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Model Predictive Control for Freeway Networks
Based on Multi-Class Traffic Flow and Emission

Models
Shuai Liu, Hans Hellendoorn, and Bart De Schutter

Abstract—In this paper we develop and investigate some
multi-class macroscopic traffic flow and emission models: a new
multi-class METANET model, and two new emissions models:
multi-class VT-macro and multi-class VERSIT+. To allow
comparison with the new multi-class METANET model, we
also extend the first-order multi-class traffic flow model
FASTLANE with variable speed limits and ramp metering.
These new multi-class macroscopic traffic flow and emission
models are used as prediction models in online model
predictive control for freeway networks. Besides, end-point
penalties are also included to account the future extension of
the traffic systems beyond the prediction horizon. A simulation
experiment is implemented to evaluate the multi-class models.
The results show that the approaches based on multi-class
METANET and the developed emission models (multi-class
VT-macro or multi-class VERSIT+) can improve the
performance for total time spent and total emissions w.r.t. the
non-control case, and they are more capable of dealing with the
queue length constraints than the approaches based on
FASTLANE for the setting in our experiment. Including
end-point penalties can further improve the performance for
the approaches based on multi-class METANET, but not for
the approaches based on FASTLANE, probably due to the less
reliable estimations of end-point penalties.

I. INTRODUCTION

Traffic management can be used to prevent traffic
congestion and to reduce traffic emissions and fuel
consumption. There are many ways to realize traffic
management. Online model-based control is a popular
approach in literature [1–5], and it can provide satisfying
performance since it takes the predicted future evolution of
traffic flows into account. In this kind of control approach,
traffic models are necessary to describe the evolution of
traffic states. Hence, appropriate traffic models are important
for efficient online model-based traffic control. Many traffic
models have been developed for describing traffic flows,
emissions, and fuel consumption. In general, microscopic
models are more accurate than macroscopic models because
they describe the states of individual vehicles. However, this
also implies that microscopic models are often
time-consuming when simulating large-scale networks. In
order to reduce the computation load, macroscopic traffic
models are often used in online model-based traffic control.
Many macroscopic models are homogeneous, and this means
that the differences among different kinds of vehicles are
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neglected. Real traffic networks subsume various types of
vehicles, such as cars, vans, trucks, etc. This leads to the
need of macroscopic models that can describe the
heterogenous nature of real traffic networks. These models
are called multi-class traffic models. Many performance
indicators can be adopted in traffic management, such as
total time spent, total emissions, and total fuel consumption.
Therefore, both traffic flow models and emission and fuel
consumption models are needed for traffic management
aiming at the above-mentioned performance indicators.

Several multi-class macroscopic traffic flow models have
been developed. Wong and Wong [6] extended the
Lighthill-Whitham-Richards (LWR) model [7, 8] to a
multi-class version, in which the essential characteristics of
each vehicle class remain unchanged. More specifically, the
states of each vehicle class are calculated through its own
fundamental diagram by using the total density. Logghe [9]
also developed a multi-class version of the LWR model,
where each class is subject to its own fundamental diagram,
and is limited within an assigned space of the road. Van Lint
et al. [10] proposed the FASTLANE model, which is a
first-order multi-class macroscopic model. Here dynamic
passenger car equivalents are used to describe different
vehicle classes, taking into account the differences in the
space occupied by a vehicle class under different traffic
conditions (e.g. different densities). Caligaris et al. [1]
extended the macroscopic model described in [11] by
accounting for two different vehicle classes. They used the
steady-state relation between speed and density for
representing the interference between these two vehicle
classes they used. Deo et al. [12] proposed a multi-class
version of the METANET model [13, 14] in which
passenger car equivalents are used to represent different
vehicle classes. Here the desired speed of each vehicle class
is computed through a convex combination of the desired
speeds of all vehicle classes, which reduces the heterogeneity
of this model. The METANET model is a second-order
model, which is in general more accurate than a first-order
model. This is due to the fact that second-order models can
capture phenomena that cannot be described by first-order
models [15–17], such as FASTLANE. In addition, the
METANET model can reproduce capacity drop near
on-ramps and in shock waves; this is very important for
online model-based traffic control [16]. Note, however, that a
second-order model in general makes the computation more
complex than a first-order model. Hence, a trade-off between
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computation complexity and accuracy should be considered
for online model-based control.

Traffic emission and fuel consumption models are
necessary for the reduction of traffic emissions and fuel
consumption in online model-based traffic control. Many
microscopic emission and fuel consumption models have
been developed for describing the emissions and fuel
consumption of individual vehicles. These emission and fuel
consumption models can be classified according to their
inputs. Some emission and fuel consumption models use the
vehicle speed as input, such as COPERT [18, 19] and PHEM
[20]. However, other emission and fuel consumption models
use both the speed and the acceleration as inputs, e.g.
VT-micro [21], VERSIT+ [22, 23]. For online model-based
control, macroscopic models are needed for reducing the
computation load. Csikos et al. [3] extended the COPERT
model into a macroscopic version by introducing the concept
of the spatiotemporal window. Zegeye et al. [4] developed
the VT-macro model by integrating the VT-micro model with
METANET. In comparison with the macroscopic version of
the COPERT model, the VT-macro model does not only use
the speed but also the acceleration as input. However, the
VT-macro model is still homogeneous, i.e., all vehicles are
assumed to have the same physical characteristics. When the
VT-macro model is applied in a multi-class setting, a
multi-class version needs to be developed, which will also be
done in this paper.

The contributions of this paper are as follows.

• A new multi-class METANET model: Inspired by the
approach used for deriving a multi-class version of the
LWR model [9], we develop a new multi-class
METANET model. In order to obtain more
heterogeneity, desired speeds are computed in a
different way than the multi-class METANET developed
by Deo et al. [12].

• Extensions of FASTLANE: For applying FASTLANE in
Model Predictive Control (MPC) for traffic network, we
incorporate ramp metering and variable speed limit in
FASTLANE.

• Extensions of VT-macro model to be multi-class: We
extend the VT-macro model into a multi-class version,
so that it can be used in a multi-class setting.

• A multi-class VERSIT+ model: Since we intend to use
the VERSIT+ model together with multi-class
macroscopic traffic flow models, we will develop a
multi-class macroscopic version of this model.
Considering that jerk (the derivative of acceleration) is
also one of the measurements [24], extending the
VERSIT+ model by including jerk as an input is also
possible.

• End-point penalties: We propose to include end-point
penalties in the objective function, so that the
differences among vehicles that are at different positions
can be captured.

For investigating these multi-class macroscopic traffic
models, we apply them in an online model-based traffic
control system. MPC is used as the control approach,

considering that it can deal with nonlinear systems,
multi-criteria optimization, and constraints. The Total Time
Spent (TTS) and the Total Emissions (TE) are both included
in the objective function of the online model-based traffic
control, since we want to achieve a balanced trade-off
between these two performance indicators.

