
VARMAX-based closed-loop subspace model identification

Ivo Houtzager, Jan-Willem van Wingerden, and Michel Verhaegen

Abstract— In this paper a predictor-based subspace model
identification method is presented that relaxes the requirement
that the past window has to be large for asymptotical consistent
estimates. By utilizing a VARMAX model, a finite description
of the input-output relation is formulated. An extended least
squares recursion is used to estimate the Markov parameters
in the VARMAX model set. Using the Markov parameters the
state sequence can be estimated and consequently the system
matrices can be recovered. The effectiveness of the proposed
method in comparison with an existing method is emphasized
with a simulation study on a wind turbine model operating in
closed loop.

I. INTRODUCTION

Subspace Model Identification (SMI) methods are efficient

methods to identify Linear Time-Invariant (LTI) state-space

models from Multi-Input and Multi-Output (MIMO) mea-

surements of a dynamic system and are described in detail

in [13], [15]. These methods store input and output data in

structured block Hankel matrices, such that it is possible

to retrieve certain subspaces that are related to the system

matrices. The key linear algebra steps, which are a RQ

factorization, an SVD, and the solution of a linear least-

squares problem, gives SMI methods their simplicity and

numerical stability. However, it is known that SMI methods

give biased results when the system to be modelled operates

in closed-loop, because the future inputs are correlated with

the past noises, due to the feedback controller.

An alternative to SMI is the Observer/Kalman-filter IDen-

tification (OKID) method, see [10], [5]. This method ob-

tains first Markov parameters, by estimating an Vector Auto

Regressive with eXogenous inputs (VARX) model. VARX

models, with high order, can provide asymptotical consistent

estimates even on closed-loop data if there is sufficient

excitation from an external signal or a controller of suffi-

ciently high order, and that the system to be modelled or

the feedback controller does not contain direct feedthrough.

Then from the Markov parameters, a Hankel matrix is

constructed. Finally, the system matrices of the state space

model are directly estimated from the Hankel matrix by using

the Eigensystem Realization Algorithm (ERA). To obtain a

good estimate of the system matrices, a large number of

Markov parameters are needed to construct a sufficient large

Hankel matrix, making OKID less efficient then SMI.

Recently in [7], [4], [2], [1], a number of significant

advances have been presented to identify LTI state-space
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models from measurements of a dynamic system operating

in closed loop. The differences between these closed-loop

methods are given in detail in [2], [1]. Similar to the

OKID method, these recent developments are extensively

utilizing a VARX model. Both are using a VARX model to

obtain the Markov parameters, but instead the SSNEW ([7]),

SSARX ([4]) and Predictor-Based Subspace IDentification

(PBSID) method ([1], [2]) are using the Markov parameters

to construct a Toeplitz matrix, where from multiplication

with past input and output data, and an SVD, an estimation of

the state sequence can be obtained. With the state sequence,

it is straightforward to recover the system matrices.

In this paper, we present an improvement on the first part

of these methods; the estimation of the Markov parameters.

Inspired by [9], an Vector AutoRegressive Moving Average

with eXogenous inputs (VARMAX) model is utilized, which

enables consistent estimates of the model parameters of the

finite-order input-output model. This relaxes the asymptotic

consistency results in the case of VARX models, resulting in

a very large past window in practice. A large past window has

a number of disadvantages. First is that the increasing num-

ber of parameters to be fit gives an increase in the variance of

the estimate. Second is that the matrix with stacked input and

output data becomes more ill-conditioned, because normally

in practice the input signals do not persistently excite the

system enough, which means that the estimate becomes very

sensitive to perturbations on the measurement data. Third is

that in recursive implementations of SMI the computation

cost increases considerably, see [3].

The estimation of a VARMAX model is a non-linear

problem; however it sometimes can be estimated quite ef-

ficiently. Instead of the residual whitening operations in [9],

we propose the use of the Extended Least Squares (ELS)

recursion decribed in [6], [8] to solve the model estimation

problem. We do not recover the system matrices using ERA,

which requires a large number of Markov parameters, but

use instead the PBSIDopt method in [1]. The avoidance of the

explicit use of Markov parameters (like in PBSIDopt through

the state) generally results in more efficient calculations and

an improvement of accuracy of the estimated model.

