linear model of a system. We could e.g. start
from first principles and write down the basic physical laws that govern the behavior of the
system. If the resulting model is nonlinear, we could linearize it in the operating point of the
system in order to obtain a linear model. This “white-box” approach works for simple exam-
ples, but its complexity increases rapidly for real-world systems. An alternative approach is
system identification, which is also called the “black-box” approach5. In system identification
we first collect measurements of the input-output behavior of the system and afterwards we

5Note that there also exists a “grey-box” approach that is used when the state space equations of the system
are known up to some unknown parameters, which are estimated using a parameter estimation method.
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compute a model that explains the measured data. The field of identification has developed
rapidly during the past decades. We can now distinguish two main groups of algorithms
to identify linear LTI models on the basis of measured data: prediction error methods and
subspace methods. Let us now briefly discuss these two main groups of techniques.

The prediction error methods were developed by Ljung and his co-workers [36]. In pre-
diction error methods the model of the system is first parameterized in some canonical way,
and then the model parameters are determined such that the measurements are explained
as accurately as possible by the model. This is done by formulating a constrained optimiza-
tion problem with the unknown parameters of the model as variables, with a measure of the
deviation between the measured data and the predictions obtained from the model as the
objective function, and the model equations as the constraints.

In the beginning of the 1990s a new type of linear system identification algorithms, called
subspace methods, emerged. Subspace identification algorithms yield state space models and
consist of two steps [14]. Most subspace methods first estimate the states of the system
explicitly or implicitly using a projection of certain subspaces generated from the data. Next,
they determine the state space model by a linear least squares method.

So in subspace methods the identification problem is reduced to a simple least squares
problem, whereas in prediction error methods generally nonlinear optimization problems have
to be solved. Since subspace identification methods do not involve nonlinear optimization
techniques (which are in general iterative), they are faster than prediction error methods.
Another advantage is that subspace methods — provided they are implemented correctly —
have better numerical properties than prediction error methods. Furthermore, they do not
suffer from problems with local minima. The price to be paid is that subspace methods are
suboptimal.

Since giving an overview of this domain is beyond a scope of this paper, we refer the
interested reader to the following papers and books for more information on this topic. An
excellent recent overview of subspace identification methods can be found in [14]. Prediction
error methods are described in [36]. Some other key references for the field are [5, 6, 8, 51].

In the next sections we will discuss the minimal realization problem for state space models
that are not linear time-invariant. Although for most of these cases there exist theoretical
characterizations of the minimal state space realization, for almost all of the cases there
are currently no efficient algorithms to compute minimal realizations (except for the linear
time-varying case).

4.4 Positive linear systems

Positive linear systems are LTI systems for which the state and the output are always nonneg-
ative for any nonnegative input signal. Positive linear models appear when we have a system
in which the variables must take nonnegative value due to nature of the underlying physical
system. Typical examples of positive linear systems are networks of reservoirs, industrial
processes involving chemical reactors, heat exchangers and distillation columns, age-structure
population models, compartmental systems (which are frequently used for modeling transport
and accumulation phenomena of substances in human body), water and atmospheric pollu-
tion models, stochastic models with probabilities as state variables, and many other models
commonly used in economy and sociology.

So a discrete-time positive LTI system (or positive linear system for short) is a system
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that can be described by a model of the form

x(k + 1) = Ax(k) +Bu(k) (13)

y(k) = Cx(k) +Du(k) (14)

in which the components of the input, the state and the output are always nonnegative. This
implies that the entries of the system matrices A, B, C and D are also nonnegative [55].

Now we consider the minimal state space realization problem for positive linear systems:
“Given the impulse response G = {Gk}

∞

k=0
of a positive linear system, determine a positive

state space realization (A,B,C,D) of G with the dimension of A as small as possible.” Al-
though the problem of finding a finite-dimensional positive state space realization for positive
systems has been solved, the minimal positive state space realization problem has not been
solved completely yet [2]. If G = {Gk}

∞

k=0
is the impulse response of the system, then in

contrast to general discrete-time LTI systems, the rank of the Hankel matrix H∞,∞(G) is
only a lower bound for the minimal positive system order, and there are systems for which
the actual minimal positive system order is larger than the rank of the Hankel matrix. In
general the minimal positive system order can be characterized as follows [55]:

Proposition 4.1 Given the impulse response G = {Gk}
∞

k=0
of a positive linear system with

l inputs, the minimal positive system order is equal to the smallest integer ρ for which there
exist matrices Ho ∈ R

∞×ρ, Hc ∈ R
ρ×∞ and A ∈ R

ρ×ρ such that

H∞,∞(G) = HoHc (15)

HoA = Ĥo (16)

where Ĥo is the matrix obtained by removing the first l rows of Ho.

