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Optimistic optimization for continuousnonconvexpiecewise

affine functions ⋆

Jia Xu a, Ton van den Boom a, Bart De Schutter a

aDelft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

Abstract

This paper considers the global optimization problem of a continuous nonconvex piecewise affine (PWA) function over a
polytope. This type of optimization problem often arises in the context of control of continuous PWA systems. In literature,
it has been shown that the given problem can be formulated as a mixed integer linear programming problem, the worst-case
complexity of which grows exponentially with the number of polyhedral subregions in the domain of the PWA function. In this
paper, we propose a solution approach that is more efficient for continuous PWA functions with a large number of polyhedral
subregions. The proposed approach is founded on optimistic optimization, which is based on hierarchical partitioning of
the feasible set and which focuses on the most promising region when searching for the global optimum. The advantage of
optimistic optimization is that one can guarantee bounds on the suboptimality with respect to the global optimum given a
finite computational budget (e.g. the number of iterations). In particular, the gap between the best value returned by the
proposed algorithm and the real optimum can be made arbitrarily small as the computational budget increases. We derive the
analytic expressions for the core parameters required by optimistic optimization for continuous PWA functions. The efficiency
of the resulting algorithm is illustrated with numerical examples.

Key words: Piecewise affine function; optimistic optimization; simplicial subdivision.

1 Introduction

Piecewise affine (PWA) functions are widely used in var-
ious fields for approximating nonlinearities, see [1,19,22];
they also appear as cost functions of numerous optimiza-
tion problems, see [8,17,21]. Moreover, the model predic-
tive control law for discrete-time linear time-invariant
systems with constraints on inputs and states can be ex-
plicitly expressed as a continuous PWA function of the
initial state [2]. During the last decades, optimization
of PWA functions has been investigated by several au-
thors. A traditional technique for the optimization of
convex PWA function subject to linear constraints con-
sists in transforming the problem into single equivalent
linear programming (LP) problem and then applying
LP methods. Moreover, some LP methods are extended
to directly deal with the optimization of convex PWA
function without resorting to LP problems, e.g. the sim-
plex algorithm [11] and the interior point algorithm [6].

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author J. Xu.

Email addresses: j.xu-3@tudelft.nl (Jia Xu),
a.j.j.vandenboom@tudelft.nl (Ton van den Boom),
b.deschutter@tudelft.nl (Bart De Schutter).

The optimization of nonconvex PWA functions are often
described as mixed integer linear programming (MILP)
problems [7,23]. However, the worst-case complexity of
MILP solvers grows exponentially with the number of
polyhedral subregions of the PWA functions, which usu-
ally make the problem solving process less efficient.

In this paper, we focus on the optimization problem of
a continuous and nonconvex PWA function over a given
polytope and propose to apply optimistic optimization
to seek the global optimal solution. Optimistic optimiza-
tion [15,16] is a class of algorithms that start from a hi-
erarchical partition of the feasible set and gradually fo-
cuses on the most promising area until they eventually
perform a local search around the global optimum of the
function. Optimistic optimization can be applied to the
general problem of black-box optimization of a function
given evaluations of the functions over general search
spaces. A sequence of feasible solutions are generated
during the process of iterations and the best solution is
returned at the end of the algorithm. The gap between
the best value returned by the algorithm and the real
global optimum can be expressed as a function of the
number of iterations, which can be specified in advance.
In our previous paper [24], we have extended optimistic
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optimization to solve the model predictive control prob-
lem for max-plus linear systems. Moreover, optimistic
optimization has been used to solve the consensus prob-
lem in multi-agent systems [4]. The ideas of optimistic
optimization have also been applied to planning algo-
rithms, called optimistic planning [5,14].

In order to use optimistic optimization, we need a suited
semi-metric that is the foundation of the requirements
for optimistic optimization. A partition of the given
polytope is also required to perform the search process.
The partitioning should generate well-shaped cells that
shrink with the depth. In this paper, we will deal with
these challenges specifically for continuous PWA func-
tions. We develop a dedicated semi-metric based on the
knowledge of the Lipschitz constants of the PWA func-
tion. In addition, to establish the partitioning frame-
work, we first employ Delaunay triangulation to divide
the polytope into a mesh of simplices and next use edge-
wise subdivision to subdivide the simplices into smaller
simplices that satisfy the requirements for optimistic
optimization. We illustrate the effectiveness of the re-
sulting algorithm with numerical examples and show
that using optimistic-optimization-based algorithm for
the optimization of a continuous and nonconvex PWA
function over a given polytope is more efficient than
transforming into an MILP problem if the number of
polyhedral subregions of the PWA function is large.
The second example shows that the proposed approach
is also efficient for the optimization of max-min-plus-
scaling functions, which are equivalent to continuous
PWA functions.

