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a b s t r a c t

In this paper we present a novel algorithm to identify LPV systems with affine parameter dependence
operating under open- and closed-loop conditions. A factorization is introducedwhichmakes it possible to
form a predictor that predicts the output, which is based on past inputs, outputs, and scheduling data. The
predictor contains the LPV equivalent of the Markov parameters. Using this predictor, ideas from closed-
loop LTI identification are developed to estimate the state sequence from which the LPV systemmatrices
can be constructed. A numerically efficient implementation is presented using the kernel method. It turns
out that if structure is present in the scheduling sequence the computational complexity reduces even
more.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

From a system theoretic point of view the identification
and control of Linear Parameter-Varying (LPV) systems have
attracted considerable attention in the past years, see Bamieh
and Giarre (2002), Felici, van Wingerden, and Verhaegen (2007),
Lee and Poolla (1999), Liu (1997), Verdult (2002), and Apkarian
and Adams (1998), Scherer (2001), Shamma and Athans (1991),
Zhou, Doyle, and Glover (1996) respectively. Recently, a number
of applications of such systems were published: compressors
(Giarre, Bauso, Falugi, & Bamieh, 2006), wind turbines (Bianchi,
Mantz, & Christiansen, 2005; van Wingerden, Houtzager, Felici,
& Verhaegen, 2009), aerospace applications (Barker & Balas,
2000), biomedical applications (Takahashi &Massaquoi, 2007), and
motion platforms (Groot Wasink, Van De Wal, Scherer & Bosgra,
2005) are systems depending on a known scheduling vector,
which shows the potential of LPV system theory for industrial
applications.
Some of the applications are unstable by nature and have to

operate in closed loop before they can be identified, e.g. aerospace
applications (Barker & Balas, 2000) and wind turbines (Bianchi
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et al., 2005; van Wingerden et al., 2009). For these systems it is
common practice to develop a low-level controller to stabilize the
system and identify a number of local linear models in different
operation points. Interpolation is performed between the different
local models to obtain an LPV representation (GrootWassink et al.,
2005; Lovera & Mercere, 2007). In Tóth, Felici, Heuberger, and
Van den Hof (2007a) it is shown that the interpolation between
these local models can lead to unstable representations of the
LPV structure while the original system is stable. In this paper we
present a novel subspace based identification algorithm to identify
LPV systems under closed-loop conditions which does not require
interpolation or identification of local models.
The identification of LPV systems with arbitrarily varying

scheduling sequences has proven to be challenging from a
numerical point of view (Verdult & Verhaegen, 2002). The data
matrices involved in this algorithm grow exponentially with the
size of the prediction window. With the introduction of the
kernel method to this framework the curse of dimensionality
was partially solved, however, a bias was introduced (Verdult
& Verhaegen, 2005). For optimization based algorithms (Lee &
Poolla, 1999) these models appeared to be a good starting point.
Recently, a number of papers appeared where the structure of
the scheduling sequence is exploited. It turns out that if the
scheduling is periodic (Felici et al., 2007; van Wingerden et al.,
2009), piecewise constant (vanWingerden&Verhaegen, 2007; van
Wingerden, Felici, & Verhaegen, 2007), orwhite noise (Favoreel, De
Moor, & Van Overschee, 1999; Santos, Ramos, & Carvalho, 2005),
well-established LTI subspace techniques can be used to identify
LPV or bilinear systems.
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The literature on the identification of LPV systems so far is
dedicated to the open-loop setting. An overview of literature in
the area of open-loop LPV identification is given in Verdult (2002).
More recent work can be found in Borges, Verdult, Verhaegen, and
Botto (2004) where they use separable least squares to identify
an LPV model in the state space setting. In the input–output
setting, work can be found in Bamieh and Giarre (2002), Previdi
and Lovera (2004) and Tóth, Heuberger, and Van den Hof (2007b).
However, to deal with multiple input and output systems and to
exploit the numerical properties of subspace techniques (these
techniques are solely depending on well-established techniques
from linear algebra) the focus of this paper is on subspace based
LPV identification.
The first main contribution of this paper is that we present

