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Abstract: In this paper a subspace model identification algorithm is presented that can be
implemented recursively to track slowly time-varying linear systems operating in open loop and
closed loop. Particular attention is paid to the computational cost and tracking performance of
the developed identification algorithm. The identification problem is described by only two linear
problems. The computational complexity is reduced by using array algorithms to solve these
linear problems and exploiting the structure in the vectors. This results in a fast implementation
of the developed recursive identification algorithm. The effectiveness of the proposed algorithm
in comparison with existing methods is emphasized with a simulation study on a time-varying
closed-loop system.
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1. INTRODUCTION

Subspace Model Identification (SMI) methods are effi-
cient methods to identify Linear Time-Invariant (LTI)
state-space models from Multi-Input and Multi-Output
(MIMO) measurements of a dynamic system and are de-
scribed in detail in Van Overschee and De Moor [1996],
Verhaegen and Verdult [2007]. These methods store input
and output data in structured block Hankel matrices, such
that it is possible to retrieve certain subspaces that are
related to the system matrices. These methods are very
successful for offline identification, because the key linear
algebra steps are a RQ factorization, an SVD, and the
solution of a linear least-squares problem, therefore the
problem of forming a nonlinear optimization is circum-
vented. Especially the use of a RQ factorization resulted in
computationally efficient implementations of SMI schemes.

In online identification, it is important to update the
identified model during the sampling period. In spite off
the existence of fast updating algorithms for the RQ fac-
torization, it is still difficult to implement these algorithms
online due to the computational load of the SVD. Con-
sequently, researchers try to find alternative algorithms
for the SVD, or to avoid the application of the SVD, in
order to apply the subspace concept in a recursive frame-
work. The first successful Recursive Subspace Model Iden-
tification (RSMI) methods are described in Gustafsson
[1998], Lovera et al. [2000], Lovera [2003] and are based on
the Projection Approximation Subspace Tracking (PAST)
method of Yang [1995]. More recently, new developments
in the RSMI class of algorithms have been put forward
by Mercère et al. [2003, 2008]. The proposed Propagator
Method (PM) is based on the adaptation of a particular
array signal processing technique to the RSMI problem.

⋆ This research is supported under contract NO. TMR.5636 by the
Dutch Technology Foundation STW.

The main advantage of this approach over the previous
concept is the use of a linear operator, which lead to
recursive least-squares implementations of the algorithms.

Another disadvantage with the traditional SMI methods
is that they give biased results when the system to be
modelled operates in closed-loop, because the future inputs
are correlated with the past noises, due to the feedback
controller. Recently in Jansson [2003], Qin and Ljung
[2003], Chiuso and Picci [2005], Chiuso [2007], a number
of significant advances have been presented to identify
an LTI state-space models from measurements of a dy-
namic system operating in closed loop. The Vector Auto
Regressive with eXogenous inputs (VARX) models from
the work of Chiuso [2007] have been used together with
the PAST method in Wu et al. [2008] to create recur-
sive implementations. VARX models, with high order, can
provide asymptotical consistent estimates even on closed-
loop data if there is sufficient excitation from an external
signal or a controller of sufficiently high order. However,
the estimation of VARX models still consumes a lot of
computation time, therefore in the next sections of this
paper a fast implementation of a novel closed-loop RSMI
algorithm is proposed based on the optimized version
of the Predictor-Based Subspace IDentification (PBSID)
method, the so-called PBSIDopt method in Chiuso [2007].

The remainder of this paper is as follows. In Section 2, the
theoretical framework is presented for the subspace model
identification of closed-loop LTI systems and the batch-
wise solution is given. In Section 3, the fast implementation
of the recursive solution for the closed-loop SMI problem
is given and discussed. In Section 4, the effectiveness of
the proposed RSMI algorithm in comparison with existing
methods are emphasized with a simulation study on a
time-varying system. In the final section we present the
conclusions of this paper.
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2. SUBSPACE MODEL IDENTIFICATION FOR LTI
SYSTEMS OPERATING IN CLOSED-LOOP

In this section a SMI method for LTI systems operating
in closed-loop is presented that only requires the solution
of linear problems. First, we describe a general problem
formulation and second we explain the notations and
assumptions made. In the third subsection, we introduce
the data equation which will describe the main and largest
linear problem to be solved. In the fourth subsection, the
main estimation problem is solved batch-wise and it is
shown how to obtain the system matrices. In the last
subsection, a transformation is given which can be used
as an alternative way to obtain the system matrices.