This paper is organized as follows. In Section 2, we give
some definitions. In Section 3, we describe the optimiza-
tion problem of continuous PWA functions. In Section
4, we introduce optimistic optimization and the parti-
tioning framework. We also derive the analytic expres-
sions for the core parameters of optimistic optimization.
In Section 5, the proposed approach is assessed with nu-
merical examples.

2 Preliminaries

Let R
n and ‖ · ‖2 denote the n-dimensional Euclidean

space and the Euclidean norm. This section presents
some necessary definitions, which are based on [20].

Definition 1 (Polyhedron) A polyhedron is a convex
set given as the intersection of a finite number of half-
spaces.

Definition 2 (Polytope) A bounded polyhedron P =
{x ∈ R

n|Ax ≤ b} is called a polytope, for some matrix
A and some vector b. The polytope P can also be defined
as the convex hull of a finite number of points and can be
written as

P =

 VP
X

i=1

λivi

˛

˛

˛

˛

λi ≥ 0, i = 1, . . . , VP ,

VP
X

i=1

λi = 1

ff

,

where vi denotes the i-th vertex of P and VP is the total
number of vertices of P.

Definition 3 (Simplex) An m-simplex S ⊂ R
n with

0 ≤ m ≤ n is the convex hull of m+1 affinely independent
points v0, . . . , vm ∈ R

n which are its vertices. It can be
written as

S =

 m
X

i=0

λivi

˛

˛

˛

˛

λi ≥ 0, i = 0, . . . , m,

m
X

i=0

λi = 1

ff

.

If m = n, the set S is simply called a simplex of R
n. Let

ei = vi − vi−1, i = 1, . . . , n. The volume of S is

vol(S) =
1

n!

˛

˛ det(e1, e2, . . . , en)
˛

˛ . (1)

Definition 4 (Polyhedral partition) Given a poly-
hedron P ⊆ R

n, then a polyhedral partition of P is a fi-
nite collection {Pi}N

i=1 of nonempty polyhedra satisfying

(i)
⋃N

i=1 Pi = P; (ii) Pi

⋂

Pj = ∅ for all i 6= j.

Definition 5 (PWA function) A function f : P →
R, where P ⊆ R

n is a polyhedron, is PWA if there exists
a polyhedral partition {Pi}N

i=1 of P such that f is affine
on each Pi, i.e. f(x) = αT

(i)x + β(i), for all x ∈ Pi, with

α(i) ∈ R
n, β(i) ∈ R, for i = 1, . . . , N .

3 Optimization of PWA functions

Consider the following optimization problem

min
x

f(x) (2)

subject to Ax ≤ b , (3)

where A ∈ R
m×n and b ∈ R

m are the constraint matrix
and vector, and f is a scalar-valued continuous PWA
function given by f(x) = αT

(i)x + β(i), ∀x ∈ Pi, with

α(i) ∈ R
n, β(i) ∈ R, i = 1, . . . , N . We assume that the

feasible set X = {x ∈ R
n|Ax ≤ b} ⊂ P is nonempty

and bounded. From Definition 2, X is a polytope. If f
is convex, then the problem (2)-(3) is equivalent to LP
problems, which can be solved very efficiently.

In this paper, we consider the case that f is continu-
ous and nonconvex and that the number N of polyhe-
dral subregions is much larger than n. For this case, one
possible solution approach consists in transforming the
problem (2)-(3) into an MILP problem. The number of
auxiliary variables and linear constraints in the resulting
MILP description is proportional to N . So the complex-
ity of the resulting MILP problem grows in the worst
case exponentially in N . In the next section, we will in-
troduce optimistic optimization for the problem (2)-(3).
The knowledge of a Lipschitz constant of f is important
for designing the semi-metric ℓ, that is a key ingredient
of optimistic optimization. For any x, y ∈ Pi, we have

˛

˛f(x) − f(y)
˛

˛ ≤ ‖α(i)‖2‖x − y‖2 . (4)

It is easy to verify that max
i=1,...,N

‖α(i)‖2 is the smallest

Lipschitz constant of f [12].
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4 Optimistic optimization of PWA functions

We first introduce the background of optimistic opti-
mization and next derive the analytic expressions for the
core parameters satisfying the requirements.

