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Abstract

This paper is motivated by the closed-loop system iden-

tification problem of wind turbine systems. The data

source for the system identification is based on controller-

in-the-loop simulations of a typical multi-MW wind tur-

bine. The paper shows the benefits of the Predictor-

Based System IDentification (PBSID) method for closed-

loop wind turbine model estimation. The PBSID identifi-

cation technique does not require any controller related

information, consequently the identified model becomes

consistent no matter the wind turbine operates with or

without controller in the loop. Being the wind turbine not

asymptotically stable in open-loop, only closed-loop ex-

periments are supported in the reality. This fact makes

the PBSID method very attractive for the wind power

community.

Keywords: wind turbines, subspace identification

1 Introduction

For the wind energy community, model-based controller

design becomes more and more important. Model-based

controller synthesis necessitates a nominal description of

the real plant. Nominal description of the plant can either

be derived from physical principles or using measured

data, respectively. Therefore, the latter is considered as

a preliminary phase on the way towards a controller de-

sign. System identification of wind turbines is not only

important at the design of a new turbine setup, but also

when existing devices has to be re-identified in order to

create a more up-to-date and accurate model than the

existing one. In this specific case, wind turbine system

identification has to be performed in taking consideration

the existing controller as well. Since, the paper focuses

on the application of the PBSID method to the data pro-

vided by the TURBU simulator [1], the physical model-

ing concepts of the wind turbine are omitted. We use

previously derived data to make off-line, more precisely

batch-wise system identification.

Apart the application of the system identification meth-

ods, proper input signal selection and alternative (time

and frequency domain) validation techniques are applied.

To get an accurate model estimate, the information con-

tent of the input signal is analyzed. The excitation sig-

nal are designed conform with a real wind turbine iden-

tification scenario. Moreover, the paper suggests using

regularization in order to overcome possible numerical

problems, such as singularity of the regression problem.

The identified models are analyzed both in time and fre-

quency domain. Time domain analysis consist of the

computation of the Variance-Accounted-For (VAF). Fre-

quency domain validation of the identified models cov-

ers the comparative evaluation of the channel-wise fre-

quency function.

2 Predictor-based subspace identi-

fication for LTI systems

In this section, the predictor-based subspace identifica-

tion (PBSID) method for Linear Time-Invariant (LTI) sys-

tems operating in either open-loop or in closed-loop is

presented.

2.1 Introduction to subspace methods

Subspace IDentification (SID) methods are efficient

methods to identify state-space models from input and

output measurements of a dynamic system, such as wind

turbines. These methods store input and output data in

structured block Hankel matrices, such that it is possible

to retrieve certain subspaces that are related to the sys-

tem matrices. They are candidates for the identification

of wind turbine models due to several reasons. First, be-

cause SID methods can easily be extended from Single-

Input and Single-Output (SISO) systems to Multiple-Input

and Multiple-Output (MIMO) systems. Second, the key

linear algebra steps, RQ, and SVD factorization, and the

solution of a linear least-squares problem, give SID meth-

ods their efficiency, simplicity, and numerical stability.

In [2], a unified methodology is suggested in which

many of the SID methods fall, such as Canonical Vari-

ate Analysis (CVA), N4SID [2], and MOESP [3] meth-

ods. However, it is known that these SID methods give

biased results when the system to be modelled oper-

ates in closed-loop. The rationale behind it is that the

future inputs are correlated with the past noises, due
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to the feedback controller. An alternative to the SID of

SISO systems are the traditional Prediction Error Meth-

ods (PEM), see [4]. These methods uses a pre-defined

parametrization of the model, for example an Auto Re-

gressive with eXogenous inputs (ARX) model, where the

parameters are obtained by minimizing a quadratic cost

function. PEM can provide asymptotical consistent esti-

mates in closed-loop if there is sufficient excitation from

an external signal or a controller of sufficiently high order.

Recently a number of significant advances have been

presented to identify LTI state-space models from mea-

surements of dynamic systems operating in closed loop.

These recent developments are extensively utilizing a

Vector Auto Regressive with eXogenous inputs (VARX)

model parametrized by markov parameters, which is in

the case of SISO measurements similar to a high-order

ARX model. The Predictor-Based Subspace IDentifica-

tion (PBSID) [5] methods uses the estimated Markov pa-

rameters to constuct a Toeplitz matrix. Multiplication of

the Toeplitz matrix with past input and output data, and

applying a SVD, an estimation of the state sequence can

be obtained. With the state sequence, it is straightfor-

ward to recover the system matrices. The advantage of

the predictor-based approach over SID lies in the han-

dling of the controller related information. The latter

requires the controller related information (the structure

such as the state space or at least a finite series of the

step response functions).