The outline is as follows. In Section II, the VARX and

VARMAX model sets are defined and discussed, the the-

oretical framework for SMI of LTI systems operating in

closed-loop is presented, and a batch-wise solution is given.

In Section III, the effectiveness of the proposed VARMAX-

based method in comparison with the existing VARX-based

method are emphasized with a simulation study on a wind

turbine model operating in closed loop. In the Section IV,

we present the conclusion.
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II. VARMAX-BASED SUBSPACE MODEL IDENTIFICATION

FOR LTI SYSTEMS OPERATING IN CLOSED-LOOP

In this section a SMI for LTI systems operating in closed-

loop is presented that does not require the past window to

be very large. First in Section II-A, we describe a general

problem formulation and in Section II-B the notations and

assumptions are explained. In Section II-C, we define and

discuss the VARX/VARMAX model sets. Section II-D will

describe the data equation and the relation to the state-

sequence. In Section II-E, the main estimation problem is

solved for batches of input and output sequences and it is

given how to obtain the system matrices.

A. Problem formulation

Consider that the dynamics of the system to be modelled

can be written in the following minimal state-space model

in the innovation form:

S

{
xk+1 = Axk + Buk + Kek,

yk = Cxk + Duk + ek,
(1)

where xk ∈ R
n, uk ∈ R

r, yk ∈ R
ℓ, are the state, input

and output vectors, and ek ∈ R
ℓ denotes the zero-mean

white innovation process noise. The state-space matrices A ∈
R

n×n, B ∈ R
n×r, C ∈ R

ℓ×n, D ∈ R
ℓ×r, and K ∈ R

n×ℓ are

also called the system, input, output, direct feedthrough, and

Kalman gain matrix, respectively. It is well-known that an

invertible linear transformation of the state does not change

the input-output behavior of a state-space system. Therefore,

we can only determine the system matrices up to a similarity

transformation T ∈ R
n×n: T−1AT , T−1B, T−1K, CT , and

D. The identification problem can now be formulated as:

Problem Decription 2.1 (LTI system identification):

Given the input sequence uk, output sequence yk over a

time k = {0, . . . , N − 1}; find all, if they exist, system

matrices A, B, C, D, and K up to a global similarity

transformation.

The main assumptions are that the system to be modelled S
is considered observable, the noise sequence ek is white, the

input sequence uk has sufficient excitation, and the feedback

loop does not have direct feedthrough. Further, the problem

formulation does not require any other assumptions on the

correlation between the input and noise sequence, which

opens the possibility to apply the algorithm in closed loop.

B. Notations

The minimal state-space model denoted by (1) corresponds

to the following pair of transfer functions:

yk = G (z) uk + H (z) ek, (2)

where z denotes the forward shift operator in the following

descriptions of the proper transfer functions:

G (z) = D + C (zIn − A)
−1

B,

H (z) = Iℓ + C (zIn − A)
−1

K.

Note that In is used to represent a n-by-n identity matrix;

and Om×n a m-by-n zero matrix. The state-space description

in (1) and the transfer function description in (2) have another

equivalent description as a power series of the form:

yk = G (z,Ξ) uk + H (z,Ξ) ek, (3)

where the following relationship involving a formal power

series holds:

G (z,Ξ) = Ξu
0 + z−1Ξu

1 + z−2Ξu
2 + z−3Ξu

3 + . . . (4)

=

∞∑

i=0

Ξu
i z−i, Ξu

i =

{
D, if i = 0,

CAi−1B, if i > 0,

H (z,Ξ) = Iℓ + z−1Ξe
1 + z−2Ξe

2 + z−3Ξe
3 + . . .