2.1 Problem formulation

Consider that the dynamics of the system to be modelled
can be written in the following minimal state-space model
in the innovation form:

S

{
xk+1 = Axk + Buk + Kek,

yk = Cxk + Duk + ek,
(1)

where xk ∈ R
n, uk ∈ R

r, yk ∈ R
ℓ, are the state and

output vectors, and ek ∈ R
ℓ denotes the zero-mean white

innovation process noise. The state-space matrices A ∈
R

n×n, B ∈ R
n×r, C ∈ R

ℓ×n, D ∈ R
ℓ×r, and K ∈ R

n×ℓ are
also called the system, input, output, direct feedthrough,
and Kalman gain matrix, respectively. We can rewrite (1)
in the predictor form as:{

xk+1 = Ãxk + B̃uk + Kyk,
yk = Cxk + Duk + ek,

(2)

with Ã = A − KC, and B̃ = B − KD. It is well-known
that an invertible linear transformation of the state does
not change the input-output behaviour of a state-space
system. Therefore, we can only determine the system
matrices up to a similarity transformation T ∈ R

n×n:
T−1AT , T−1B, T−1K, CT , and D. The identification
problem can now be formulated as:

Problem Description 1. Given the input sequence uk, out-
put sequence yk over a time k = {0, . . . , N − 1}; find
all, if they exist, system matrices A, B, C, D, and K up
to a global similarity transformation both recursively and
batch-wise.

2.2 Notation and assumptions

To make the notations more transparant, we define m =

r + ℓ, zk =
[
uT

k yT
k

]T
, B̄ =

[
B̃ K

]
, and D̄ =

[
D Oℓ×ℓ

]
.

Note that Om×n is used to represent an m-by-n zero
matrix; and Im an m-by-m identity matrix. We define a
past window denoted by p ∈ N

+. This window is used to
define the following stacked vector:

ȳk =




yk

yk+1

...
yk+p−1


 .

In a similar way we can obtain the stacked vectors ȳk−p,
ēk, ēk−p, and z̄k−p.

The main assumptions are that the system to be modelled
S is considered observable and that the noise sequence

ek needs to be white. Further, the problem formulation
does not require any other assumptions on the correlation
between the input and noise sequence, which opens the
possibility to apply the algorithm in closed loop.

2.3 The data equation and the relation with the state

Before we present the well known data equation, we
introduce the following matrices:

H̃ =




D̄ 0 · · · 0

CB̄ D̄
. . .

...
...

. . .
. . . 0

CÃp−2B̄ CÃp−3B̄ · · · D̄




, Γ̃ =




C

CÃ
...

CÃp−1


 ,

K̃ =
[
Ãp−1B̄ · · · ÃB̄ B̄

]
,

where H̃ ∈ R
pℓ×pm is a lower block triangular Toeplitz

matrix considering all z̄k as inputs to the closed-loop
observer system, Γ̃ ∈ R

pℓ×n is the extended observability
matrix, and K̃ ∈ R

n×pm is the extended controllability
matrix. With these definitions the input-output behaviour
of the model in (1) is now given by:

ȳk = Γ̃xk + H̃z̄k + ēk. (3)

Now we are going to introduce in this procedure an
approximation for the state. The state xk is given by:

xk = Ãpxk−p + K̃z̄k−p, (4)

where Ãp is the transition matrix. The main assumption
in this section is that we assume that Ãj ≈ 0 for all j ≥ p.
It can be shown that if the system in (2) is uniformly
exponential stable the approximation error can be made
arbitrarily small by making p large, see Chiuso and Picci
[2005], Chiuso [2007]. With this assumption the state xk

is approximately given by:

xk ≈ K̃z̄k−p. (5)

In a number of closed-loop SMI methods it is well known
to make this approximation, see Jansson [2003], Chiuso
[2007]. The output behaviour is now approximately given
by:

yk ≈ CK̃z̄k−p + Duk + ek. (6)

With the approximation given in (5), we can rewrite (3)
as:

ȳk ≈ Γ̃Kz̄k−p + H̃z̄k + ēk. (7)

The product Γ̃K is now given by:

Γ̃K =




CÃp−1B̄ CÃp−2B̄ · · · CB̄

CÃpB̄ CÃp−1B̄
. . . CÃB̄

...
. . .