4.1 Optimistic optimization

Now we introduce optimistic optimization [15] for the
minimization of any function f over a given set X . The
notations f and X remain generic in this subsection.
The implementation of optimistic optimization is based
on a hierarchical partitioning of X . For any integer h =
0, 1, . . ., the set X is split into Kh cells with K a finite
positive integer. This partition may be represented by a
tree structure, thus K is the number of branches at each
fork. Each cell is denoted as Xh,d, d = 0, . . . , Kh−1, and
corresponds to a node (h, d) in the tree (with h the depth
and d the index). Each node (h, d) contains K children
nodes (h+1, di), i = 1, . . . , K, and the cells {Xh+1,di|i =
1, . . . , K} form a partition of the parent cell Xh,d. The
root node of the tree corresponds to the whole region
X , denoted as X0,0. Each cell Xh,d is labeled by a point
xh,d where f may be evaluated.

Definition 6 (Semi-metric) A semi-metric on a set
X is a function ℓ : X ×X → R

+ satisfying the following
conditions for any x, y ∈ X : 1) ℓ(x, y) = ℓ(y, x) ≥ 0; 2)
ℓ(x, y) = 0 if and only if x = y.

Requirements for optimistic optimization. The fol-
lowing conditions, expressed in terms of a semi-metric ℓ,
need to be satisfied:

1. There exists a semi-metric ℓ defined on X such that
for all x ∈ X , f(x) − f(x∗) ≤ ℓ(x, x∗), where f(x∗) =
min
x∈X

f(x).

2. There exists a decreasing sequence {δ(h)}∞h=0 with
δ(h) > 0, such that for any depth h = 0, 1, . . ., for any
cell Xh,d at depth h, we have supx∈Xh,d ℓ(x, xh,d) ≤
δ(h), where δ(h) is called the maximum diameter of the
cells at depth h.

3. There exists a scalar ν > 0 such that any cell Xh,d at
any depth h contains an ℓ-ball of radius νδ(h) centered
in xh,d.

The requirements guarantee bounds on the suboptimal-
ity with respect to the global optimum and on the com-
putational budget (e.g. number of iterations). In partic-
ular, Requirement 1 regard the local property of f near
the optimum with respect to the semi-metric ℓ. Require-
ments 2-3 guarantee that the partitioning of the feasible
set generates well-shaped cells that shrink with further
partitioning. Loosely speaking, this means that the value
of δ(h + 1)/δ(h) should be less than a given constant
that is strictly smaller than 1. The scalar ν corresponds
to the ratio of the radius of the inscribed ball of any cell
and the maximum distance between any two points in
that cell.

Algorithm 1 Determine Optimistic Optimization

Given: number of iterations n, partitioning of X

Initialize the tree T = {(0, 0)} (root node)

for t = 1 to n do

Select the leaf (h, d) with minimum bh,d value

Expand this leaf by adding its K children to T

end for

Return x(n) = arg max(h,d)∈T f(xh,d)

The optimistic optimization algorithm is summarized
in Algorithm 1 [15]. For each cell Xh,d, define bh,d =
f(xh,d) − δ(h). From the Requirement 1-2, for any cell
Xh,d containing the optimal solution x∗, we have bh,d ≤
f(xh,d)−ℓ(x, xh,d) ≤ f(x∗), ∀x ∈ Xh,d. Hence, the min-
imum bh,d is actually a lower bound of the minimum
value of f . Expanding a leaf (h, d) corresponds to split-
ting the cell Xh,d into K sub-cells.

4.2 Hierarchical partition of the feasible set

As mentioned in Section 3, the feasible set X = {x ∈
R

n|Ax ≤ b} of the problem (2)-(3) is a polytope. To
implement the algorithm, we need to partition X into
a collection of simplices that satisfy the requirements
for optimistic optimization. The partitioning consists of
two parts: initialization of the partition (i.e. dividing the
polytope X into simplices) and refinement of the par-
tition (i.e. subdividing each simplex into smaller sim-
plices). In this paper, we propose to use Delaunay trian-
gulation to divide X into a set of simplices. Next for the
subdivision of each simplex, we use the edgewise subdi-
vision method.