= Iℓ +
∞∑

i=1

Ξe
i z

−i, Ξe
i = CAi−1K, (5)

where Ξ denotes the set of Markov parameters and Ξu
i ∈

R
ℓ×r and Ξe

i ∈ R
ℓ×ℓ are the Markov parameters in the power

series of the corresponding transfer functions. Each of these

representations has its advantages and disadvantages, there-

fore we will frequently change the considered representation

in the remainder of this paper.

We define a past window denoted by p ∈ N
+ and a future

window denoted by f ∈ N
+, where f ≤ p. These windows

are used to define the following stacked vectors:

ȳk−p =




yk−p

yk−p+1

...

yk−1


 , ȳk =




yk

yk+1

...

yk+f−1


 ,

In a similar way we can obtain the stacked vectors ūk−p,

ūk, ēk−p, and ēk. Also, we define the stacked matrix Y :

Y =
[
yp, · · · , yN−1

]
.

In a similar way we can obtain the stacked vectors U , X .

Further, we define the stacked matrix Z̄:

Z̄ =
[
z̄0, · · · , z̄N−p

]
.

We also introduce the lifted matrices:

H =




D 0 · · · 0

CB D
. . .

...
...

. . .
. . . 0

CAf−2B CAf−3B · · · D




, Γ =




C
CA

...

CAf−1


 ,

K =
[
Ap−1B · · · AB B

]
,

where H ∈ R
fℓ×fr is the impulse matrix with a lower block

triangular Toeplitz structure, Γ ∈ R
fℓ×n is the extended

observability matrix, and K ∈ R
n×pr is the extended

controllability matrix.

C. VARX and VARMAX model sets

First, we will describe the well known VARX model set.

Let the state-space model in (1) be rewritten in the Kalman

predictor form as:
{

xk+1 = Ãxk + B̃uk + Kyk,

yk = Cxk + Duk + ek,
(6)
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with Ã = A − KC, and B̃ = B − KD. Using the power

series description this state-space model becomes:

yk = G̃ (z,Ξ)uk +
(
Iℓ − H̃ (z,Ξ)

)
yk + ek. (7)

Considering a finite representation up to a past window p,

then the approximated one-step-ahead predictor is:

ŷk|k−1 = G̃p (z,Ξ)uk +
(
Iℓ − H̃p (z,Ξ)

)
yk, (8)

where

G̃p (z,Ξ) =

p∑

i=0

Ξ̃u
i z−i, H̃p (z,Ξ) = Iℓ −

p∑

i=1

Ξ̃y
i z−i,

are the finite polynomial matrices up to a past window of

the transfer functions G̃ (z) = D + C(zIn − Ã)−1B̃ and

H̃ (z) = Iℓ −C(zIn − Ã)−1K, respectively. Hence, the so-

called VARX model set is defined as:

Definition 2.2 (VARX model set): A VARX model set is

determined by the polynomial matrices in (8) with:

Ξ ,
[
Ξ̃u

p Ξ̃y
p · · · Ξ̃u

1 Ξ̃y
1 Ξ̃u

0

]
, (9)

such that

MVARX ,

{
G̃p (z,Ξ) , H̃p (z,Ξ) |Ξ ∈ R

ℓ×pm+r
}

.

The one-step-ahead predictor has the property that is a linear

function in the Markov parameters, which is very attractive

from a computational point of view. Further, the one-step-

ahead prediction error ǫk|k−1 = yk − ŷk|k−1 consists of a

truncation error term and a noise term. If the past window is

not chosen large enough, the truncation error of the Markov

parameters, can result to a biased estimation of the state

sequence. The Kalman predictor, the optimal solution to the

noise term, is only found when p → ∞, because then G̃p →
G̃ and H̃p → H̃ . In the case that there is no noise present,

the least-squares criterion will minimize the truncation error

term only. Then (6) will become a deadbeat predictor, the

optimal solution to the truncation error term, because the

estimated K becomes a so-called deadbeat gain matrix of

degree p, such that Ãi = 0 for all i ≥ p and with p ≥ n.