This paper is organized as follows. In Section II, we
present the relevant traffic models METANET and
FASTLANE. In Section III, we introduce the relevant
emission models VT-macro and VERSIT+. Next we develop
multi-class METANET, and extend FASTLANE with speed
limits and ramp metering in Section IV. We also develop
new emission models: multi-class VT-macro and multi-class
VERSIT+ in Section V. In Section VI, we develop online
MPC for freeway traffic networks. After that, a simulation
experiment is implemented in Section VII to compare the
efficiency of the proposed multi-class macroscopic traffic
models for model-based online traffic control.

II. TRAFFIC FLOW MODELS

A. METANET

The METANET model [13, 14] is a second-order
macroscopic model that describes traffic networks with
uniform links corresponding to freeway stretches. Nodes are
used to represent on-ramps, off-ramps, or other changes in
geometry. Each link is divided into several homogenous
segments, which are similar with the concept of cells in
FASTLANE. These segments are characterized by segmental
variables: traffic density (ρm,i(k)), space mean speed
(vm,i(k)), and outflow (qm,i(k)) in segment i of link m at time
step k. The evolution of these variables is described through
the following equations

qm,i(k) = µmρm,i(k)vm,i(k) (1)

ρm,i(k+1) = ρm,i(k)+
T

Lmµm
(qm,i−1(k)−qm,i(k)) (2)

vm,i(k+1) = vm,i(k)+
T
τ
(V (ρm,i(k))− vm,i(k))

+
T
Lm

vm,i(k)(vm,i−1(k)− vm,i(k))

− T η
Lmτ

ρm,i+1(k)−ρm,i(k)
ρm,i(k)+κ

(3)

V (ρm,i(k)) = vfree,m exp
[
− 1

am

(
ρm,i(k)
ρcrit,m

)am
]

(4)

where V (ρ) is the desired speed at density ρ , vfree,m is the
free flow speed of link m, ρcrit,m is the critical density of link
m, and τ , η , κ , and am are model parameters. Node equations
that describe flows between adjacent segments can be found
in [25].

A variable speed limit can be included by modifying the
desired speed expression. According to Hegyi et al. [25], one
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way to incorporate a variable speed limit is

V (ρm,i(k)) = min

(
vfree,m exp

[
− 1

am

(
ρm,i(k)
ρcrit,m

)am
]
,

(1+δm)vSL,m,i(k)

)
(5)

where vSL,m,i is the speed limit that is applied in segment i
of link m, and 1+δm is the non-compliance factor of link m,
which allows for modeling enforced and unenforced variable
speed limits.

Besides, the lengths of the queues at mainstream origins
and on-ramp origins are described by

wo(k+1) = wo(k)+T (do(k)−qo(k)) (6)

where wo is the queue length at origin o, do is the demand at
origin o, and qo is outflow at origin o.

For a mainstream origin, the outflow is

qo(k) = min
[

do(k)+
wo(k)

T
,qlim,m,1(k)

]
(7)

where qlim,m,1 is the maximal inflow of the first segment of
link m that is connected to the origin:

qlim,m,1(k) =



µmρcrit,mvlim,m,1(k)
[
−am ln

(
vlim,m,1(k)

vfree,m

)] 1
am

,

if vlim,m,1(k)<V (ρcrit,m)

µmρcrit,mV (ρcrit,m),
if vlim,m,1(k)>V (ρcrit,m)

(8)

where vlim,m,1(k) = min(vcontrol,m,1(k),vm,1(k)) is the speed
that limits the flow, with vcontrol,m,1 the speed limit of
segment (m,1).

For an on-ramp origin, the outflow is determined by:

qo(k) = min

[
do(k)+

wo(k)
T

,Coro(k),Co

(
ρmax,m −ρm,1(k)
ρmax,m −ρcrit,m

)]
(9)

where Co is the capacity of on-ramp o, (m,1) is the index
of the segment that the on-ramp is connected to, and ρmax,m
is the maximum density of link m. For more details about
METANET and its extensions, we refer to [13], [14] and [25].

B. FASTLANE

FASTLANE [26, 27] is a first-order multi-class traffic flow
model that is represented by links (indexed by m), where each
link is divided into several homogeneous cells (indexed by i).
In the ensuing, the index c is used to denote vehicle classes.
Here we give the discrete-time form of the FASTLANE model,
since we use it within a MPC framework in this paper.

FASTLANE is a multi-class version of the LWR model.
The main feature of FASTLANE is that it uses dynamic
passenger car equivalents (pce) to transform different vehicle
classes to a representative vehicle class. The different space
occupied by vehicles under different traffic conditions

(different traffic densities) is taken into account in the
dynamic pce. In FASTLANE, the dynamic pce (ηm,i,c) value
is defined as

ηm,i,c =
sc +Th,c · vm,i,c

s1 +Th,1 · vm,i,1
(10)

in which vm,i,c is the speed of vehicles of class c in cell i of link
m, sc is the class-specific gross stopping distance of vehicles of
class c, and Th,c is the class-specific minimum time headway
of vehicles of class c. The index 1 denotes the reference class.

Based on dynamic pce, the effective density1 (ρefc
m,i) in cell

i of link m is defined as

ρefc
m,i =

nc

∑
c=1

ηm,i,cρm,i,c (11)

where ρm,i,c is the density1 of vehicles of class c in cell i of
link m, and nc is the number of vehicle classes.

Since we use MPC in this paper, the discrete-time form of
(11) is given as follows:

ρefc
m,i(k) =

nc

∑
c=1

ηm,i,c(k−1)ρm,i,c(k) (12)

where k is the time step counter, which corresponds to the
time instant t = kT .

The basic equations for computing flow, density, and speed
are

qm,i,c(k) = µmρm,i,c(k)vm,i,c(k) (13)

ρm,i,c(k+1) = ρm,i,c(k)+
T

Lmµm

(
qi−1,i

m,c (k)−qi,i+1
m,c (k)

)
(14)

vm,i,c(k) =Vc(ρefc
m,i(k))

=


vfree

m,c −ρefc
m,i(k)

(vfree
m,c−vcrit

m,c)

ρcrit
m

for ρefc
m,i(k)< ρcrit

m

vcrit
m,cρcrit

m

ρefc
m,i(k)

(
1− ρefc

m,i(k)−ρcrit
m

ρmax
m −ρcrit

m

)
for ρefc

m,i(k)≥ ρcrit
m

(15)

where qm,i,c is the flow of vehicles of class c in cell i of link
m, qi,i+1

m,c is the flow of vehicles of class c from cell i to cell
i+1, vfree

m,c is the free flow speed of vehicles of class c in link
m, vcrit

m,c is the joint critical speed for all vehicle classes, ρcrit
m

is the joint critical density1 for all vehicle classes, ρmax
m is the

effective maximum density1 in link m, µm is the number of
lanes of link m, T is the simulation time interval, and Lm is the
cell length, satisfying the constraint T