a novel set of algorithms to identify LPV systems for the open-
and closed-loop setting.We present a factorization whichmakes it
possible to formulate a predictor that contains the LPV equivalent
of the Markov parameters. This contribution is an extension
of the work in van Wingerden and Verhaegen (2008b). The
second main contribution is that we present an approach that
stays close to the formulations given in Chiuso (2007). The
computational complexity of the algorithm is significantly smaller
than the algorithms in Verdult and Verhaegen (2002), but still the
dimensions grow exponentially. Similar to what is done in Verdult
and Verhaegen (2005) we present the kernel method to reduce the
computational complexity. However, we derive computationally
efficient formulations of the kernels, which is the third main
contribution of this paper. We also show that if the scheduling
sequence is periodic, piecewise constant, or structured in some
sense, the identification procedure significantly simplifies even
more from a computational point of view.
The outline of this paper is as follows; we start in Section 2with

the problem formulation and assumptions. In Section 3we present
a factorization that separates the unknown system matrices from
the known input, output, and scheduling data. In Section 4 the basic
idea behind the closed-loop identification scheme is presented and
the curse of dimensionality will appear. In Section 5 the kernel
method is presented, where compact formulations of the kernels
are presented. In Section 6 we show that dedicated scheduling
sequences significantly reduce the computational complexity. In
Section 7 three simulation examples are presented that show the
potential of the proposed algorithm. We end this paper with our
conclusions.

2. Problem formulation and assumptions

In this section we present the problem formulation and
assumptions.

2.1. Problem formulation

In this paper we consider LPV systems with parameter-
independent output equation. This is done because many practical
LPV systems have a parameter-independent output equation and
to keep the notation and derivation of the algorithm simple.
However, using a similar derivation as presented in this paper,
similar results can be derived for the model structure with LPV
output equation (van Wingerden, 2008). In this paper we focus on
the following model:

xk+1 =
m∑
i=1

µ
(i)
k

(
A(i)xk + B(i)uk + K (i)ek

)
, (1)

yk = Cxk + Duk + ek, (2)

where xk ∈ Rn, uk ∈ Rr , yk ∈ R`, are the state, input and output
vectors. ek ∈ R` denotes the zero mean white innovation process.
The matrices A(i) ∈ Rn×n, B(i) ∈ Rn×r , C ∈ R`×n, D ∈ R`×r ,
K (i) ∈ Rn×` are the local system, input, output, direct feed through,
and the observer matrices; and µ(i)k ∈ R the local weights. The
indexm is referred to as the number of local models or scheduling
parameters. Note that the system, input, and the observermatrices
depend linearly on the time-varying scheduling vector. The time-
varying system matrix is now given by:

Ak =
m∑
i=1

µ
(i)
k A

(i),

and a similar thing can be done for the other system matrices. We
assume that we have an affine dependence and the scheduling is
given by:

µk =
[
1, µ

(2)
k , . . . , µ

(m)
k

]T
.

We can rewrite (1)–(2) in the predictor form as:

xk+1 =
m∑
i=1

µ
(i)
k

(
Ã(i)xk + B̃(i)uk + K (i)yk

)
, (3)

yk = Cxk + Duk + ek, (4)

with

Ã(i) = A(i) − K (i)C, B̃(i) = B(i) − K (i)D.

It is well known that an invertible linear transformation of the
state does not change the input–output behavior of a state-space
system. Therefore, we can only determine the system matrices up
to a similarity transformation T ∈ Rn×n: T−1A(i)T , T−1B(i), T−1K (i),
CT , and D.
The identification problem can now be formulated as: given

the input sequence uk, the output sequence yk, and the scheduling
sequenceµk over a time k = {1, . . . ,N}; find, if they exist, the LPV
system matrices A(i), B(i), K (i), C , and D for all i ∈ {1, 2, . . . ,m} up
to a global similarity transformation.

2.2. Assumptions and notation

First we define the transition matrix for discrete-time time-
varying systems (Rugh, 1996) and this is given by:

φj,k = Ãk+j−1 · · · Ãk+1Ãk. (5)

To make the notation more transparent we define: zk =[
uTk, yTk

]T, B̆k = [
B̃k, Kk

]
, and B

(i)
=
[
B̃(i), K (i)

]
. Similar as

in Jansson (2005) and Chiuso (2007) we define a past window
denoted by p. This window is used to define the following stacked
vector:

zpk =


zk
zk+1
...

zk+p−1

 .
We assume that the state sequence:

X =
[
xp+1, . . . , xN

]
,

has full row rank and the matrix:

Γ p =


C
CÃ(1)
...