2.2 Description of the used PBSID method

Consider that the dynamics of the system to be modelled

can be written in the following minimal state-space model

in the innovation form:

xk+1 = Axk +Buk +Kek,

yk = Cxk +Duk + ek,

(1)

where xk ∈ R
n, uk ∈ R

r, yk ∈ R
ℓ, are the predicted

state and output vectors, and ek ∈ R
ℓ denotes the zero-

mean white innovation process noise. The state-space

matrices A ∈ Rn×n, B ∈ Rn×r, C ∈ Rℓ×n, D ∈ Rℓ×r,

and K ∈ Rn×ℓ are also called the system, input, output,

direct feedthrough, and Kalman gain matrices, respec-

tively. We can rewrite (1) in predictor form as:

xk+1 = Ãxk + B̃uk +Kyk,

yk = Cxk +Duk + ek,

(2)

with Ã = A−KC, and B̃ = B−KD. It is well-known that
an state transformation does not change the input-output

behaviour of a state-space system. With the above

methodolgy we can only determine the system matrices

up to a similarity transformation T ∈ R
n×n: T−1AT ,

T−1B, T−1K, CT , and D. The identification problem
can now be formulated as: Given the input sequence uk,
output sequence yk over a time k = {0, . . . , N − 1}; find
all, if they exist, system matrices A, B, C, D, and K up

to a global similarity transformation.

With assumptions that the system S to be modelled is
considered observable and of fixed order, that the wind

disturbance is zero-mean stationary and an ergodic white

Gaussian noise sequence, that the input sequence uk
has sufficient excitation, that the feedback loop does not

have direct feedthrough, the problem formulation does

not require any other assumption on the correlation be-

tween the inputs and noise sequences, which opens the

possibility to apply the algorithm in closed loop [6].

We define a past window denoted by p ∈ N
+ and a

future window denoted by f ∈ N+, where n/ℓ ≤ f ≤ p.
These windows are used to define the stacked vectors:

ȳk−p,p =




yk−p
yk−p+1

...

yk−1


 , ȳk,f =




yk
yk+1
...

yk+f−1


 ,

Stacked vectors ūk−p,p, ūk,f , ēk−p,p, and ēk,f are de-
fined in a similar way. When a batch of N data is avail-

able, we can also define the stacked matrix Y :

Y =
[
yp, · · · , yN−1

]
.

The stacked vectors U , X are defined in a similar way.

Further, we can define the stacked matrix Ȳp:

Ȳp =
[
ȳ0,p, · · · , ȳN−p,p

]
.

Again, we can also obtain the stacked vectors Ūp.

We define the one-step-ahead VARX predictor as:

ŷk|k−1,p =

p∑

i=0

Ξ̃
(u)
i uk−i +

p∑

i=1

Ξ̃
(y)
i yk−i, (3)

where ŷk|k−1,p is the predicted output for time instant k
using the given inputs of time instants k, . . . , k−p and us-
ing the measured outputs of time instants k−1, . . . , k−p.
Further, Ξ̃ ∈ Rℓ×(p+1)(r+ℓ) is the set of Markov parame-

ters to be estimated:

Ξ̃ ,

[
Ξ̃
(u)
p · · · Ξ̃

(u)
0 Ξ̃

(y)
p · · · Ξ̃

(y)
1

]
.

In [6] it was shown that estimated VARX predictors, with

large past window size, can provide asymptotical consis-

tent estimated Markov parameters of the system to be

modelled even with closed-loop data if there is sufficient

excitation from an external signal or a controller of suffi-

ciently high order to get an unique estimate. If the matrix

Ψ =
[
ŪT UT Ȳ T

]T
has full row rank, the Markov pa-

rameter set Ξ can be estimated by solving the following
linear problem:

min
Ξ
‖Y − ΞΨ‖

2
F . (4)

Now we introduce in this procedure an approximation

for the state. The predicted state xk is given by:

xk = Ãpxk−p + L̃ūk−p,p + K̃ȳk−p,p. (5)

where Lk ∈ R
n×pr and Kk ∈ R

n×pr are the extended

controllability matrices, and are given by:

L =
[
Ãp−1B̃ · · · ÃB̃ B̃

]
,

K =
[
Ãp−1K · · · ÃK K

]
.
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It can be shown that if the system in (2) is asymptotically

stable, the contribution of the initial state xk−p can be
made arbitrarily small by making p large, see [6, 7]. The
main assumption is that we assume the transition matrix

is deadbeat with degree p, thus the matrix Ãj = 0 for all
j ≥ p. With the assumption of nilpotency, the state xk is
now given by:

xk = L̃ūk−p,p + K̃ȳk−p,p. (6)

In a number of closed-loop SID methods it is well known

to make this approximation, see [5]. Observe that the

product between the state and the observability matrix is

given by:

Γ̃xk = Γ̃Lūk−p,p + Γ̃Kȳk−p,p, (7)

where Γ̃L ∈ Rfℓ×pr and Γ̃K ∈ Rfℓ×pℓ are the products

between the extended observability and the extended

controllability matrices, and are given by:

Γ̃L =




Ξ̃
(u)
p Ξ̃

(u)
p−1 · · · Ξ̃

(u)
p−2 · · · Ξ̃

(u)
1

0 Ξ̃
(u)
p · · · Ξ̃

(u)
p−1 · · · Ξ̃

(u)
2

...
. . .

. . .
...

. . .
...

0 · · · 0 Ξ̃
(u)
p · · · Ξ̃

(u)
f




, (8)

Γ̃K =




Ξ̃
(y)
p Ξ̃

(y)
p−1 · · · Ξ̃

(y)
p−2 · · · Ξ̃

(y)
1

0 Ξ̃
(y)
p · · · Ξ̃

(y)
p−1 · · · Ξ̃

(y)
2

...
. . .

. . .
...

. . .
...

0 · · · 0 Ξ̃
(y)
p · · · Ξ̃

(y)
f




. (9)

These are upper block triangular matrices, because the

introduced zeros come from the assumption of nilpo-

tency. This implies that in the asymptotic case the ap-

proximation of the matrices Γ̃L and Γ̃K can be fully con-

structed by the Markov parameters Ξ̃.
After the construction of the matrices Γ̃L and Γ̃K, we

obtain the product between the observability matrix and

the state sequence. The state vector can be estimated

by solving an low-rank approximation problem given by:

min
rank(Γ̃X)=n

∥

∥

∥
Z − Γ̃X

∥

∥

∥

F
, (10)

where Z = Γ̃LŪ + Γ̃KȲ . The optimal low-rank approxi-
mant can be computed using the Singular Value Decom-

position (SVD) as:

Γ̃LŪ + Γ̃KȲ =
[
U U⊥

] [Σn 0
0 Σ

] [
V
V⊥

]
, (11)

The diagonal matrix Σn contains the n largest singular
values, and the orthogonal matrices U and V contains

the corresponding column and row space. Note that we

can find the largest singular values by detecting a gap

between the values. By truncation, i.e. by setting the fℓ−
n smallest singular values equal to zero, the obervability
matrix and the state sequence are estimated as:

X̂ = Σ1/2n V . (12)

When the state, input, and output sequence are known,

the systemmatricesA,B, C,D, andK can be estimated

by solving two linear problems obtained from (1).

2.3 On the selection of the windows

In the previous subsection, approximations are made

which require the past window to be chosen as large as

possible, so that the best VARX predictor is expected to

be estimated. Thus, theoretically, the best linear model

is estimated when the past window p → N . However, in
identification experiments it is most of the time needed to

design the excitation signal such that it does not exceed

the load specifications and ensures that the system to be

identified operates around a particular operation point.

In this case, especially with an low-order controller in the

feedback loop, matrixΨ becomes ill-conditioned for large
past window sizes, because the input signals do not per-

sistently excite the system enough. This means that ma-

trix Ψ has nearly linear dependent rows, and is therefore
very sensitive to pertubations on the measurement data.

To avoid the ill-posed least squares problem a regulariza-

tion quantity is included to the cost (4) and can be given

by:

min
Ξ

[
‖Y − ΞΨ‖

2
F + ρ2 ‖Ξ‖

2
F

]
. (13)

A number of methods exist to determine ρ and solve
the regularized least squares problem. In this paper, we

have chosen to use the Tikhonov regularization method

together with the Generalized Cross Validation (GCV)

technique to determine the regularization value, because

from experience this gives satisfactory results. In Fig-

ure 1, the trade off between the truncation error and con-

dition number is illustrated for the TURBU simulation.