Edgewise subdivision [10] divides a simplex S of R
n

into kn n-simplices, where each edge of S is cut into k
equal pieces. A ready-to-implement algorithm for edge-
wise subdivision is presented in [13].

Properties of edgewise subdivision. For every inte-
ger k ≥ 1, the edgewise subdivision of S has the follow-
ing properties [10]:

(1) all generated simplices have the same n-dimensional
volume; (2) all generated simplices fall into at most n!/2
congruence classes; (3) the faces of S are subdivided the
same way; (4) repeated subdivision has the same effect
as increasing k.

To satisfy the Requirements 2-3 for optimistic optimiza-
tion, the diameter of simplices should decrease with
further refinement and the interior angles of simplices
should not tend to zero. By selecting an appropriate
k, the properties of edgewise subdivision will allow the
satisfaction of the requirements. The selection of k will
be discussed in the next subsection.
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4.3 PWA optimistic optimization

In this subsection, we prove that optimistic optimization
can be used to solve the problem (2)-(3). We first derive
a suited semi-metric ℓ for the PWA function over X and
next give the procedure to determine δ(h) and ν. Some
of the symbols and acronyms that occur frequently in
this section are listed in Appendix B.

Proposition 7 For any x, y ∈ X , define ℓ(x, y) =
α‖x − y‖2, where α = max

i=1,...,N
‖α(i)‖2 and α(i) are

defined as in Definition 5. Then the function ℓ is a
semi-metric defined on X . Let x∗ ∈ X be a global
optimizer for the problem (2)-(3). Then we have
f(x) − f(x∗) ≤ α‖x − x∗‖2.
PROOF. It is easy to verify that the function ℓ satisfies
the conditions of Definition 6 of a semi-metric and f(x)−
f(x∗) ≤ α‖x − x∗‖2 is implied by (4). 2

The design of the semi-metric ℓ requires the knowledge
of the Lipschitz constants of the PWA function f . Actu-
ally, it may not always be possible to find the smallest
Lipschitz constant of a general PWA objective function;
in this case, an upper bound on the Lipschitz constants
is also acceptable, although in general this results in the
loss of accuracy.

Proposition 7 shows that Requirement 1 for optimistic
optimization is satisfied. Next, we verify Requirements
2-3, which concern the shape of the partition of X . As
mentioned in Section 4.2, we use Delaunay triangulation
to initialize the partitioning and then use edgewise sub-
division to refine the partitioning. We will prove that the
partitioning following this strategy satisfy the require-
ments for optimistic optimization.

Using Delaunay triangulation, the feasible set X is di-
vided into a mesh of simplices {Xs|s = 1, . . . , Nt}. Ev-
ery simplex Xs in the simplicial mesh is taken as the
original simplex on which repeated edgewise subdivision
is performed. Properties (1)-(4) of edgewise subdivision
given in Section 4.2 are essential for the remaining proof.
Edgewise subdivision divides Xs into kn n-simplices, so
the branching factor K of optimistic optimization equals
kn. Note that h is the depth of the subdivision (indi-
cator of the recursion of edgewise subdivision) and d is
the index of simplex at a given depth h. Let Xh,d

s be a
simplex at depth h generated by repeated edgewise sub-
division of Xs. Let Lh,d

s , rh,d
s , xh,d

s be the maximum edge
length, inradius (radius of the inscribed hyper-ball) and
incenter (center of the inscribed hyper-ball) of Xh,d

s . Let
Ns ≤ n!/2 be the number of congruence classes that all
simplices generated by repeated edgewise subdivision of
Xs fall into (see Property (2)). Let Cs,i, i = 1, . . . , Ns, be
the representative simplices, scaled such that their max-
imal edge length equals 1, of each congruence classes.
Define the ratio between the maximum and minimum
volumes among representative simplices as

γs = max
i,j=1,...,Ns

vol(Cs,i)

vol(Cs,j)
. (5)

Let ρs,i be the inradius of Cs,i and denote

ρs = min
i=1,...,Ns

ρs,i . (6)

Let vs,0, . . . , vs,n be the vertices of Xs. Let vh,d
s,0 , . . . , vh,d

s,n

be the vertices of Xh,d
s . Define es,i = vs,i − vs,i−1 and

eh,d
s,i = vh,d

s,i − vh,d
s,i−1, i = 1, . . . , n. Then taking into ac-

count the proof of the independence lemma in [10] as well
as the fact that repeated subdivision has the same effect
as increasing k (see Property (4)), there exists a permu-

tation πh,d
s of {1, . . . , n} such that eh,d

s,i = 1
kh es,πh,d

s (i).