. . .
...

CÃ2p−1B̄ · · · CÃpB̄ CÃp−1B̄




. (8)

With the assumption that Ãj ≈ 0 for all j ≥ p, this
expression can be approximated by the following upper
block diagonal matrix:

Γ̃K ≈




CÃp−1B̄ CÃp−2B̄ · · · CB̄

0 CÃp−1B̄
. . . CÃB̄

...
. . .

. . .
...

0 · · · 0 CÃp−1B̄




. (9)

Due to the introduction of zeros in this matrix, the first
block row in (9) can be used to construct the other block
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rows. Observe now that the product between the state and
the observability matrix is approximately given by:

q̄k , Γ̃Kz̄k−p ≈ Γ̃xk, (10)

under the assumptions on the state it holds that:

lim
p→∞

q̄k , Γ̃Kz̄k−p = Γ̃xk, (11)

and this observation is the key idea behind the PBSIDopt

method. This implies that we have to find an estimate of

CK̃ to construct Γ̃K. In (6), a linear problem is described

in CK̃ and consequently can be used to estimate Γ̃K batch-
wise or recursively. To summarize, after the construction

of the matrix Γ̃K we obtain a product between the observ-
ability and the state sequence. The approximation of the

matrix Γ̃K described in (9), which can be fully constructed

by the product CK̃ and is given by 1 :

Γ̃K ≈




CK̃[
O(r+ℓ)×(r+ℓ), CK̃(:,1:(r+ℓ)(p−1))

]
[
O(r+ℓ)×2(r+ℓ), CK̃(:,1:(r+ℓ)(p−2))

]

...[
O(r+ℓ)×(r+ℓ)(p−1), CK̃(:,1:(r+ℓ))

]




. (12)

2.4 Batch-wise solution

First we define the stacked vector Y :

Y = [yp+1, · · · , yN ] ,

In a similar way we can obtain the stacked vectors U , X.
Further, we define the stacked matrix Z:

Z = [z̄1, · · · , z̄N−p+1] .

If the matrix Ψ =
[
ZT UT

]T
has full row rank, the

matrices CK̃ and D can be estimated by solving the
following linear problem:

min
[CK̃ D]

∥∥Y −
[
CK̃ D

]
Ψ

∥∥2

F
. (13)

For finite p the solution of this linear problem will be
biased due to the approximation made in (5). In the
literature a number of papers appeared that studied the
effect of the window size and although they proved the
asymptotic properties of the algorithms (if p → ∞ the
bias disappears) it is hard to quantify the effect for finite
p (Chiuso and Picci [2005], Chiuso [2007]).

The Γ̃KZ is constructed using relation (12), which equals
by definition the extended observability times the state
sequence, Γ̃X. By computing a Singular Value Decompo-
sition (SVD) of this estimate the state sequence and the
order of the system is retrieved. Using the following SVD:

̂̃
ΓKZ ≈ [U U⊥]

[
Σn 0
0 Σ

] [
V
V⊥

]
, (14)

where Σn is the diagonal matrix containing the n largest
singular values and V is the corresponding row space. Note
that we can find the largest singular values by detecting
a gap between the singular values. The state sequence is
now estimated by

X̂ = Σ
1
2
nV. (15)

1 For simplicity Matlab notation is used.

It is well known that when the state, input, and output
sequence are known, the system matrices A, B, C, and D
can be estimated by solving the following linear problem1:

min
θ

∥∥∥∥
[
X(:,p+2:N)

Y

]
−

[
A B
C D

]

︸ ︷︷ ︸
θ

[
X(:,p+1:N−1)

U

] ∥∥∥∥
2

F

. (16)

In Verhaegen and Verdult [2007], it is also described to find
a guarenteed stabilizing estimate of the observer matrix K
using the Riccati equation.

2.5 Transformation of observability matrix

Although the calculation of the system matrices using the
estimated state sequence is preferred, there is alternative
way. Most recursive and traditional SMI methods obtain
the system matrices A and C from the estimated observ-
ability matrix Γ as1:

A = Γ(1:(p−1)ℓ,:)
†Γ(ℓ+1:pℓ,:), C = Γ(1:ℓ,:).