Lm
≥ maxc=1,...,nc{vfree

m,c}.
The traffic demand of cell i needs to be distributed among

different vehicle classes, according to the traffic composition
of cell i. This composition is represented by the flow ratio
λm,i,c:

λm,i,c(k) =
ηm,i,c(k)qm,i,c(k)

∑nc
c=1 ηm,i,c(k)qm,i,c(k)

(16)

1The effective density ρefc
m,i , the critical density ρcrit

m , and the effective
maximum density ρmax

m are in pce/km/lane, the density of vehicles of class c
in cell i of link m is in vehicle/km/lane.
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The class-specific flow from cell i to i+ 1 is described as
follows:

qi,i+1
m,c (k) =

1
ηm,i,c(k)

min
(

Dm,i,c(k),λm,i,c(k)Sm,i+1(k)
)

(17)

where the demand Dm,i,c and supply Sm,i are defined as

Dm,i,c(ρefc
m,i(k)) =


µmηm,i,c(k−1)ρm,i,c(k)Vc(ρefc

m,i(k))
for ρefc

m,i(k)< ρcrit
m

µmλm,i,c(k)ρcrit
m vcrit

m,c for ρefc
m,i(k)≥ ρcrit

m
(18)

Sm,i(ρefc
m,i(k)) =

 µmρcrit
m vcrit

m,c for ρefc
m,i(k)< ρcrit

m

µmρefc
m,i(k)Vc(ρefc

m,i(k)) for ρefc
m,i(k)≥ ρcrit

m
(19)

For more details about FASTLANE, we refer to [26, 27].

III. TRAFFIC EMISSION MODELS

A. VT-Macro

The VT-macro model [4] is a macroscopic emission and
fuel consumption model. It has been developed based on an
integration of the VT-micro model [21] and the METANET
model. However, it is possible to use the VT-macro model
together with other macroscopic traffic flow models. VT-micro
is a microscopic emissions and fuel consumption model, i.e., it
yields the emissions and fuel consumption rate of an individual
vehicle. This model requires the speed and the acceleration of a
single vehicle as inputs. However, the METANET model only
yields the space-mean speeds of segments. The accelerations
can be derived from the METANET model as follows [4].

For each segment, two acceleration components are
considered: inter-segment acceleration and cross-segment
acceleration. They are defined as follows:

ainter
m,i (k) =

vm,i(k)− vm,i(k−1)
T

(20)

across
α,β (k) =

vβ (k)− vα(k−1)
T

(21)

where the indices α and β represent different adjacent
segments, on-ramps, or off-ramps. The numbers of vehicles
that correspond to these two accelerations are

ninter
m,i (k) = Lmµmρm,i(k)−T qm,i(k) (22)

ncross
α,β (k) = T qα(k) (23)

Based on the accelerations, the VT-macro model yields the
estimates of emission rates and fuel consumption rates of
segments:

Jinter
y,m,i(k) = ninter

m,i (k)exp
(

ṽT
m,i(k)Pyãinter

m,i (k)
)

(24)

Jcross
y,α,β (k) = ncross

α ,β (k)exp
(

ṽT
α(k)Pyãcross

α ,β (k)
)

(25)

where Py is a model parameter matrix,
y ∈ Y = {CO,NOx,HC, fuel}, and ṽm,i, ãinter

m,i , ṽα , and ãcross
α,β

are vectors in the form of x̃ = [1 x x2 x3]T .

The VT-macro model does not yield estimates of the
emission rate of CO2. According to [28, 29], an approximate
affine relationship exists between CO2 emission rate and fuel
consumption rate. Thus, the CO2 emission rate (JCO2,m,i) can
be estimated through

JCO2,m,i(k) = γ1vm,i(k)+ γ2Jfuel,m,i(k) (26)

where γ1 and γ2 are model parameters, and Jfuel,m,i is the fuel
consumption rate given by

Jfuel,m,i(k) = Jinter
fuel,m,i(k)+ ∑

α∈Iup

Jcross
fuel,α,(m,i)(k) (27)

where Iup is the set that includes all the upstream segments
and origins that connect to segment (m, i).

B. VERSIT+

The VERSIT+ model [22, 23] is a microscopic emission
model developed based on a large number of emission tests.
It is able to predict emissions at different geographical scales.
The VERSIT+ model requires speed-data profile as input. In
the latest version of VERSIT+ [23], the emission rate Jy is
estimated as follows:

Jy(k) =


u0,y if v < 5, a < 0.5
u1,y +u2,yz++u3,y(z−1)+ if v < 50
u4,y +u5,yz++u6,y(z−1)+ if 50 < v < 80
u7,y +u8,y(z−0.5)++u9,y(z−1.5)+ if v > 80

(28)

where the function (x)+ is defined as follows: (x)+ = 0 for x<
0, and (x)+ = x for x> 0, y represents emission categories (e.g.
CO2, NOx, and PM102), u0,y, . . . ,u9,y are model parameters,
and z is defined as

z = a+0.014v (29)

in which v is the speed of a single vehicle in km/h, and a is
the acceleration of a single vehicle in m/s2.

IV. NEW TRAFFIC FLOW MODELS

In this paper, we aim to develop online MPC for traffic
networks. Considering the trade-off between computation
complexity and accuracy, multi-class macroscopic traffic flow
models will be adopted. In the ensuing, we represent the
new multi-class METANET model and the extensions on
FASTLANE.

A. Multi-Class METANET

Based on the method that is used by Logghe for developing
the multi-class LWR model [9], we propose a new multi-class
METANET model. The new multi-class METANET model is
developed based on the following assumptions [9]:

• User optimum: all vehicles try to minimize their travel
time, and to maximize their speeds. Vehicle classes are
divided over the total road space in such a way that a

2PM10 represents respirable suspended particle in the atmosphere, i.e.,
particles with diameter of 10 micrometres or less.
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vehicle cannot increase its speed without slowing down
slower vehicles.

• Optimal road use: it is assumed that a vehicle class never
occupies more space than necessary.