The observation of nilpotency has led to the introduction

of the VARMAX model structure. As similar as in [9], we

introduce another oberver matrix which creates additional

freedom for the optimizer. By considering a deadbeat gain

matrix M of degree p, which exists because from the

measurement data only an observable part of the system

can be identified, we can rewrite (1) in the deadbeat/Kalman

predictor form as:
{

xk+1 = Āxk + B̄uk + Myk + K̄ek,

yk = Cxk + Duk + ek,
(10)

with Ā = A−MC, B̄ = B−MD, and K̄ = K−M . Using

the power series description and the deadbeat property that

Āp = 0 for all p ≥ n, then the state-space model in (10) can

be rewritten as:

yk = Ḡ (z,Ξ) uk +
(
Iℓ − F̄ (z,Ξ)

)
yk + H̄ (z,Ξ) ek. (11)

Considering a finite representation up to a past window p,

then the corresponding one-step-ahead predictor is:

ŷk|k−1 = Ḡp (z,Ξ) uk +
(
Iℓ − F̄p (z,Ξ)

)
yk

+
(
H̄p (z,Ξ) − Iℓ

)
ek,

(12)

and also by substituting ek = yk− ŷk|k+1 in the former gives

an expression which resembles the well-known ARMAX

model structure as:

H̄p (z,Ξ) ŷk|k−1 = Ḡp (z,Ξ) uk (13)

+
(
H̄p (z,Ξ) − F̄p (z,Ξ)

)
yk,

where

Ḡp (z,Ξ) =

p∑

i=0

Ξ̄u
i z−i, H̄p (z,Ξ) = Iℓ +

p∑

i=1

Ξ̄e
i z

−i,

F̄p (z,Ξ) = Iℓ −

p∑

i=1

Ξ̄y
i z−i,

are the finite polynomial matrices up to a past window of the

transfer functions Ḡ (z) = D + C(zIn − Ā)−1B̄, H̄ (z) =
Iℓ + C(zIn − Ā)−1K̄, and F̄ (z) = Iℓ − C(zIn − Ā)−1M
respectively. Hence, the so-called VARMAX model set is

defined as:

Definition 2.3 (VARMAX model set): A VARMAX model

set is determined by the polynomial matrices in (13) with:

Ξ ,
[
Ξ̄u

p Ξ̄y
p Ξ̄e

p · · · Ξ̄u
1 Ξ̄y

1 Ξ̄e
1 Ξ̄u

0

]
, (14)

such that

MVARMAX ,
{
Ḡp (z,Ξ) , H̄p (z,Ξ) , F̄p (z,Ξ) |Ξ ∈ R

ℓ×pm+r
}

.

Altough the one-step-ahead predictor does not have the prop-

erty that it is a linear function in the Markov parameters, the

computation of the solution can still be done efficiently using

the extended least squares recursion, see also Section II-E.

Now, the one-step-ahead prediction error consists only of

a noise term, and therefore if p ≥ n, then Ḡp = Ḡ and

H̄p = H̄ , thus no approximation is needed.

MVARX MVARMAX

m = r + ℓ r + 2ℓ

zk =
[
uT

k
yT

k

]T [
uT

k
yT

k
eT

k

]T

⌢

A = Ã Ā
⌢

B =
[
B̃ K

] [
B̄ M K̄

]
⌢

D =
[
D Oℓ×ℓ

] [
D Oℓ×2ℓ

]

TABLE I

GENERAL NOTATION FOR VARX AND VARMAX MODEL SETS

D. The data equation and the relation with the state

To make the notations more transparant, we introduce in

Table I a general notation for all the model sets defined in

the previous section. The input-output behavior of the model

in (1) is now given by the data equation:

ȳk =
⌢

Γxk +
⌢

Hz̄k + ēk. (15)

Now we are going to introduce in this procedure an approx-

imation for the state. The state xk is given by:

xk =
⌢

A
p
xk−p +

⌢

Kz̄k−p, (16)
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where
⌢

A
p

is the transition matrix. The main assumption in

this section is that we assume that for all model sets the

matrix A is deadbeat with degree p, thus
⌢

A
i
= 0 for all i ≥ p.