The extended observability matrix Γ can be estimated by:

Γ̂ = UΣ
1
2
n , (17)

where U is the column space obtained from the SVD of

the matrix ΓK̃Z. In (15) the SVD of the matrix Γ̃KZ is
described instead, but fortunately there exist the following
transformation:



ΓK̃(0)

ΓK̃(1)

...

ΓK̃(p−1)




︸ ︷︷ ︸
ΓK̃

=




Iℓ 0 · · · 0

CK Iℓ . . .
...

...
. . .

. . . 0
CAp−2K CAp−1K · · · Iℓ




︸ ︷︷ ︸
W




Γ̃K(0)

Γ̃K(1)

...

Γ̃K(p−1)




︸ ︷︷ ︸
Γ̃K

,

(18)
which brings the prediction observability matrix to the
following innovation form:

ΓK̃ =




CÃp−1B̄ CÃp−2B̄ · · · CB̄

∗ CAÃp−2B̄
. . . CAB̄

...
. . .

. . .
...

∗ · · · ∗ CAp−1B̄




, (19)

where Γ̃K(i) denotes the ith block row of Γ̃K, and ∗ denotes
non-essential values which can be made zero. The Markov
parameters of the impulse matrix W are not known in
advance, but in Dong et al. [2008], de Korte [2009] a similar
transformation is described as follows1:

ΓK̃(i) = Γ̃K(i) +
i−1∑
j=0

(
CÃi−j−1K︸ ︷︷ ︸

CK̃(:,(p−i+j)(r+ℓ)+r+(1:ℓ))

ΓK̃(i)
)
, (20)

where all the Markov parameters are known. Then, by
applying the SVD on the matrix ΓK̃ instead, an estimate
of the matrix Γ can be found in the column space.
Given the estimates of A and C, the system matrix B
can be obtained (D can be obtained from (6)) from
another linear problem, see for batch-wise Van Overschee
and De Moor [1996], Verhaegen and Verdult [2007] and
recursively Lovera et al. [2000]. Further, it is noted that
applying this transformation can also lead to a weighted
version of PBSIDopt, see Chiuso [2007].
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3. RECURSIVE SOLUTION OF THE CLOSED-LOOP
SUBSPACE MODEL IDENTIFICATION METHOD

In this section the recursive solution of the presented
closed-loop SMI method is presented. With the batch-wise
solution the order of the system was unknown, and could
be obtained from the singular values. For the recursive ver-
sion of the algorithm the number of states n is assumed to
be known. In the first subsection, the recursive solution is
described in three steps. In the second and last subsection,
we look at the implementation and the computational cost
of the recursive least-squares solvers.

3.1 Recursive identification steps

The recursive solution of the presented closed-loop SMI
scheme is given in Table 1 and is divided in the following
three steps:

Step 1: The estimation of CK̃ and construction of q̄k

The linear problem formulated in (13) derived from the
relation in (5) can be written as a recursive least-squares
problem, see Section 3.2. A very fast solution of this
problem can be computed recursively with the fast-array
scheme given in Table 1. From the recursive estimate of
CK̃ the propagator vector q̄k can be constructed.

Step 2: The estimation of xk The state xk can be con-

structed from the recursive estimate of Γ̃K. To construct
the state at time instance xk in the same state basis as
xk−1, the Propagator Method (PM), described in Mercère
et al. [2008], can be used. Assuming that the system (1)

is observable, then Γ̃ has at least n linearly independent
rows. If the order n is known, it is possible to build a
permutation matrix S ∈ R

ℓp×ℓp such that the extended
observability matrix can be decomposed in the following
way:[

q̄k,1

q̄k,2

]
, SΓ̃Kz̄k−p =

[
Γ̃1

Γ̃2

]
K̃z̄k−p =

[
In

P

]
Γ̃1K̃z̄k−p, (21)

where Γ̃1 are the blocks of n independent rows and Γ̃2

are the matrices of the ℓp − n others, and P is a unique
operator named the propagator. This relation and the
approximation in (10) implies that an estimate of the state
can be calculated in a particular basis, defined by:

x̂k = q̄k,1 ≈ Γ̃1xk. (22)

How to find the permutation matrix S, without knowing
Γ̃, such that the first n rows of SΓ̃ are linearly independent
is discussed in Mercère et al. [2008]. The PM method is
also useful for recursive implementation of the alternative
solution mentioned in Section 2.5.