In particular, it is assumed that each vehicle class is
constrained within an assigned space of the road, being
subject to its own fundamental diagram:

qm,i,c = αm,i,cQc

(
ρm,i,c

αm,i,c

)
(30)

(31)

where Qc(ρm,i,c) = µmρm,i,cvm,i,c is the flow function of
vehicles of class c, and αm,i,c is the road fraction of vehicle
class c defined as the ratio between the assigned space and
the whole road space. The road fractions for different classes
of vehicles are always positive, with the sum of all fractions
limited by 1:

αm,i,c > 0 (32)
nc

∑
c=1

αm,i,c 6 1 (33)

The class-specific density ρm,i,c, outflow qm,i,c, and queue
length wo,c are computed through single-class equations (see
Section II-A). However, class-dependent parameters (τm,c,
ηm,c, κm,c, ρcrit,m,c, vfree,m,c, am,c, and δm,c) are necessary for
computing the speed vm,i,c and the origin flow qo,c. These
two variables are described through the following equations:

vm,i,c(k+1) = vm,i,c(k)+
T

τm,c

(
Vm,c

(
ρm,i,c(k)
αm,i,c(k)

)
− vm,i,c(k)

)
+

T
Lm

vm,i,c(k)(vm,i−1,c(k)− vm,i,c(k))

−
T ηm,c

Lmτm,c

ρm,i+1,c(k)−ρm,i,c(k)
ρm,i,c(k)+ρcrit,m,cκm,c

(34)

in which

Vm,c

(
ρm,i,c(k)
αm,i,c(k)

)
= vfree,m,c exp

(
−1
am,c

(
ρm,i,c(k)/αm,i,c(k)

ρcrit,m,c

)am,c
)

(35)

The desired speed with a variable speed limit is

Vm,c

(
ρm,i,c(k)
αm,i,c(k)

)
= min

(
vfree,m,c exp

(
−1
am,c

(
ρm,i,c(k)/αm,i,c(k)

ρcrit,m,c

)am,c
)
,

(1+δm,c)vSL,m,i(k)

)
(36)

In addition, the outflow of vehicles of class c at origin o is

qo,c(k) = min

[
do,c(k)+

wo,c(k)
T

,αm,1,c(k)Co,cro(k),

αm,1,c(k)Co,c

(
ρmax,m,c −ρm,1,c(k)/αm,1,c(k)

ρmax,m,c −ρcrit,m,c

)]
(37)

where do,c is the demand of vehicles of class c at origin o,
αm,1,c is the space fraction of vehicle class c in the segment
to which the origin o is connected, Co,c is the theoretical
maximum capacity of origin o if there would be only
vehicles of class c, ρmax,m,c is the theoretical maximum
density of the link m that connects to the origin if there
would be only vehicles of class c, and ρm,1,c is the density of
vehicles of class c in the segment that connects to the origin.

According to different densities, three traffic regimes are
considered here: free flow, congestion, and semi-congestion.

1) Free-Flow: In free-flow regime, the density of each
vehicle class in its assigned space of the road is less than or
equal to the critical density of that class.

The constraint that separates the free-flow regime from the
semi-congestion regime is

nc

∑
c=1

ρm,i,c(k)
ρcrit,m,c

6 1 (38)

The constraint (38) is derived from (33) and the following
sufficient and necessary condition for the free-flow regime:

ρm,i,c(k)
αm,i,c(k)

6 ρcrit,m,c for all c (39)

In order to have all classes of vehicles in the free-flow
regime, the relation (39) should hold. According to (38) and
(39), we define the space fraction of vehicle class c as

αm,i,c(k) =
ρm,i,c(k)/ρcrit,m,c

∑nc
j=1 ρm,i, j(k)/ρcrit,m, j

(40)

2) Semi-Congestion: In semi-congestion regime, the
density of at least one vehicle class in its assigned space of
the road is less than or equal to the critical density of that
class, and the density of at least one vehicle class in its
assigned space of the road is more than the critical density
of that class.

The constraint distinguishing semi-congestion from
congestion is

nc

∑
c=1

ρm,i,c(k)
ρ∗

crit,m,c
6 1 (41)

where ρ∗
crit,m,c is a parameter for vehicle class c that is

determined through the following equation:

ρ∗
crit,m,c = ρcrit,m,c

[
−am,c ln

(
vfree,m,c∗m
vfree,m,c

exp
(

−1
am,c∗m

))] 1
am,c

(42)

where c∗m is the vehicle class with the slowest desired speed
in free flow: c∗m = arg min

c=1,...,nc
(vfree,m,c exp(−1/am,c)).

The constraint (41) is obtained by assuming that class c∗m is
on the verge of getting in congested mode, and all the other
classes are congested. Also, the desired speed of vehicle class
c∗m is less than or equal to the desired speed of other congested
vehicle classes:

Vc∗m

(
ρm,i,c∗m(k)
αm,i,c∗m(k)

)
6Vc

(
ρm,i,c(k)
αm,i,c(k)

)
for c = 1, . . . ,nc with c ̸= c∗m (43)
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Based on the assumption of optimal road use, the space
fraction of vehicle class c∗m is chosen as

αm,i,c∗m(k) =
ρm,i,c∗m(k)
ρcrit,m,c∗m

(44)

The constraint (41) is obtained by considering (33), (43),
and (44).

Suppose that Sm,i,cong(k) denotes the set of all vehicle
classes that are in congested mode in segment i of link m at
time step k, and Sm,i,free(k) denotes the set of all vehicle
classes that are in free flow in segment i of link m at time
step k. The space fractions for the vehicle classes that are in
free flow mode are

αm,i,c =
ρm,i,c(k)
ρcrit,m,c

for c ∈ Sm,i,free(k) (45)

The space fractions for the congested vehicle classes are
obtained through solving the following equation set:

Vm,c

(
ρm,i,c(k)
αm,i,c(k)

)
=Vm,lm,i(k)

(
ρm,i,lm,i(k)

αm,i,lm,i(k)

)
for c ∈ Sm,i,cong(k)/{lm,i(k)}

∑c∈Sm,i,cong(k) αm,i,c(k) = 1−∑ĉ∈Sm,i,free(k) αm,i,ĉ(k)

(46)

where lm,i(k) is any element of the set Sm,i,cong(k).
3) Congestion: In congestion regime, the density of each

vehicle class in its assigned space of the road is more than the
critical density of that class; the desired speeds of all classes
of vehicles are equal.

The constraint of the congestion regime is the maximum
density restriction:

nc

∑
c=1

ρm,i,c(k)
ρmax,m,c

6 1 (47)

The fractions can be derived by equating the desired speeds
of all classes of vehicles:

V1(
ρm,i,1(k)
αm,i,1(k)

) =V2(
ρm,i,2(k)
αm,i,2(k)

)

...

Vnc−1(
ρm,i,nc−1(k)
αm,i,nc−1(k)

) =Vnc(
ρm,i,nc (k)
αm,i,nc (k)

)

∑nc
c=1 αm,i,c(k) = 1

(48)

B. Extensions on FASTLANE

The FASTLANE model of [26, 27] does not yield the
estimation of queue lengths at origins. Besides, traffic
control measures are also not included, such as speed limit
and ramp metering. Here we extend the FASTLANE model
with a queue length equation, and we also include variable
speed limits and ramp metering.

Just as in METANET, we introduce a simple queue equation
for estimating the queue lengths at origins:

wo,c(k+1) = wo,c(k)+T (do,c(k)−qo,c(k)) (49)

where wo,c is the queue length of vehicles of class c at origin
o, qo,c is the outflow of the vehicles of class c at origin o, and
do,c is the demand of the vehicles of class c at origin o.