In the case of the VARMAX model set this is automatically

satisfied, because a deadbeat observer matrix M exists due

to the observability of the system to be modelled. For the

VARX model set it can be shown that if the model in (6)

is uniformly exponential stable, the truncation error can be

made neglectible small by making p large, see also [1], [2].

With the assumption of nilpotency, the state xk is given by:

xk =
⌢

Kz̄k−p. (17)

In a number of closed-loop SMI methods it is well known to

make this relation, see [4], [1]. The output behavior is now

approximately given by:

yk = C
⌢

Kz̄k−p + Duk + ek. (18)

With the approximation given in (17) we rewrite (15) as:

ȳk = Γ̃Kz̄k−p +
⌢

Hz̄k + ēk. (19)

The product between the observability and the controllability

matrix results in Γ̃K ∈ R
fℓ×pm and is given by:

Γ̃K =




C
⌢

A
p−1 ⌢

B C
⌢

A
p−2 ⌢

B · · · C
⌢

B

0 C
⌢

A
p−1 ⌢

B
. . . C

⌢

A
⌢

B
...

. . .
. . .

...

0 · · · 0 C
⌢

A
f−1 ⌢

B




. (20)

This is an upper block triangular matrix, because the in-

troduced zeros come from the deadbeat assumption1. It is

clearly visible that the first block row in (20) can be used

to construct all the other block rows. Observe now that the

product between the state and the observability matrix is

given by:

Γ̃Kz̄k−p =
⌢

Γxk, (21)

and this observation is the key idea behind the PBSIDopt

method. This implies that we have to find an estimate of C
⌢

K
to construct Γ̃K. In Section II-C, the Markov parameter sets

are described such that Ξ ≡ [C
⌢

K D] and consequently can be

used to construct Γ̃K. To summarize, after the construction of

the matrix Γ̃K we obtain a product between the observability

and the state sequence. The approximation of the matrix Γ̃K
described in (20), which can be fully constructed by the

Markov parameter set Ξ and is given by2:

Γ̃K =




Ξ(:,1:pm)[
Oℓ×m, Ξ(:,1:(p−1)m)

]
[
Oℓ×2m, Ξ(:,1:(p−2)m)

]
...[

Oℓ×(f−1)m, Ξ(:,1:(p−f+1)m)
]




. (22)

1Remark: For the VARX-based PBSIDopt method, the zeros are intro-

duced by considering an approximation of the matrix Γ̃K. ([1], [2])
2For simplicity MATLAB notation is used.

E. Batch-wise solution of the model identification problem

The batch-wise solution of the presented closed-loop SMI

scheme is divided in the following three steps:

1) The estimation of the Markov parameters: Using the

VARX model structure and if the matrix Ψ =
[
ZT UT

]T

has full row rank, the Markov parameter set Ξ can be

estimated by solving the following linear problem:

min
Ξ

‖Y − ΞΨ‖
2
F . (23)

For finite p the solution of this linear problem will be biased

due to the approximation made in (17). If p → ∞ the

bias disappears. However, the matrix Ψ can become ill-

conditioned for large past window sizes, if the input signals

do not persistently excite the system enough. For example,

in identification experiments it is most of the time needed

to design the excitation signal such that it does not exceed

the load specifications and ensures that the system to be

modelled operates around a particular operation point.

For the VARMAX model set, the estimation problem can

not be solved directly using ordinary least squares, because

the noise elements in Z are not known in advance. In fact

this becomes a non-linear problem, which can be solved

for example by applying the residual whitening iterations

([9]) or the recursive Extended Least Squares (ELS) method

([8]), where the recursive scheme is prefered by experience

due to its simplicity, computational complexity, and better

converging properties. Now that the solution Ξ is computed

recursively, the costs of (23) is replaced by:

min
Ξ

[ N∑

k=0

λN−k ‖yk − Ξz̄k−p‖
2
F + λN−1ρ2ΞΠΞT

]
, (24)

where the scalar λ is called the forgetting factor and the ma-

trix Π is the regularization at the beginning of the iterations.