C
(
Ã(1)

)p−1
 , (6)

has full column rank. This last matrix can be interpreted as
the extended observability matrix of the first local model. For
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persistency of excitation it is also required that the scheduling
sequence satisfies the following relation:

rank
([
µ1, µ2, . . . , µN−p+1

])
= m,

and N − p + 1 > m. The problem formulation so far does not
require any assumptions on the correlation between the input and
noise sequence, which opens the possibility to apply the algorithm
in closed loop.
These definitions and assumptions are used in Section 4 but first

we define a factorization to extend the framework described in
Chiuso (2007) to LPV systems.

3. Factorizations

In this section we define a fundamental factorization in which
we separate the unknown system matrices from the known
scheduling sequence.
We will factorize the time-varying extended controllability

matrix which is defined by:

Definition 1. Given the transition matrix in (5) the time-varying
extended controllability matrix is given by:

K
p
k =

[
φp−1,k+1B̆k, . . . , φ1,k+p−1B̆k+p−2, B̆k+p−1

]
,

withK
p
k ∈ Rn×(r+`)p.

The time-varying extended controllabilitymatrix can be factorized
in a matrix containing only the scheduling terms and a constant
matrix which depends only on the system matrices Ã(i), and B

(i)
.

Before we formulate this factorization in a lemma we have to
introduce a number of definitions. We start with the following
definition:

Definition 2. We define the matrix:

Lj =
[
Ã(1)Lj−1, . . . , Ã(m)Lj−1

]
,

with

L1 =
[
B
(1)
, . . . , B

(m)
]
,

andLj ∈ Rn×(r+`)m
j
.

To illustrate this definition see the following example:

Example 3. Form = 2 one obtains:

L1 =
[
B
(1)
, B

(2)
]
,

L2 =
[
Ã(1)B

(1)
, Ã(1)B

(2)
, Ã(2)B

(1)
, Ã(2)B

(2)
]
.

The number of block-columns grows exponentially as mj. Using
this definition we define the matrixKp which we refer to as LPV
extended controllability matrix.

Definition 4. The operator Lj is used to define the LPV extended
controllability matrix:

Kp
=
[
Lp, Lp−1, . . . , L1

]
∈ Rn×q̃,

with q̃ = (r + `)
∑p
j=1m

j.

To present the factorized expression of the time-varying extended
controllability matrix in Lemma 7, we still need the following two
definitions:
Definition 5. We define the matrix:

Pp|k = µk+p−1 ⊗ · · · ⊗ µk ⊗ Ir+`,

with Pp|k ∈ Rm
p(r+`)×(r+`) and⊗ represents the Kronecker product

(Brewer, 1978).

Now we define:

Definition 6. With Definition 5 we can define:

Npk =


Pp|k 0

Pp−1|k+1
. . .

0 P1|k+p−1

 , (7)

with Npk ∈ Rq̃×p(r+`).

Now we can state the following lemma:

Lemma 7. Given the model structure in (3)–(4) we use Definitions 4
and 6 to obtain:

K
p
k = KpNpk ,

whereK
p
k is the time-varying extended controllability matrix, which

equals Definition1, Npk depends on the known scheduling sequence (7),
andKp is an unknown matrix defined in (4). Note that the number of
columns of Kp (rows of Npk ), denoted by q̃, increases exponentially
with p according to the relation q̃ = (r + `)

∑p
j=1m

j.

Proof. Proof follows through straightforward computations. �

4. Closed-loop LPV identification

With the factorization defined in the previous section we now
come to the core of this paper and present the LPV identification
algorithm.

4.1. Regression problem

The first objective of the algorithm is to reconstruct the state
sequence up to a similarity transformation. The state xk+p is given
by:

xk+p = φp,kxk +KpNpk z
p
k,

where φp,k is the transition matrix given in (5), Kp is the
time-invariant LPV controllability matrix and the matrix Npk is
a matrix solely depending on the scheduling sequence. The key
approximation in this algorithm is that we assume that φj,k ≈
0 for all j ≥ p. For finite p this approximation might result
in biased estimates. This approximation is often used in the LTI
literature (e.g. N4SID (Van Overshee & De Moor, 1996), SSARX
(Jansson, 2005), PBSID (Chiuso, 2007)) and it can be shown that,
if the system in (3)–(4) is uniformly exponentially stable, the
approximation error can bemade arbitrarily small (Knudsen, 2001;
Verdult & Verhaegen, 2002). With this approximation the state
xk+p is approximately given by:

xk+p ≈ KpNpk z
p
k. (8)

