Compressed Markov parameter estimation in PBSID

Ivo Houtzager, Jan-Willem van Wingerden, and Michel Verhaegen

Abstract-

I. INTRODUCTION

blablabla

II. The compressed Markov paramter estimation

First we define the stacked vector Y :

$$
Y=\left[\begin{array}{lll}
y_{p+1}, & \cdots, & y_{N}
\end{array}\right],
$$

In a similar way we can obtain the stacked vectors U, X. Further, we define the stacked matrix Z :

$$
Z=\left[\begin{array}{lll}
\bar{z}_{1}, & \cdots, & \bar{z}_{N-p+1}
\end{array}\right] .
$$

Using the VARX model structure and if the matrix $\Psi=$ $\left[\begin{array}{ll}Z^{T} & U^{T}\end{array}\right]^{T}$ has full row rank, the Markov parameter set Ξ can be estimated by solving the following linear problem:

$$
\begin{equation*}
\min _{\Xi}\|Y-\Xi \Psi\|_{F}^{2} \tag{1}
\end{equation*}
$$

However, for a large window it is possible that the matrix $\Psi=\left[\begin{array}{ll}Z^{T} & U^{T}\end{array}\right]^{T}$ is singular. If that is the case, apply the Partial Least-Squares (PLS) method as follows:

$$
\Psi=\left[\begin{array}{ll}
U & U_{\perp}
\end{array}\right]\left[\begin{array}{cc}
\Sigma & 0 \tag{2}\\
0 & 0
\end{array}\right]\left[\begin{array}{c}
V \\
V_{\perp}
\end{array}\right]
$$

Define $\breve{\Xi}=\Xi U$, and $\breve{\Psi}=U^{T} \Psi=\Sigma V$, then the compressed Markov parameter set Ξ can be estimated by solving the following linear problem:

$$
\begin{equation*}
\min _{\Xi}\|Y-\Xi ⿹ \Xi \Psi \Psi\|_{F}^{2} \tag{3}
\end{equation*}
$$

III. ObTAINING THE EXTENDED OBSERVABILITY TIMES

 CONTROLLABILITY MATRIXThe approximation of the matrix $\widetilde{\Gamma \mathcal{K}}$, which can be fully constructed by the Markov parameter set Ξ and is given by ${ }^{1}$:

$$
\widetilde{\Gamma \mathcal{K}} Z=\left[\begin{array}{c}
\Xi(:, 1: p m) \tag{4}\\
{\left[O^{\ell \times m},\right.} \\
{\left[O_{(:, 1:(p-1) m)}^{\ell \times 2 m},\right.} \\
\left.\Xi_{(:, 1:(p-2) m)}\right] \\
\vdots \\
{\left[O^{\ell \times(f-1) m},\right.} \\
\Xi(:, 1:(p-f+1) m)]
\end{array}\right] Z .
$$

This research is supported under the WE@SEA program of SenterNovem, an agency of the Dutch Ministry of Economic Affairs to promote sustainable development and innovation.

Delft Center of Systems and Control, Delft University of Technology, Delft, 2628 CD The Netherlands (Tel: +3115 27 86707; e-mail: I. Houtzager@TUDelft.nl)
${ }^{1}$ For simplicity Matlab notation is used.
with compressed Markov parameters

$$
\left.\left.\widetilde{\Gamma \mathcal{K}} Z=\left[\begin{array}{c}
\breve{\Xi} U^{T}(:, 1: p m) \tag{5}\\
{\left[O^{\ell \times m},\right.} \\
\Xi U^{T}(:, 1:(p-1) m) \\
{\left[O^{\ell \times 2 m},\right.} \\
\Xi U^{T}(:, 1:(p-2) m)
\end{array}\right] \quad \text { } \begin{array}{c}
\\
{\left[O^{\ell \times(f-1) m},\right.} \\
\Xi U^{T}(:, 1:(p-f+1) m)
\end{array}\right]\right] Z
$$

Now define:

$$
Z=\left[\begin{array}{c}
Z_{(1)} \\
Z_{(2)} \\
\vdots \\
Z_{(p)}
\end{array}\right], \quad U=\left[\begin{array}{c}
U_{(1)} \\
U_{(2)} \\
\vdots \\
U_{(p)}
\end{array}\right]
$$

it becomes

$$
\widetilde{\Gamma \mathcal{K}} Z=\left[\begin{array}{c}
\Xi\left(\sum_{i=1}^{p} U_{(i)}^{T} Z_{(i)}\right) \tag{6}\\
\breve{\Xi}\left(\sum_{i=1}^{p-1} U_{(i)}^{T} Z_{(i+1)}\right) \\
\Xi\left(\sum_{i=1}^{p-2} U_{(i)}^{T} Z_{(i+2)}\right) \\
\vdots \\
\breve{\Xi} U_{(1)}^{T} Z_{(p)}
\end{array}\right]
$$