Following the METANET speed equation of [25] (i.e. (5)),
a variable speed limit is incorporated in the speed equation as
follows:

vm,i,c(k) = min(Vc(ρefc
m,i(k)),(1+δm,c)vSL,m,i(k)) (50)

In order to apply ramp metering in traffic networks, the
on-ramp flow equation with a ramp metering is defined as

qo,(m,1),c(k)=
1

ηo,c(k)
min

(
ro(k)Do,c(k),κoλo,c(k)Sm,1(k)

)
(51)

in which o indicates the on-ramp, ro(k) is the ramp metering
rate at this on-ramp, (m,1) indicates the segment to which
the on-ramp connects, and κo represents the proportion of the
supply that is distributed to on-ramp o in the total supply of
segment (m,1).

V. MULTI-CLASS TRAFFIC EMISSION MODELS

Since we want to consider emission reduction in online
MPC for traffic networks, multi-class macroscopic emission
models are adopted in this paper. In particular, multi-class
VT-macro and multi-class VERSIT+ are developed as
follows.

A. Multi-Class VT-Macro

The VT-macro model [4] is currently still single-class, and
the differences among different vehicle classes are not
considered yet. It is necessary to extend the VT-macro model
to be multi-class when it is used together with multi-class
macroscopic traffic models.

For multi-class traffic flow, the accelerations for each class
c are computed through the following equations:

ainter
m,i,c(k) =

vm,i,c(k+1)− vm,i,c(k)
T

(52)

across
α ,β ,c(k) =

vβ ,c(k+1)− vα,c(k)
T

(53)

When the traffic model is FASTLANE, the state variables
are equivalent values in pce; the corresponding actual numbers
of vehicles are then

ninter
m,i,c(k) =

Lveh
1

Lveh
c

(Lmµmρm,i,c(k)−T qm,i,c(k)) (54)

ncross
α ,β ,c(k) =

Lveh
1

Lveh
c

T qα,c(k) (55)

However, when the traffic model is the newly proposed multi-
class METANET, the numbers of vehicles are

ninter
m,i,c(k) = Lmµmρm,i,c(k)−T qm,i,c(k) (56)

ncross
α ,β ,c(k) = T qα ,c(k) (57)

The emission rate for each vehicle class in segment i of link
m is

Jinter
y,m,i,c(k) = ninter

m,i,c(k)exp
(

ṽT
m,i,c(k)Py,cãinter

m,i,c(k)
)

(58)

Jcross
y,α,β ,c(k) = ncross

α,β ,c(k)exp
(

ṽT
α ,c(k)Py,cãcross

α,β ,c(k)
)

(59)

in which Py,c is a class-dependent parameter matrix.
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Fig. 1: Closed-loop model predictive control

The CO2 emission rate for each vehicle class can be
estimated through

JCO2,m,i,c(k) = γ1,cvm,i,c(k)+ γ2,cJfuel,m,i,c(k) (60)

where γ1,c and γ2,c are model parameters, and Jfuel,m,i,c is the
fuel consumption rate given by

Jfuel,m,i,c(k) = Jinter
fuel,m,i,c(k)+ ∑

α∈Iup

Jcross
fuel,α ,(m,i),c(k) (61)

B. Multi-Class VERSIT+
Similarly to the multi-class VT-macro model, we develop

a multi-class VERSIT+ model. The inter-segment/cell
acceleration and the cross-segment/cell acceleration are also
used here. For segment/cell i of link m, the emission rate of
vehicle class c is estimated through substituting speed,
inter-segment/cell acceleration, and cross-segment/cell
acceleration into (28). For detailed equations, please refer to
the Appendix A.

Remark. The approach that links VERSIT+ to multi-class
macroscopic traffic flow models is general in the sense that it
can be used for any emission model using car
characteristics, and with speed, acceleration, and jerk as
inputs. Since the jerk is not derived above, jerk equations
are included in Appendix B.

VI. ONLINE MODEL PREDICTIVE CONTROL FOR TRAFFIC
NETWORK

A. Model Predictive Control
We choose Model Predictive Control (MPC) [30] for

online traffic management, since it can deal with nonlinear
systems, multi-criteria optimization, and constraints. MPC is
a control approach based on dynamic prediction and a
receding horizon scheme. In MPC, an objective function is
used to capture the future performance of the traffic network
to be controlled over some prediction horizon. The future
performance is obtained through model-based prediction.
The controller determines the input sequence that optimizes
the value of the objective function. According to the
receding horizon scheme, only the first element of this
optimal input sequence is applied to the controlled traffic
network. The closed-loop MPC approach is shown in Fig. 1.

In this paper, the newly proposed models (FASTLANE,
multi-class METANET, multi-class VT-macro, and
multi-class VERSIT+) are used as prediction models. The
control measures that we choose are variable speed limits
and ramp metering.

B. Performance Criteria

Many performance criteria can be considered when
conducting the objective function for traffic management. In
this paper, we introduce Total Time Spent (TTS) and Total
Emissions (TE).

TTS is the total time that all vehicles need to leave the
considered traffic network. Here, the TTS is defined as

TTS(kc) = T
(kc+Np)M−1

∑
j=kcM

nc

∑
c=1

pc

[
∑

(m,i)∈Iall

µmρm,i,c( j)Lm

+ ∑
o∈Oall

wo,c( j)

]
(62)

where Iall is the set of all pairs of link and segment/cell indices
(m, i) in the traffic network, Oall is the set of the indices of all
origins, kc is the control time step counter, which corresponds
to the time instant t = kcTc (Tc: the control time interval), Np is
the prediction horizon, M = T/Tc is assumed to be a positive
integer, and pc = sc/s1 (sc sc: the class-specific gross stopping
distance of vehicles of class c) indicates the passenger car
equivalents (pce) for vehicles of class c.

TE is the amount of emissions that all vehicles in the traffic
network generate before leaving. The TE of emission type y
is defined as

TEy(kc) = T
(kc+Np)M−1

∑
j=kcM

nc

∑
c=1

[
∑

(m,i)∈Iall

Jinter
y,m,i,c( j)+∑

α,β∈Pall

Jcross
y,α,β ,c( j)

]
(63)

in which Pall is the set of all pairs of adjacent cells.

C. End-Point Penalties

In MPC for traffic network, satisfying control performance
may lead to long prediction horizon, since the prediction
horizon is in the order of the typical travel time for a vehicle
to cross the traffic network [25]. This makes computation
slow and complex for large-scale traffic networks. For
obtaining satisfying performance without increasing the
prediction horizon too much, we propose to use end-point
penalties to distinguish vehicles that are at different positions
in the controlled traffic network. In order to bring as many
vehicles as close as possible to their destination, vehicles
that are further from their destinations need more attention.
Hence, terms with different values corresponding to vehicles
with different distances to their destinations should be
included in the objective function. We develop these terms
and call them end-point penalties.