T
ru
n
c
a
ti
o
n
e
rr
o
r

Past window

C
o
n
d
it
io
n
n
u
m
b
e
r

0 5 10 15 20 25 30 35 40 45 500 5 10 15 20 25 30 35 40 45 50
104

105

106

107

108

109

1010

10−2

10−1

100

101

Figure 1: The truncation error of the VARX predictor and the

condition number ofΨ with different values for the past window.

The selection of the future window f is even more dif-
ficult. It heavily depends on the input spectrum and sys-

tem properties. It is suggested through simulation studies

that a large future window is often better for identification

experiments when the signal-to-noise ratio is low (aver-

aging effect). Otherwise for higher signal-to-noise ratios,

the optimal future window size has normally a smaller fi-

nite value.

3 Simulation Study

In this section we use a dynamic model of a wind turbine

to demonstrate the effectiveness of the proposed algo-

rithm. The TURBU simulator is used to generate input

TORQUE 2010: The Science of Making Torque from Wind, June 28-30, Crete, Greece 677



and output data sequence for closed-loop system identi-

fication. Due to the restrictions from the third party, most

of the results in this chapter are normalized. This means

that the frequencies, amplitudes, and other values illus-

trated in the figures are scaled to a common range of

values.

3.1 Specifications of the TURBU model

We use an aero-elastic wind turbine model of a

Horizontal-Axis Wind Turbine (HAWT) created with the

ECN software TURBU [1] to demonstrate the closed-

loop subspace LTI system identification algorithm. The

model describes the rotational dynamics of a wind tur-

bine around a particular operating point with wind speed

v = 18m/s. The multi-body model contains around 100
states, representing the degrees of freedom in the foun-

dation, tower, drive train, blades and the pitch servo actu-

ators. The input signals to the model are three reference

blade pitch angles θi and the reference generator torque
Tge. The outputs are defined as the generator speedΩge,
the tower top fore-aft velocity ẋnod and tower top side-
ward’s velocity ẋnay. The disturbance signals are the

three blade effective wind signals vi. The wind turbine
system is not asymptotically stable, it contains an inte-

grator. Therefore, a collective pitch controller and a gen-

erator torque controller are added in the feedback loop of

the system for stabilization. Similar as in [8], the Coleman

transformation have been used to transform the model to

fixed-frame coordinates, such that it becomes LTI sys-

tem. After the Coleman transformation, the system to be

modelled fits in the linear model structure in (1). How-

ever, one is still interested in a low-dimensionality model

for designing a controller.

3.2 Identification results of TURBU model

For consistent closed-loop model estimation of all fre-

quencies, it is important that there would be sufficient

excitation from an external excitation signal or a con-

troller with sufficiently high order. The collective pitch

controller, used to regulate the rotational speed, is based

on a PI-compensator, and the torque controller has the

form of a P-compensator. As the controllers are not suf-

ficiently high order, we add additional excitation signal to

the control signals. It is important to consider the effect

of the excitation signal on the turbine loads. In [9], addi-

tional loads on the drive train and on the tower in fore-aft

and sideward’s direction are carefully inspected. From

the load specifications of the wind turbine, the excitation

signals for the collective pitch and generator torque in-

puts are created from a filtered PRBS. In Figure 2, the

power spectral densities of both excitation signals are il-

lustrated. It is clearly visible that filtering is applied at

the higher frequencies (for a smoother signal) and also

in the case of the collective pitch around the first natural

frequency of the fore-aft displacement of the tower.

Not only, the dither signal at the plant input has dif-

ferent realizations, but also the wind disturbance (wind

turbulence) v at the plant output. While identifying the
system, two different wind disturbance realizations have
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Figure 2: Spectral density diagrams of the additional excitation

signals on the pitch (a) and the generator torque (b) inputs.
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Figure 3: Spectral density diagram of the turbulence signals.

been used; one for identification and one for validation

(SWIFT generated at v = 18, von Karman type, with tur-
bulence category A, [9]). We do not possess the wind
gust model, we only use two alternative disturbance sig-

nals (for identification and validation respectively). Fig-

ure 3 depicts the frequency content of the wind realiza-

tion applied. From the Figure, we can conclude the low

pass nature of the normalized frequency content with the

natural frequency around 0.8 [rad/sec].