However, there exist no efficient algorithms to compute a minimal decomposition of the form
(15) – (16). It is easy to verify that if we have a minimal decomposition of the form (15) – (16)
of H∞(G) then the 4-tuple (A,Hc(:, 1:m), Ho(1:l, :), G0) is a minimal state space realization
of the given impulse response. More information on this problem can be found in [17, 55].

4.5 Max-plus-algebraic models

In this section we focus on state space models for a class of discrete-event systems. Typical
examples of discrete-event systems are manufacturing systems, telecommunication networks,
railway traffic networks, and multi-processor computers. One of the characteristic features
of discrete-event systems, as opposed to the continuous-variable systems6 considered above,
is that their dynamics are event-driven as opposed to time-driven. An event corresponds
to the start or the end of an activity. For a manufacturing system possible events are: the
completion of a part on a machine, a machine breakdown, or a buffer becoming empty.

In general, models that describe the behavior of discrete-event systems are nonlinear,
but there exists a class of discrete-event systems for which the model becomes “linear” when
formulated in the max-plus algebra, which has maximization (represented by ⊕) and addition
(represented as ⊗) as its basic operations. Loosely speaking, this class of discrete-event
systems can be characterized as the class of deterministic time-invariant discrete-event systems
in which only synchronization and no concurrency occurs. If we write down a model for the

6I.e. systems the behavior of which can be described by difference or differential equations.
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behavior of such a system, then the operations maximization and addition arise as follows.
Synchronization corresponds to maximization (a new activity can only start when all the
preceding activities have been finished, i.e. after the maximum of the finishing times of the
preceding activities), whereas the duration of activities corresponds to addition (the finishing
time of an activity is the starting time plus the duration of the activity). This leads to a
model of the following form7:

x(k + 1) = A⊗ x(k)⊕B ⊗ u(k) (17)

y(k) = C ⊗ x(k) . (18)

For a manufacturing system, u(k) would typically represent the time instants at which raw
material is fed to the system for the (k + 1)th time, x(k) the time instants at which the
machines start processing the kth batch of intermediate products, and y(k) the time instants
at which the kth batch of finished products leaves the system.

Note that the description (17) – (18) closely resembles the state space description (3) – (4)
for discrete-time LTI systems, but with + replaced by ⊕ and × by ⊗. Therefore, we say that
(17) – (18) is a max-plus-linear model, i.e. a model that is linear in the max-plus algebra.

The reason for using the symbols ⊕ and ⊗ to denote maximization and addition is that
there is a remarkable analogy between ⊕ and addition, and between ⊗ and multiplication:
many concepts and properties from conventional linear algebra and linear system theory (such
as the Cayley-Hamilton theorem, eigenvectors and eigenvalues, Cramer’s rule, . . . ) can be
translated to the max-plus algebra and max-plus-algebraic system theory by replacing + by
⊕ and × by ⊗. However, since there does not exist a max-plus-algebraic equivalent of the
minus operator, we cannot straightforwardly transfer all the techniques from linear system
theory to the max-plus-algebraic system theory.

We can also define the minimal state space realization problem for max-plus-linear time-
invariant discrete-event systems. This problem is strongly related to the minimal realization
problem for positive linear systems that was considered in the previous section (e.g. with the
proper change of notation, Proposition 4.1 also holds for max-plus-linear time-invariant sys-
tems). Just as for positive linear systems, there are currently no efficient, i.e. polynomial-time,
algorithms to solve the general max-plus-algebraic minimal state space realization problem,
and there are strong indications that the problem is at least NP-hard. Nevertheless, there are
also some special cases for which efficient algorithms exist. An recent overview of the current
status of research and the open questions in connection with this problem is given in [15, 40].