1) End-Point Penalty Derived from TTS: One way to
represent the differences among vehicles with different
distances to their destinations is to use the different times
needed for them to arrive to their destinations. The end-point
penalty is then defined as the number of vehicles in each
segment/cell multiplied by the time trem

m,i,c((kc +Np)M) that a
vehicle that is present in that segment/cell at time step
(kc + Np)M would on the average need to get to its
destination. For vehicles in queues, the end-point penalty is
defined as the number of vehicles in each queue multiplied
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by the time trem
o,c ((kc +Np)M) that a vehicle present in that

queue at time step (kc +Np)M would on the average need to
get to its destination. This yields an estimate of the total
time spent for all vehicles that are still in the network at
time step (kc +Np)M:

TTSend-point(kc) =
nc

∑
c=1

∑
(m,i)∈Iall

µmρm,i,c((kc +Np)M)Lmtrem
m,i,c((kc +Np)M)

+ ∑
o∈Oall

wo,c((kc +Np)M)trem
o,c ((kc +Np)M) (64)

2) End-Point Penalty Derived from TE: Another way to
represent the differences among vehicles with different
distances to their destinations is to use the different
emissions generated by them. The end-point penalty is then
defined as the number of vehicles in each segment/cell at
time step (kc + Np)M multiplied by the emissions
TErem

y,m,i,c((kc + Np)M) that a vehicle that is present in that
segment/cell at time step (kc +Np)M would on the average
generate before leaving the network. For vehicles in queues,
the end-point penalty is defined as the number of vehicles in
each queue at time step (kc + Np)M multiplied by the
emissions TErem

y,o,c((kc +Np) that a vehicle that is present in
that queue at time step (kc + Np)M would on the average
generate before leaving the network. This yields the estimate
of the total emissions that the remaining vehicles at time
step (kc +Np)M generate before leaving the network:

TEend-point
y (kc) =

nc

∑
c=1

∑
(m,i)∈Iall

Lmρm,i,c((kc +Np)M)µmTErem
y,m,i,c((kc +Np)M)

+wo,c((kc +Np)M)TErem
y,o,c((kc +Np)M (65)

D. Overall Objective Function
For different traffic conditions, the traffic control objectives

may be conflicting [31]. We aim to achieve a balanced trade-
off between TTS and TE here. However, the approach that
we develop is generic, and it can also accommodate other
performance indicators.

The overall objective function of the online traffic control
in this paper is defined as follows:

J(kc) = ξTTS
TTS(kc)

TTSnom
+ ∑

y∈Y
ξTE,y

TEy(kc)

TEy,nom

+
ξramp

NcNRM

kc+Nc−1

∑
l=kc

∑
o∈Oramp

(rctrl,o(l)− rctrl,o(l −1))2

+
ξspeed

NcNVSL

kc+Nc−1

∑
l=kc

∑
(m,i)∈Ispeed

(
vctrl,m,i(l)− vctrl,m,i(l −1)

vfree,m,max

)2

+ξ end-point
TTS

TTSend-point(kc)

TTSend-point
nom

+ ∑
y∈Y

ξ end-point
TE,y

TEend-point
y (kc)

TEend-point
y,nom

(66)

where the third and fourth terms of (66) are penalties to
avoid abrupt variations in control inputs, Oramp is the set of

all the metered on-ramps, rctrl,o is the ramp metering rate of
on-ramp o corresponding to control time steps (t = kcTc),
Ispeed is the set of all segments/cells with speed limits,
vctrl,m,i is the speed limit in segment/cell i of link m
corresponding to control time steps (t = kcTc), and
vfree,m,max = maxc vfree

m,c is the maximum free-flow speed of all
vehicle classes. Moreover, ξTTS, ξTE,y, ξramp, ξspeed,
ξ end-point

TTS , and ξ end-point
TE,y are nonnegative weights, TTSnom,

TEy,nom, TTSend-point
nom , and TEend-point

y,nom are the corresponding
’nominal’ values for some nominal control profile (here we
take the ’nominal’ control profile as no-control case), NRM is
the number of groups of metered on-ramps, and NVSL is the
number of groups of variable speed limits.

VII. BENCHMARK EXPERIMENT

A. Benchmark Network

The simulation experiment is based on the Dutch freeway
A13, where we consider the direction from Den Haag to
Rotterdam, as shown in Fig. 2. The upstream of A13 is
considered to be the origin (O0) of the considered stretch,
and the downstream of A13 is considered to be the
destination (D0) of the considered stretch. The main road
subsumes three lanes, and variable speed limits are equipped
through the whole stretch. There are four on-ramps (O1, O2,
O3, and O4) and four off-ramps (O5, O6, O7, and O8) which
contain single lane. All the on-ramps are metered. According
to the location of on-ramps, off-ramps, and speed limits, the
main road (7.8 km) is divided into 21 links, and in total 23
segments, i.e., most links only have 1 segment.

The microscopic simulators VISSIM and Enviver are used
for representing the real traffic network. VISSIM is used for
simulating the traffic flows, and Enviver is used for
simulating the emissions. The developed multi-class traffic
flow and emission models are used as prediction models. In
both the process models and the prediction models, we
consider two classes of vehicles (i.e. cars and trucks). The
closed-loop control procedure is shown in Fig. 3.

B. Parameter Identification

In order to describe the traffic flows and emissions
through the models developed in Sections IV and V, the
parameters for these models need to be calibrated. The
mainstream demand and the on-ramp demands for
identification, which are shown in Fig. 4, are generated
based on field measurements of the A13 on Feb. 18, 2014.
The fraction of trucks in all the demands is taken as 0.1,
considering the actual situation in A13. For multi-class
METANET and FASTLANE, the objective for the
identification procedure is TTS. Similarly, for multi-class
VERSIT+ and multi-class VT-macro, the objective for the
identification procedure is TE, and only CO2 is considered.

The prediction horizon length is chosen as 15 minutes,
which is about the average time needed for a vehicle to leave
the network. For control period from 8.00 to 10.00, the
average validation errors within the prediction horizon
between the measured TTS and the predicted TTS by
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Fig. 2: Dutch Freeway A13
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Fig. 3: Closed-loop model predictive control for A13
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Table 1 Validation errors for traffic flow models
Scenario 1 Scenario 2 Scenario 3

Multi-class METANET 10.0% 11.5% 12.0%
FASTLANE 8.7% 10.4% 10.6%

Table 2 Validation errors for emission models
Scenario 1 Scenario 2 Scenario 3

Multi-class VERSIT+ 1.6% 2.4% 5.6%
Multi-class VT-macro 4.0% 2.5% 3.4%

METANET and FASTLANE are shown in Table 1. Three
scenarios are considered for validation here:

• Scenario 1: the scenario used for identification;
• Scenario 2: Scenario 1 + sinusoidal noise (Amplitude:

5% of the demands for Scenario 1, cycle time: 15
minutes);

• Scenario 3: Scenario 1 + white noise (Amplitude: 5% of
the demands for Scenario 1).

The validation errors for multi-class VT-macro and multi-
class VERSIT+ in the control period from 8.00 to 10.00 are
shown in Table 2.