Note that we have

v
h,d
s,i − v

h,d
s,0 = e

h,d
s,i + e

h,d
s,i−1 + · · · + e

h,d
s,1 . (7)

Now select an arbitrary edge of Xh,d
s and let vh,d

s,i and

vh,d
s,j with j > i be the corresponding vertices. By (7),

we have
∣

∣vh,d
s,j − vh,d

s,i

∣

∣ =
∣

∣eh,d
s,j + eh,d

s,j−1 + · · · + eh,d
s,i+1

∣

∣ =
1

kh

∣

∣es,πh,d
s (j) + es,πh,d

s (j−1) + · · · + es,πh,d
s (i+1)

∣

∣. Define

θs,min = min
i=1,...,n

|es,i| , θs,max =
n

X

i=1

|es,i| . (8)

Note that θs,min > 0. Then we have
1

kh
θs,min ≤

˛

˛v
h,d
s,j − v

h,d
s,i

˛

˛ ≤
1

kh
θs,max . (9)

Lemma 8 Denote Lh
s = maxd∈Dh

Lh,d
s and rh

s =
mind∈Dh

rh,d
s where Dh is the index set of simplices at

depth h. Then we have

Lh+1
s

Lh
s

≤
1

k
γ

1/n
s ,

rh
s

Lh
s

≥
θs,minρs

θs,max
(10)

where γs, ρs, θs,min and θs,max are as defined in (5), (6),
(8) and 1/k is the factor of edgewise subdivision.

PROOF. Let Xh,d′

s be the simplex that has the maxi-
mum edge length Lh

s among all simplices at depth h and

assume that Xh,d′

s belongs to congruence class i with rep-
resentative simplex Cs,i. The maximum edge length of
Cs,i equals 1. From Property (4), repeated subdivision is
equivalent to increasing k; so a division at depth h actu-
ally corresponds to selecting kh instead of k. Moreover,
from Property (1), we have vol(Xh,d′

s ) = vol(Xs)/khn .

Scaling Xh,d′

s with a factor 1/Lh
s scales every column

in the matrix of which the determinant is taking in the
volume formula (1), resulting in a multiplication with
(1/Lh

s)n compared to the original expression. Hence, we
have

vol(Cs,i) =
` 1

Lh
s

´n
vol(Xh,d′

s ) =
` 1

Lh
s

´n vol(Xs)

khn
. (11)

Likewise let Xh+1,d′′

s be the simplex that has the maxi-
mum edge length Lh+1

s among all simlices at depth h+1

and assume that Xh+1,d′′

s belongs to congruence class j
with representative simplex Cs,j . So

vol(Cs,j) =
` 1

Lh+1
s

´n vol(Xs)

k(h+1)n
. (12)

Thus (11) and (12) result in
(Lh+1

s

Lh
s

)n
= 1

kn

vol(Cs,i)
vol(Cs,j)

and

then
Lh+1

s

Lh
s

= 1
k

( vol(Cs,i)
vol(Cs,j)

)1/n
≤ 1

kγ
1/n
s .
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Let Xh,d♯

s be the simplex that has the shortest inradius

rh
s among all simplices at depth h and assume that Xh,d♯

s
belongs to congruence class l with representative simplex
Cs,l. The maximum edge length of Cs,l equals 1 and the

inradius of Cs,l is ρs,l. Thus, we have rh
s = Lh,d♯

s ρs,l . Due

to (6), we also have rh
s ≥ Lh,d♯

s ρs. Note that (9) implies
that 1

kh θs,min ≤ Lh,d
s ≤ 1

kh θs,max , ∀d ∈ Dh. Hence,

rh
s ≥ Lh,d♯

s ρs ≥ 1
kh θs,minρs and thus

rh
s

Lh
s
≥

1

kh θs,minρs

Lh
s

≥
1

kh θs,minρs

1

kh
θs,max

≥ θs,minρs

θs,max
. 2

Proposition 9 Define δs(h) = αLh
s . If k is selected

as an integer that is strictly larger than γ
1/n
s , then

{δs(h)}∞h=0 is a decreasing positive sequence such that
supx∈Xh,d

s
ℓ(x, xh,d

s ) ≤ δs(h).