It is recommended to employ such an exponentially-weighted

and regularized cost function, because it ensures that during

the initial iterations of the scheme a local solution exists and

converges. It is possible to apply the exponentially weighting

only during initial calculations and set it later close to one,

which means no forgetting. The cost function can easily be

solved by an exponentially-weighted and regularized RLS

scheme, because z̄k−p does not depend on ek. Given the

regularization value ρ > 0, and a forgeting factor 0 ≪ λ ≤ 1,

the solution Ξ can be computed recursively using ELS, by

starting with P−1 = 1
ρIpm+r, and iterate as2:

z̄k−p =
[
z̄T
k−p−1(m+1:pm+r) yT

k−1 eT
k−1 uT

k

]T
,

Gk = z̄T
k−pPk−1

(
λI + z̄T

k−pPk−1z̄k−p

)−1
,

Ξ̂k = Ξ̂k−1 +
(
yk − Ξ̂k−1z̄k−p

)
Gk,

Pk = λ−1 (Pk−1 − Pk−1z̄k−pGk) ,

ek = yk − Ξ̂kz̄k−p.

For clarification, the iteration shows the conventional imple-

mentation of the recursive ELS scheme. For practical use it is

recommended to use square-root or array-type of implemen-

tations, due to better numerical robustness against round-off

ThA07.3

3373



errors, see for more discussion [3]. Another advantage is that

array methods can be used to exploit the shift structure in

the data, for example a fast-array scheme that exploits the

shift structure of the data vector z̄k−p in (24) results in an

algorithm with computational load of O(pm2N), instead of

O(p2m2N).
The practical experience with different models is that the

global minimum is usually found without too much problem,

especially if the initial Ξ−1 obtained from (23) is close to

the global minimum. If the solution still has not converged

to the minimum yet, then the iteration can be repeated with

as initial solution the previous. Altough not common, the

method is known to diverge if the following positive real

condition:

Re
{

H̄
(
eiω

)−1
}

>
1

2
, ∀ω ∈ R, (25)

is not fulfilled, see for proof and possible solutions [6], [8].
2) The estimation of state sequence: After the estimation

of the Markov parameters, the matrix Γ̃KZ is constructed

using (22), which equals by definition the extended ob-

servability times the state sequence, Γ̃X . By computing a

Singular Value Decomposition (SVD) of Γ̃KZ as:

̂̃
ΓKZ ≈

[
U U⊥

] [
Σn 0
0 Σ

] [
V
V⊥

]
, (26)

the state sequence X and the order of the system n is

retrieved. The diagonal matrix Σn contains the n largest

singular values and the orthogonal matrix V contains the

corresponding row space. Note that we can find the largest

singular values by detecting a gap between the singular

values. The state sequence is now estimated by:

X̂ = Σ1/2
n V =

(
UΣ1/2

n

)† ̂̃
ΓKZ. (27)

3) The estimation of the system matrices: It is well known

that when the state, input, and output sequence are known,

the system matrices A, B, C, D, K can be estimated by

solving two linear problems obtained from (1). In [15], it

is described to find a guarenteed stabilizing estimate of the

observer matrix K using the Riccati equation.

III. SIMULATION STUDY

In the previous section, we presented an identification

approach to identify LTI systems operating in open loop

and closed loop. In this section we use a wind turbine

model of the dynamics to demonstrate the effectiveness of

the algorithm with a small past window size.

A. First-principle model of a horizontal-axis wind turbine

In this paper, we consider a seventh order model of a

Horizontal-Axis Wind Turbine (HAWT) described in [14] to

demonstrate the closed-loop subspace LPV system identifica-

tion algorithm. The model describes the rotational dynamics

of a wind turbine around a particular operating poin and has

a constant state matrix while the input and output matrices

strongly depend on the azimuth angle. Similar as in [12],

[11], the Coleman transformation have been used to trans-

form the model to LTI. After the Coleman transformation, the

system to be modelled fits in the model structures (S ∈ M).