C. Control Settings

Scenario 1 (as shown in Fig. 3) is considered for control
in this case study. The control time interval (Tc) is chosen as
5 minutes, the control horizon (Nc) is chosen as 10 minutes,
and the prediction horizon (Np) is chosen as 15 minutes. The
simulation time step (T ) is selected to be 6 seconds, according
to the length of segments.

We suppose that all the four on-ramps are metered
(NRM = 4). According to the actual length of the on-ramps,
the maximum permitted queue lengths (wmax

o ,
o ∈ Oramp = {O1,O2,O3,O4}) are repetitively 100, 100, 200,
50 pce. There are 16 Variable Speed Limits (VSL), which
are divided into 4 groups as follows (NVSL = 4):

• VSL group 1: the variable speed limits before the first
on-ramp, i.e. VSLs 1-4;

• VSL group 2: the variable speed limits between the first
on-ramp and the second on-ramp, i.e. VSLs 5-7;

• VSL group 3: the variable speed limits between the
second on-ramp and the third on-ramp, i.e. VSLs 8-10;

• VSL group 4: the variable speed limits After the third
on-ramp, i.e. VSLs 11-16.

The multi-class models developed in this research are used
as prediction models for MPC. Two groups of approaches
are implemented for comparing multi-class models and for
investigating end-point penalties.

1) Comparison for multi-class models: For the multi-class
models, we compare four approaches without end-point
penalties as follows:

• Approach A: Multi-class METANET and multi-class
VERSIT+ without end-point penalties;

• Approach B: Multi-class METANET and multi-class VT-
macro without end-point penalties;

• Approach C: FASTLANE and multi-class VERSIT+
without end-point penalties;

• Approach D: FASTLANE and multi-class VT-macro
without end-point penalties;
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For each approach, we consider 3 combinations of weights
without end-point penalties:

• Combination 1: ξTTS=1, ξTE,y=0.1, ξ end-point
TTS =0, and

ξ end-point
TE,y =0;

• Combination 2: ξTTS=0.5, ξTE,y=0.5, ξ end-point
TTS =0, and

ξ end-point
TE,y =0;

• Combination 3: ξTTS=0.1, ξTE,y=1, ξ end-point
TTS =0, and

ξ end-point
TE,y =0.

2) Comparison for end-point penalties: In order to show
the effects of end-point penalties, we also implement the
following four approaches:

• Approach E: Multi-class METANET and multi-class
VERSIT+ with end-point penalties;

• Approach F: Multi-class METANET and multi-class VT-
macro with end-point penalties;

• Approach G: FASTLANE and multi-class VERSIT+
with end-point penalties;

• Approach H: FASTLANE and multi-class VT-macro
with end-point penalties;

Combination 1 (ξTTS=1 and ξTE,y=0.1) is chosen as an
example, and for this case an investigation has been done to
find appropriate ξ end-point

TTS and ξ end-point
TE,y for end-point

penalties, and the values obtained are ξ end-point
TTS =0.5 and

ξ end-point
TE,y =0.05.

We solve the control problem with sequential quadratic
programming based on a multi-starting points scheme. An
investigation has been done to ensure that the CPU time for
the approaches including multi-class METANET and the
approaches including FASTLANE are roughly the same.
Thus for Approaches A, B, E, and F, 50 starting points are
used, and for C, D, G, and H, 70 starting points are used.

D. Results and Analysis

For each approach and each combination of weights, 10 runs
with different random seeds are implemented, and the average
results are included in the Tables 3-6. In these tables, JTTS,TE

improve

represents the improvement of ξTTS
TTS(kc)
TTSnom

+ξTE,y
TEy(kc)
TEy,nom

in the
entire simulation period w.r.t. the case without control. We
define a total objective function Jtotal as follows:

Jtotal =ξTTS
TTS(kc)

TTSnom
+ξTE,y

TEy(kc)

TEy,nom
(67)

+ξqueue max
o∈Oramp

maxkend
k=1

[
∑nc

c=1 pcwo,c(k)
]
−wmax

o

wmax
o

where kend is the last sampling time step of the entire
simulation period, and wmax

o is the maximum permitted
queue length for on-ramp o. The last term of Jtotal represents
the maximum queue length constraint violation for all
on-ramps, and the weight for this term is set to be a large
value: ξqueue = 10. This total objective function is used for
comparing the total performance including TTS, TE, and
queue length constraint violations, where higher values
indicate a worse total performance.

Table 3 Simulation results for Combination 1

Approaches JTTS,TE
improve

Constraint violations JtotalO1 O2 O3 O4
A 4.4% 5.0% 0% 0% 0% 9.3
B 4.1% 4.7% 0% 0% 0% 9.3
C 2.7% 29.1% 0% 123.6% 0% 21.3
D -0.4% 43.2% 4.6% 160.7% 0% 25.3

Table 4 Simulation results for Combination 2

Approaches JTTS,TE
improve

Constraint violations JtotalO1 O2 O3 O4
A 4.3% 6.0% 0% 0% 0% 8.4
B 3.6% 0% 0% 0% 0% 7.9
C 4.9% 19.6% 0% 72.4% 0% 15.0
D 2.5% 100.5% 6.1% 127.5% 0% 20.7

Table 5 Simulation results for Combination 3

Approaches JTTS,TE
improve

Constraint violations JtotalO1 O2 O3 O4
A 5.1% 6.8% 0% 0% 0% 8.4
B 3.5% 0.1% 0% 0% 0% 7.9
C 11.1% 15.2% 3.2% 63.9% 0% 14.0
D 11.1% 69.7% 0% 160.9% 0% 23.8

Table 6 Simulation results for Combination 1 with end-point penalties

Approaches JTTS,TE
improve

Constraint violations JtotalO1 O2 O3 O4
E 6.6% 5.1% 0% 0% 0% 9.1
F 4.9% 1.5% 0% 0% 0% 8.9
G 2.1% 50.8% 4.5% 200.7% 0% 29.1
H 2.4% 23.7% 6.7% 168.4% 0% 25.8

1) Results for multi-class models without end-point
penalties: The results for comparing multi-class models are
listed in Tables 3-5. We first focus on the approaches based
on multi-class METANET (A and B). According to Tables
3-5, they can all improve the performance for TTS and TE
(3.5%-5.1%) w.r.t. the non-control case with relatively small
queue length constraint violations (0%-6.8%). Comparing the
approach based on multi-class VERSIT+ (A) with the
approach based on multi-class VT-macro (B), the values of
Jtotal are the same for multi-class VERSIT+ and multi-class
VT-macro for Combination 1, and the values of Jtotal for
multi-class VERSIT+ are slightly higher than multi-class
VT-macro for Combinations 2 and 3. More specifically, the
performance improvements for multi-class VERSIT+ are
higher than multi-class VT-macro for all combinations of
weights. However, the constraint violations for multi-class
VERSIT+ are also higher than multi-class VT-macro. This is
probably due to the mismatches between the prediction
models and the process models.