Step 3: The recursive estimation of the system matrices
From the estimate of the state update, the system matrices
can be updated using recursive versions of the linear least-
squares problem (16).

3.2 Recursive least squares solvers

Let λ be a positive scalar, usually very close to one, say
0 ≪ λ ≤ 1. The solution θ can be computed recursively,
and the cost in (13) and (16) is replaced by:

min
θ

N∑

k=0

λN−k ‖dk − θwk‖
2
F . (23)

The scalar λ is called the forgetting factor since past data
are exponentially weighted less heavily than more recent
data. It is common in recursive identification to employ
an exponentially weighted regularized least-squares cost
function, because its purpose is to give more weight to
recent data and less weight to data from the remote past,
such that time-varing tracking of θ becomes possible.

A good overview of RLS schemes, which minimizes the cost
given in (23), is found in the book of Sayed [2008]. The
conventional RLS implementations are used in a broad
class of applications, such as RSMI, because of the sim-
plicity of these schemes. However, in the current decade
the tendency has arisen to exclude the implementation
referred to in Verhaegen [1989] as the conventional RLS
implementation for practical use and opts the use of a
square-root type of implementation due to better numeri-
cal robustness against round-off errors. The array methods
written in Table 1 are powerful variants of square-root RLS
that performs the computations in a reliable manner using
a sequence of elementary Givens and/or hyperbolic rota-
tions, see for stable implementations Chandrasekaran and
Sayed [1996]. Another advantage is that array methods
can be used to exploit any shifting structure in the data.
Using a fast-array RLS scheme that exploits the shifting
structure of the data vector z̄k−p in (7) and results in
an algorithm with computational load of O (p), instead
of O

(
p2

)
, see Table 1.

Past window

T
im

e
[s

]

EIVPM
EIVsqrtPM
sqrtVPC
faVPC
sqrtRPB
faRPB

5 10 15 20 25 30 35 40 45 50

0.2

0.4

0.6

0.8

1

Fig. 1. Computational time of EIVPM, EIVsqrtPM,
sqrtVPC, faVPC, sqrtRPB, and faRPB for different
past (future) window sizes. The following parameters
have been used: N = 1000, MCS = 100.

A comparison of the computational time needed for six
RSMI schemes to compute the system matrices from ran-
dom measurement data with 1000 samples and different
past (and future) window sizes is illustrated in Fig. 1.
The computational time are averaged over 100 Monte
Carlo Simulations (MCS). The proposed RSMI method
is denoted by sqrtRPB for the square-root RLS imple-
mentation and faRPB for fast-array RLS implementation.
The methods EIVPM and EIVsqrtPM (square root version
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Table 1. The fast-array closed-loop RSMI algorithm and its computational load of O
(
(r + ℓ)

2
p
)

init

Given θp, λ1, λ2, Lp, Pp, and S.
for k = p + 1, p + 2, . . .

Step 1:

Define

w̄k =

[
w̄k−1(r+ℓ+1:(r+ℓ)p,:)

yk−1

uk

]

Find a J-unitary matrix Θ1 , where J = diag
(
1,−Ir+ℓ, Ir+ℓ

)
, such that


γ
−1/2
1,k−1

1
√

λ1

w̄T
k Lk−1[

g1,k−1γ
−1/2
1,k−1

0

]
1

√
λ1

Lk−1


Θ1,k =




γ
−1/2
1,k

[
0 0

]
[

0

g1,kγ
−1/2
1,k

]
Lk


, 14 (r + ℓ)2 (p + 1) − 6 (r + ℓ)

[
CK̃k Dk

]
=

[
CK̃k−1 Dk−1

]
+

(
yk −

[
CK̃k−1 Dk−1

]
w̄k

)(
g1,kγ

−1/2
1,k

γ
1/2
1,k

)T

, (4ℓ + 1) (r + ℓ) (p + 1)

Γ̃Kk =




CK̃k(:,1:(r+ℓ)p)[
O(r+ℓ)×(r+ℓ), CK̃k(:,1:(r+ℓ)(p−1))

]
[
O(r+ℓ)×2(r+ℓ), CK̃k(:,1:(r+ℓ)(p−2))

]
..
.[

O(r+ℓ)×(r+ℓ)(p−1), CK̃k(:,1:(r+ℓ))

]