B. Simulation of the closed-loop wind turbine model

The LTI model of the HAWT is used to obtain the input,

and output sequence for the identification algorithm. For this

purpose, the equations are converted to discrete time using a

zero-order hold discretization method with a sample time of

0.1 s. The wind turbine system is not asymptotically stable,

it has an integrator. Therefore, controllers are added in a

feedback loop to the system for stabilization. The descrip-

tions of these controllers and additional filters used can be

found in [12], [11]. For consistent closed-loop estimation

for all frequencies, it is important that there is sufficient

excitation from an external excitation signal or a controller of

sufficiently high order. As the controllers are not sufficiently

high order, we take an additional zero-mean white noise with

var (θk,i) = 1 deg, which is added to the control signal of the

collective pitch controller. As additional excitation input for

the generator torque we take also a zero-mean white noise

signal with var (Tge,k) = 1 · 106 Nm. The wind disturbance

signal is also zero-mean white noise with var (vk,i) = 1 m/s,
but this signal is assumed to be unknown.

C. Closed-loop subspace model identification results

The collected data of uk, and yk from the simulations are

used in the identification experiments. For the identification

experiments we used N = 10000, p = f = 10 and

λ = 0.99. To emphasize the difference in performance with

small windows, the VARX model estimation is also carried

out with the same small window size. To investigate the

sensitivity of the identification algorithm with respect the

wind disturbances, a Monte-Carlo simulation with 100 runs

was carried out. For each of the 100 simulations a different

realization of the input uk and wind disturbance vk is used.

The performance of the identified system is evaluated by

looking at the singular values of matrix Γ̃KZ, and comparing

the frequency response functions of the identified models to

the real model.
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Fig. 1. The singular values of matrix Γ̃KZ for 100 experiments using
VARX (left) and VARMAX (right).

In Figure 1 the singular values of matrix Γ̃KZ, including

the errorbounds for 100 experiments are illustrated using

VARX/VARMAX-based model identification. As expected,

the singular values of VARMAX-based identification show a

large gap after the first seven largest values, which equals

the order of the system. This is not the case with the

VARX-based identification, because the past window is close

to order of the system to be modelled. Figures 2 and 3
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Fig. 2. Bode diagrams of the original transfer functions (dashed) and the
identified transfer functions of the experiment with the best fit (bold) using
VARX-based identification. The transfer functions of the other 99 experi-
ments are within the gray region.
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Fig. 3. Bode diagrams of the original transfer functions (dashed) and
the identified transfer functions of the experiment with the best fit (bold)
using VARMAX-based identification. The transfer functions of the other
99 experiments are within the gray region.

shows the Bode diagrams of a selected number of inputs

and outputs. Adding the Moving Average terms, gives more

consistent identifications results for the wind turbine sys-

tem. It shows for both methods that the identified natural

frequencies are very close to the true natural frequencies,

although a zero, which is clearly visible in the transfer

function of (Tge → θge), is not estimated with the VARX-

based identification method.

Further simulations showed that increasing the value of the

past window size, which was possible due to the additional

white noise excitation signal, improves the model obtained

from VARX-based identification considerably, and hardly

any improvement was visible in the model obtained from

VARMAX-based identification. As expected from the theory

in Section II-B, the VARX-based identification method gives

for large past window sizes (p > 30) almost similar results

as the VARMAX-based identification results with p = 10.

IV. CONCLUSION

In this paper a PBSIDopt method is presented that relaxes

the requirement that the past window has to be large for

asymptotical consistent estimates. By utilizing a VARMAX

model, a finite description of the input-output relation is

formulated. An extended least squares recursion is used to es-

timate the Markov parameters in the VARMAX model. Using

the Markov parameters the state sequence can be estimated

and consequently the system matrices can be recovered. The

method is beneficial when the past window size is restricted,

because the computational time for estimating VARMAX

models can be larger then the batch-wise estimation VARX

models with larger window sizes. The effectiveness of the

proposed method with a small past window is shown by a

simulation study on a wind turbine model operating in closed

loop.
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