The approaches based on FASTLANE (C and D) can also
improve the performance for TTS and TE w.r.t. the
non-control case. Note, however, that for these approaches
based on FASTLANE (C and D) there are consistent large
queue length constraint violations for on-ramps O1
(15.2%-100.5%) and O3 (63.9%-160.9%). Thus the values of
Jtotal for FASTLANE (14.0-25.3) are much higher than
multi-class METANET (7.9-9.3), and the total performance
for approaches based on FASTLANE (C and D) is worse
than that of the approaches based on multi-class METANET
(A and B).

High constraint violations can lead to traffic jams upstream
of the given on-ramps, which is an important issue to be
handled when a control approach is developed. According to
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the results we obtained for the settings of our experiment,
the approaches based on multi-class METANET are more
capable of dealing with the queue length constraints.

2) Results for end-point penalties: The results for
approaches with end-point penalties are included in Table 6,
and these results are now compared with results of Table 3.
In comparison with the approaches based on multi-class
METANET without end-point penalties (A and B in
Combination 1), including end-point penalties (E and F) can
further improve the performance for TTS and TE
(4.9%-6.6%), while the constraint violations (1.5%-5.1%)
are still relatively small. In addition, the values of Jtotal
(8.9-9.1) are also further reduced w.r.t. the approaches
without end-point penalties. Thus, for approaches based on
the multi-class METANET we can say that end-point
penalties can improve both the performance for TTS and TE
and the total performance.

The approaches based on FASTLANE with end-point
penalties (G and H) cannot reduce the high constraint
violations for on-ramps O1 (23.7%-50.8%) and O3
(168.4%-200.7%), and the values of Jtotal (25.8-29.1)
increase w.r.t. the corresponding approaches without
end-point penalties (C and D). This might be because of the
first-order characteristics of FASTLANE, which makes the
estimations of end-point penalties less reliable.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a second-order
multi-class traffic flow model (multi-class METANET) and
two multi-class traffic emission models (multi-class
VERSIT+ and multi-class VT-macro). We have also
incorporated variable speed limits and ramp metering in the
first-order traffic flow model FASTLANE, to allow
comparison with multi-class METANET for online Model
Predictive Control (MPC) for freeway networks. In contrast
to single-class homogeneous models, in these multi-class
models the differences among different classes of vehicles
(e.g. cars and trucks) are taken into account. End-point
penalties are proposed to account for the future extension of
the traffic system beyond the prediction horizon.

A benchmark simulation experiment has been
implemented to compare these multi-class models. For the
prediction models for MPC, eight approaches are considered,
i.e., the four combinations of the multi-class traffic flow
models and the multi-class traffic emission models, also
these combinations with end-point penalties. The results
show that the approaches based on multi-class METANET
can improve the performance for TTS and TE w.r.t. the
non-control case with relatively small constraint violations,
and including end-point penalties can further improve the
performance for TTS and TE and the total performance.
However, the approaches based on FASTLANE lead to
consistent queue length constraint violations, which may
cause traffic jams upstream the corresponding on-ramps.
Furthermore, for these approaches including end-point
penalties cannot improve the total performance, probably due
to the less reliable estimations of end-point penalties.

For future research, larger networks and more traffic
scenarios can be investigated for validating the effectiveness
of the proposed multi-class traffic flow and emission models.
The impact of end-point penalties can also be further
investigated by testing suitable weights for these penalties in
different control conditions.
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APPENDIX A
EQUATIONS OF MULTI-CLASS VERSIT+

According to Section III-B, Section V-A and Section V-B,
the emission rate of vehicles of class c in segment/cell i of
link m, is estimated as follows:

Jinter
y,m,i,c(k)=ninter

m,i,c(k)



u0,y,m,i,c if vm,i,c < 5, ainter
m,i,c < 0.5

u1,y,m,i,c +u2,y,m,i,czinter,+
m,i,c

+u3,y,m,i,c(zinter
m,i,c −1)+ if vm,i,c < 50

u4,y,m,i,c +u5,y,m,i,czinter,+
m,i,c

+u6,y,m,i,c(zinter
m,i,c −1)+

if 50 < vm,i,c < 80

u7,y,m,i,c +u8,y,m,i,c(zinter
m,i,c −0.5)+

+u9,y,m,i,c(zinter
m,i,c −1.5)+ if 80 < vm,i,c

(68)

with

zinter
m,i,c = ainter

m,i,c +0.014vm,i,c (69)

Jcross
y,α,β ,c(k)=ncross

α ,β ,c(k)



u0,y,α ,β ,c if vα ,c < 5,across
α,β ,c < 0.5

u1,y,α ,β ,c +u2,y,α,β ,czcross
α ,β ,c

+u3,y,α ,β ,c(z
cross
α,β ,c −1)+ if vα ,c < 50

u4,y,α ,β ,c +u5,y,α,β ,czcross
α ,β ,c

+u6,y,α ,β ,c(z
cross
α,β ,c −1)+

if 50 < vα ,c < 80

u7,y,α ,β ,c +u8,y,α,β ,c(z
cross
α,β ,c −0.5)+

+u9,y,α ,β ,c(z
cross
α,β ,c −1.5)+ if 80 < vα ,c

(70)

with

zcross
α ,β ,c = across

α,β ,c +0.014vα,c (71)
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Two time steps back

One time step back

Fig. 5: Jerk: derivative of acceleration

APPENDIX B
COMPUTATION OF JERK FOR MULTI-CLASS TRAFFIC FLOW

MODELS

As shown in Fig. 5, there are three kinds of jerks (i.e.
derivatives of accelerations) in segment/cell i of link m at
time step k:

• Segment i−1 → segment i−1 → segment i: this kind of
jerk corresponds to those vehicles moving within segment
i− 1 from time step k − 2 to k − 1, and moving from
segment i−1 to i from time step k−1 to k:

jm,i,c,1(k) =
across
(m,i−1),(m,i),c(k)−ainter

m,i−1,c(k−1)

T

=
vm,i,c(k)−2vm,i−1,c(k−1)+ vm,i−1,c(k−2)

T 2

(72)

• Segment i− 1 → segment i → segment i: this kind of
jerk corresponds to those vehicles moving from segment
i−1 to i from time step k−2 to k−1, and moving within
segment i from k−1 to k:

jm,i,c,2(k) =
ainter

m,i,c(k)−across
(m,i−1),(m,i),c(k−1)

T

=
vm,i,c(k)−2vm,i,c(k−1)+ vm,i−1,c(k−2)

T 2

(73)

• Segment i → segment i → segment i: this kind of jerk
corresponds to those vehicles moving within segment i
from time step k−2 to k−1, i.e.

jm,i,c,3(k) =
ainter

m,i,c(k)−ainter
m,i,c(k−1)

T

=
vm,i,c(k)−2vm,i,c(k−1)+ vm,i,c(k−2)

T 2

(74)
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