Selection of the sample number N is of capital impor-

tance. The data length was chosen to be N = 5000
which corresponds to 33 min, the data is resampled to
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h = 0.4s. Longer data lengths give better results, how-
ever in reality the wind turbine stays only in an operation

region for limited amount of time, depending on the wind.

To investigate the sensitivity of the identification algorithm

with respect to excitation, Monte-Carlo simulations with

100 runs are carried out. For each simulation a different
realization of the filtered PRBS excitation signal is used.

The identified models are analyzed both in time and

frequency domain. Time domain analysis consist of the

computation of the Variance Accounted For (VAF). Fre-

quency domain validation of the identified models cov-

ers the comparative evaluation of the channel-wise fre-

quency function. The Variance-Accounted-For (VAF) per-

centage of the output variation that is explained by the

model is defined as:

VAF = max






1−
var

(
Y − Ŷ

)

var (Y )
, 0



× 100%, (14)

where var is an operator that computes the variance.

The best FIT percentage of the output variation that is

explained by the model is defined as:

FIT = max








1−

∥

∥

∥
Ŷ − Y

∥

∥

∥

2

F

‖Y −mean (Y )‖
2
F

, 0




× 100%, (15)

where mean is an operator that computes the average.
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Figure 4: The mean FIT (grey) and VAF (black) against the or-

der of the model identified with VARX-based PBSID. The grey

region shows the errorbounds for the models of 100 Monte

Carlo simulations. (p = 50, f = 15)

One of the most difficult challenge while using identi-

fication methods is certainly the selection of the appro-

priate model order, the state dimension n. Theoretically,
the model behind the TURBU simulator has almost 100
states. First, not all of the states are relevant. Second, for

the possible control synthesis low-order models are pre-

ferred and then with the help of robust control methodol-

ogy the neglected dynamical part can also be taken into

consideration. Figure 4 shows the VAF and the FIT val-

ues of the identified and then validated models versus

the selected model order. One can see the difference be-

tween the identification for low order models (under 15)
and the high order above 15 where not only the average

VAF/FIT values are lower for low model order, but also

the error bounds are larger around. Maximal VAF/FIT

values are 93%/77% after n ≥ 15.
We have to investigate the influence of the window size

p, f which are indespensable for PBSID. Up to this mo-
ment we assumed p = 50 and f = 15. Theoretically the
only constraint on the window sizes is to consider p ≥ f .
Figure 5 gives details on the window size selection. Infor-

mation in Figure5 shows the nature of the VARX model

structure, which provides more accurate mean VAF value

when the window size goes large. Based on the above

experiments, large past horizon is crucial and the future

horizon can be relatively small. These facts motivate the

choice of the following identification windows for linear

TURBU model identification. When using regularization,

the VAF results become structured reflecting the effect

of the truncation error (high in case of low past window

size). We can see slightly higher average VAF value

when no regularization is applied. We choose p = 50
and f = 15 with regularization.
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Figure 5: The mean VAF against the past window and future

window of the model identified, where (a) is without and (b) is

with regularization. (n = 16)

The most relevant transfer functions are the follow-

ing: the one from the collective pitch angle θcol →
Ωge, ẋnod, and the transfer from the generator torque

Tge → Ωge, ẋnay. Using the afford-mentioned identifi-
cation technique, four relevant input-output transfer func-

tions are validated. Figure 6 shows the comparative anal-

ysis of the frequency functions based on the pre-selected

model order and identification window sizes. Note that
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MIMO system identification is performed and Bode mag-

nitude diagrams are plotted respectively. As a generic

conclusion, one can see accurate identification of the

TURBU model around the natural frequencies (at the

high frequency part of the examined frequency range).

The transfers from the pitch angle are more consistent to

the TURBU model than those from the generator torque.

4 Conclusion

The paper concentrated on the use of an identification

technique over wind turbine model identification for con-

troller design, and showed the benefits of the application

of the predictor-based subspace identification method for

linear time invariant systems operating in closed loop.
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Figure 6: Bode diagrams of the TURBUmodel (dashed) and the

identified model with the highest VAF value (bold). The other 99

models are within the grey region. (n = 16, p = 50, f = 15)
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