PROOF. If k is selected as an integer that is strictly

larger than γ
1/n
s , from (10), we have δs(h+1)

δs(h) =
Lh+1

s

Lh
s

≤

1
kγ

1/n
s < 1. Hence, {δs(h)}∞h=0 is a decreasing positive

sequence. Furthermore, for any x ∈ Xh,d
s , ℓ(x, xh,d

s ) =
α‖x − xh,d

s ‖2 ≤ αLh,d
s ≤ δs(h) . 2

Proposition 10 Select νs such that 0 < νs ≤ θs,minρs

θs,max
.

Then Xh,d
s contains an ℓ-ball of radius νsδs(h) centered

in xh,d
s .

PROOF. An ℓ-ball of radius νsδs(h) centered in xh,d
s

can be written as B = {x ∈ Xs|ℓ(x, xh,d
s ) = α‖x −

xh,d
s ‖2 ≤ νsδs(h)}. If we select νs ≤ αrh,d

s

δs(h) , then we have

‖x − xh,d
s ‖2 ≤ νsδs(h)

α ≤ rh,d
s for all x ∈ B. Hence,

B ⊂ Xh,d
s . Note that δs(h) = αLh

s . From 10, we have

αrh,d
s

δs(h) =
rh,d

s

Lh
s

≥ rh
s

Lh
s

(10)

≥ θs,minρs

θs,max
. Thus if we choose 0 <

νs ≤ θs,minρs

θs,max
, then νs ≤ αrh,d

s

δs(h) and then Xh,d
s contains

an ℓ-ball of radius νsδs(h) centered in xh,d
s . 2

Based on Proposition 9-10, denote δ(h) = max
s=1,...,Nt

δs(h)

and ν = min
s=1,...,Nt

νs. We can see that Requirements 2-

3 are now satisfied. Up to now, we have addressed all
the challenges for using optimistic optimization to solve
the optimization problem of continuous nonconvex PWA
functions. The effectiveness of the proposed approach
will be illustrated in the next section.

5 Numerical example

In this section, we evaluate the optimistic-optimization-
based approach and compare with other methods. All
experiments are implemented in MATLAB 2014b on an
3.1 GHz processor with 3.7 GB RAM.

Example 5.1 The instances considered include a set
of randomly generated continuous PWA functions

N
20 40 60 80 100 120 140

tim
e 

(s
)

10 -3

10 -2

10 -1

intilnprog
cplex
oo

Fig. 1. CPU time of intlinprog, cplex and optimistic opti-
mization (oo) for the optimization of PWA functions

f : R
2 → R in which the vector pairs α(i) ∈ R

2, β(i) ∈ R,
i = 1, . . . , N , contain pseudorandom values drawn from
the standard normal distribution. We totally generate
50 random continuous PWA functions. Because of ran-
domness, it may happen that several PWA functions
have the same N (number of polyhedral subregions). We
randomly select one from the instances having the same
N . Eventually, 36 PWA functions are used. We consider
the optimization of these PWA functions over a rect-
angle region X = [xmin, xmax] × [ymin, ymax]. Below we
compare the efficiency of the optimistic-optimization-
based approach and the MILP based approach. The
corresponding MILP problem is derived based on the
techniques in [3] (see Appendix A for details) and solved
with the intlinprog function in Matlab Optimization
Toolbox and the cplex function in TOMLAB. The
optimistic-optimization-based approach is implemented
as the pwaoo functin in MATLAB. Note that the pwaoo
and intlinprog functions are both Matlab functions
and the cplex function is implemented in C. Fig. 1
shows the semi logarithmic plot of CPU time (average
over 10 runs) of the three solvers. The function values
of f returned from the three solvers are denoted as foo,
fintlinprog and fcplex, where fintlinprog and fcplex of every
instance are equal. The iteration in the pwaoo function
is stopped if the gap between fcplex and foo is less than
5% (the gap is calculated as 100|(foo − fcplex)/fcplex|).
The gap can be made arbitrarily small by increasing
the number of iterations. We can see that the pwaoo

function is faster than intlinprog except some special
cases and is faster than cplex for 70% of the instances.