4.6 Multi-dimensional minimal state space realization

In recent years there has been an increasing interest in the study of multi-dimensional sys-
tems, due to a wide range of applications in image processing, seismological data, geophysics,
computer tomography, control of multi-pass processes, and so on. An n-dimensional state
space model has the following form:

⋆

x = Ax+Bu(i1, i2, . . . , in)

y(i1, i2, . . . , in) = Cx+Du(i1, i2, . . . , in)

7The max-plus-algebraic matrix sum and product are defined in the same way as in linear algebra but with

+ replaced by ⊕ and × by ⊗. So (A ⊕ B)ij = aij ⊕ bij = max(aij , bij) and (A ⊗ B)ij =
⊕

k

aik ⊗ bkj =

max
k

(aik + bkj).
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with

⋆

x =







































x11(i1 + 1, i2, . . . , in)
x12(i1, i2 + 1, . . . , in)

...
x1n(i1, i2, . . . , in + 1)

x21(i1 + 1, i2, . . . , in)
x22(i1, i2 + 1, . . . , in)

...
x2n(i1, i2, . . . , in + 1)

...
xmn(i1, i2, . . . , in + 1)







































and x =







































x11(i1, i2, . . . , in)
x12(i1, i2, . . . , in)

...
x1n(i1, i2, . . . , in + 1)

x21(i1, i2, . . . , in)
x22(i1, i2, . . . , in)

...
x2n(i1, i2, . . . , in)

...
xmn(i1, i2, . . . , in)







































.

The minimal state space realization problem and the model reduction problem play an impor-
tant role in the analysis and design of multi-dimensional systems because of the large amount
of data involved in multi-dimensional signal processing. However, the general problem of
minimal state space realization of multidimensional systems has not been solved even for
2-dimensional systems. Nevertheless, for some special cases minimal state space realization
methods have been derived. For more information the interested reader is referred to [3, 38]
and the references therein.

4.7 Linear time-varying models

The system matrices in the state space models of the previous sections were constant over
time. However, we can also consider time-varying linear systems in which the system matrices
also depend on time:

xk+1 = Akxk +Bkuk

yk = Ckxk +Dk .

Some authors even consider models in which the dimensions of the system matrices may
change over time. Minimal state space realizations for linear time-varying systems can also
be characterized as being both controllable and observable [16]. Furthermore, the algorithm
of Youla and Tissi can be extended to yield minimal state space realizations for time-varying
linear systems. We refer to [4, 16, 20, 45] for more information on this topic.

4.8 Nonlinear models

When we use linear models to model physical systems, we are making some assumptions that
correspond to an idealization of the real world, which is in fact nonlinear. Although LTI
models turn out to be able to approximate many real-world systems and processes very well
in practice, sometimes nonlinear models are required. In general a discrete-time nonlinear
time-invariant model has the following form:

xk+1 = f(xk, uk)

yk = g(xk, uk) .

We can also define a state space realization and a minimal state space realization for nonlinear
systems. In analogy with linear systems, some authors define a minimal realization of a
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nonlinear system as a realization that is both controllable and observable [53]. However,
where for a linear systems the dimension of the minimal realization can easily be determined
from the impulse response or input-output data of the system, the situation is far more
complicated for nonlinear systems. For more information in this context, the reader is referred
to [24, 29, 30, 46, 53].

There are many other classes of linear and nonlinear time-invariant or time-varying sys-
tems (such as linear systems that operate on finite fields or integers (instead of real numbers),
descriptor systems, periodic systems, . . . ) for which minimal state space realization results
exist, but it would be beyond the scope of this paper to discuss them all. More information
on this topic can be found in [31, 52, 58, 59] and the references therein.

5 Conclusion

In this paper we have given an overview of the minimal state space realization problem for
linear time-invariant systems and discussed some related problems and extensions. The basic
problem has been solved satisfactorily since the mid 1960s and has led to a renewed research
in various fields such as model reduction, approximation and identification. Especially for
general nonlinear systems and special classes of nonlinear systems there still is much active
research going on.
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