,

Step 2:

q̄k = SΓ̃Kk z̄k−p, (2ℓp − 1) (n + r)
xk = q̄k(1:n,:),
Step 3:

Find a unitary matrix Θ2 such that
I

1
√

λ2

[
xk−1

uk−1

]T

P
1/2
k−1

0
1

√
λ2

P
1/2
k−1


Θ2,k =

[
γ
−1/2
2,k

0

g2,kγ
−1/2
2,k

P
1/2
k

]
, 10 (n + r)2 + 2 (n + r)

θk = θk−1 +

([
xk

yk−1

]
− θk−1

[
xk−1

uk−1

])(
g2,kγ

−1/2
2,k

γ
1/2
2,k

)T

, (4 (n + ℓ) + 1) (n + r)

end

of the previous) are found in Mercère et al. [2008], and
the methods sqrtVPC and faVPC are square-root and
fast-array RLS implementations of the closed-loop RSMI
method found in Wu et al. [2008]. From the figure, it is
clearly visible that the proposed RPB method has the
fastest computation time, even for large past window sizes
if fast-array RLS is used.

4. SIMULATION STUDY

In order to illustrate the performances of the RSMI meth-
ods proposed in this paper and the existing methods, the
state-space system from Mercère et al. [2008] is used:

xk+1 =

[
0.8 −0.4 0.2
0 0.3 −0.5
0 0 0.5

]
xk +

[
0 0
0 −0.6

0.5 0

]
uk

+

[
0.055 0 0

0 0.05 0
0 0 0.045

]
wk,

yk =

[
0.5 0.5 0
0 0 1

]
xk +

[
0.025 0

0 0.03

]
vk,

(24)

where vk and wk are random white noise sequences of
variance 1. To create a closed-loop system, a time-varying
state-feedback control law is applied as described in Ogata
[1994] that stabilizes the above system over the whole tra-
jectory. Two practical situations are considered to evaluate
the tracking performance: a slowly time-varying case, and
an abrupt-change case.

4.1 Slowly time-varying case

After a time-invariant phase of 665 samples, the following
state matrix is used:

A + diag(−0.3, −0.5, 0.2 )
exp (−(k − 665)/2000) − 1

exp (−1) − 1
.

(25)
Thus the poles of the systen drift from {0.3, 0.5, 0.8} dur-
ing the next 1335 samples. The estimated poles trajectories
averaged over the 100 MCS are displayed in Fig. 2. As ex-
pected the open-loop EIVPM method gives biased results,
because the system to be modelled operates in closed-
loop. The EIVPM method cannot handle the problem
that the future inputs are correlated with past noises. The
VPC and the presented RPB method follow the eigenvalue
trajectories much better. From the averaged responses,
it visible that the VPC algorithm has more difficulties
and sometimes give some biased results. Further, it was
observed from the simulations that the variance around
the mean trajectories is much larger for the VPC method
compared to the RPB method.

4.2 Abrupt-change case

After a time-invarient phase of size 665 samples, the
following abrupt change A(3, 3) = 0.65 in the state matrix
is applied. Thus the pole 0.5 shifts to 0.65. The estimated
poles trajectories averaged over the 100 MCS are displayed
in Fig. 3. Similar as in Section 4.1, the open-loop EIVPM

100



method gives biased results. In the figure, the method VPC
shows a faster convergence in spite of some bias. Also here,
it was shown in simulation that the individual responses
of RPB are much smoother.
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Fig. 2. Trajectories of the estimated poles using EIVPM,
VPC, and RPB in a slowly changing environment.
The following parameters are used: λ1 = λ2 = 0.98,
p = 5, SNR = 25dB, and MCS = 100.
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Fig. 3. Trajectories of the estimated poles using EIVPM,
VPC, and RPB in an abrupt time-varying environ-
ment. The following parameters are used: λ1 = λ2 =
0.98, p = 5, SNR = 25dB, and MCS = 100.

5. CONCLUSION

A subspace model identification algorithm is presented
that can be implemented recursively to track time-varying
linear systems operating in open loop and closed loop.
The identification problem is described by only two linear
problems. The computational complexity is reduced by
using array algorithms to solve these linear problems and
exploiting the structure of the vectors. This results in a fast
implementation of the developed recursive identification
algorithm. The effectiveness of the proposed algorithm in

comparison with existing methods is emphasized with a
simulation study on a time-varying closed-loop system.
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