Example 5.2 Any continuous PWA function can be
represented as a min-max or max-min composition of its
affine components [18], which is similar to the canoni-
cal form of max-min-plus-scaling (MMPS) functions. As
presented in [9], the optimization of MMPS functions
can be written as a finite sequence of LP problems while
the worst-case complexity is largely determined by the
number of affine terms in equivalent canonical form of
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Fig. 2. CPU time of linprog and optimistic optimization (oo)
for the optimization of MMPS functions

the MMPS expression. We consider an MMPS function
written as g(x) = min

i=1...n
max

j=1...n

{

αT
ijx + βij

}

, ∀x ∈ R
2,

where αij ∈ R
2, βij ∈ R contains pseudorandom values

drawn from the standard normal distribution. We use
the linprog function of TOMLAB to solve the set of
LPs resulting from the minimization problem of g. The
optimistic-optimization-based approach is implemented
as the mmpsoo function in MATLAB. Fig. 2 shows the
semi logarithmic plot of CPU time (average over 10
runs) of the LP based approach and the optimistic-
optimization-based approach for increasing n. The gap
between the function value glp returned by linprog and
goo returned by mmpsoo is guaranteed within 5% (the
gap is calculated as 100|(glp−goo)/glp|). We can see that
using the mmpsoo function is more efficient than solving
a sequence of LPs.

6 Conclusions

In this paper, we have considered the optimization of a
continuous nonconvex PWA function over a polytope.
We have proposed an optimistic-optimization-based ap-
proach to solve the given problem. In particular, we
have developed a dedicated semi-metric needed for op-
timistic optimization for PWA functions. By employ-
ing Delaunay triangulation and edgewise subdivision, we
have constructed a partition of the feasible set satisfying
the requirements for optimistic optimization. We have
also derived the analytic expressions for the core parame-
ters. Numerical examples have been implemented to test
the proposed approach. Compared with the MILP based
methods, the optimistic-optimization-based approach is
more efficient especially for large problems.

In the future, we will investigate applying the optimistic-
optimization-based approach to improve the efficiency of
current model predictive control approaches for contin-
uous PWA systems. Moreover, the proposed approach is

in the deterministic setting. We will also investigate the
stochastic setting.
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A The mixed integer linear programming
(MILP) problem

This appendix presents the MILP form of the problem
(2)-(3) based on the techniques in [3]. Define a binary
variable ωi ∈ {0, 1} such that [ωi = 1] ↔ [x ∈ Pi].
The polyhedral subregion Pi is of the form Pi = {x ∈
R

n|Hix ≤ gi} where Hi ∈ R
mi×n and gi ∈ R

m
i are

the constraint matrix and vector. Define a new variable
zi = ωix and then the corresponding MILP problem of

problem (2)-(3) can be written as

minx,z,ω

∑N
i=1[α

T
(i)zi + β(i)ωi]

subject to

Ax ≤ b,

ωixmin ≤ zi ≤ ωixmax,

x − xmax(1 − ωi) ≤ zi ≤ x − xmin(1 − ωi),
∑N

i=1 ωi = 1,

Hix − gi ≤ Ui(1 − ωi),

where ωi ∈ {0, 1}, Ui = maxx∈X Hix − gi, i = 1, . . . , N

xmin,j = minx∈X xj , xmax,j = maxx∈X xj , j = 1, . . . , n.

(A.1)

B List of Symbols

X polytopic feasible set

{Xs|s = 1, . . . , Nt} simplicial mesh of X

1/k factor of edgewise subdivision

n dimension of X

K kn, branching factor of opti-
mistic optimization

h subdivision depth

d index of simplices at depth h

Xh,d
s simplex at depth h of the edge-

wise subdivision of Xs

Lh,d
s maximum edge length of Xh,d

s

rh,d
s inradius of Xh,d

s

xh,d
s incenter of Xh,d

s

Ns number of congruence classes of
edgewise subdivision of Xs

Cs,i, i = 1, . . . , Ns representative simplices of con-
gruence classes

γs ratio between the maximum and
minimum volumes among the
representative simplices

ρs,i inradius of Cs,i

ρs minimum of ρs,i

vs,0, . . . , vs,n vertices of Xs

vh,d
s,0 , . . . , vh,d

s,n vertices of Xh,d
s
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