In a number of LTI subspace methods it is well known to make this
step (Chiuso, 2007; Jansson, 2005). The input–output behavior is
now approximately given by:

yk+p ≈ CKpNpk z
p
k + Duk+p + ek+p := y

(p)
k+p. (9)
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Now we define the stacked matrices U , Y , and Z:

U =
[
up+1, . . . , uN

]
, (10)

Y =
[
yp+1, . . . , yN

]
, (11)

Z =
[
Np1 z

p
1, . . . , NpN−p+1z

p
N−p+1

]
. (12)

If the matrix
[
ZT, UT

]T has full row rank, the matrices CKp

and D can be estimated by solving the following linear regression
problem:

min
CKp,D

‖Y − CKpZ − DU‖2F , (13)

where ‖ · · · ‖F represents the Frobenius norm (Golub & van Loan,
1996). For finite p this linear problem will be biased due to the
approximation made in (8). In the LTI literature a number of
papers appeared that studied the effect of the window size and
although they proved the asymptotic properties of the algorithms
(if p → ∞ the bias disappears) it is hard to quantify the effect
for finite p (Chiuso, 2007; Chiuso & Picci, 2005; Knudsen, 2001).
In Section 7 we demonstrate that a rather large approximation
does not directly imply a large bias in the estimate of the system
matrices.

4.2. Observability matrix times controllability matrix

The algorithm that we develop in this paper can be seen as the
LPV counterpart of the PBSIDopt algorithm (Chiuso, 2007; Chiuso &
Picci, 2005). In the PBSIDopt algorithm the LTI equivalent of CKp is
estimated to construct, approximately, the extended observability
matrix times the extended controllability matrix (see (4.11) in
Chiuso (2007)). For the LPV situation a similar approach can be
followed. However, in this case we construct, approximately, the
product between the extended observability matrix of the first
local model, given in (6), and the extended LPV controllability
matrix, given in Definition 4. This matrix can be constructed with
Definition 2 to equal the following upper-block triangular matrix:

Γ pKp
≈


CLp CLp−1 · · · CL1
0 CÃ(1)Lp−1 · · · CÃ(1)L1

. . .

0 C
(
Ã(1)

)p−1
L1

 . (14)

The zeros appear in this equation based on the approximation
that φj,k ≈ 0 for all j ≥ p (similarly as in the LTI counterpart
PBSIDopt (Chiuso, 2007)).1 Recall that based on Definitions 2 and
4 the following two relations hold:

CKp
=
[
CLp, CLp−1, . . . CL1

]
,

CLp =
[
CÃ(1)Lp−1, . . . , CÃ(m)Lp−1

]
.

With these two relations and the estimate of CKp, obtained from
the linear problem in (13), we can construct the matrix in (14).

4.3. Estimation of the state sequence

Now we can compute Γ pKpZ , which equals by definition the
extended observability matrix times the state sequence, Γ pX .
Under the assumptions stated in Section 2.2 that X and Γ p both
have full rank and that p` > n, we can estimate the state sequence

1 Without this approximation the algorithm becomes more complex and
computationally intensive (see the LPV-PBSID algorithm in van Wingerden and
Verhaegen (2008a), van Wingerden (2008)).
Table 1
Total number of rows in the matrix Z form = 4 and r = `.

` = 1 ` = 2 ` = 3 ` = 4 ` = 5

p = 2 40 80 120 160 200
p = 3 168 336 504 672 840
p = 4 680 1360 2040 2720 3400
p = 5 2728 5456 8184 10912 13640

and the order of the system based on a rank revealing Singular
Value Decomposition (SVD). We will use the following SVD:

Γ̂ pKpZ =
[
U Uσ⊥

] [Σn 0
0 Σ

] [
V
V⊥

]
, (15)

where Σn is the diagonal matrix containing the n largest singular
values and V is the corresponding row space. Note that we can find
the largest singular values by detecting a gap between the singular
values (Verhaegen & Verdult, 2007). The state is now estimated by:

X̂ = ΣnV . (16)

It is well known that when the state, input, output, and scheduling
sequence are known the systemmatrices can be estimated (Lovera,
1997; Nemani, Ravikanth, & Bamieh, 1995; Verdult & Verhaegen,
2002). First we use (2) which is now a linear relation in C and
D and where ek represents white noise. From this equation an
estimate can be found of the C and D matrix while also the noise
sequence can be estimated. The estimated noise sequence is used
to transform (1) into a linear expression depending on A(i), B(i), and
K (i) and consequently all the system matrices can be estimated.

4.4. Curse of dimensionality

Like in Verdult and Verhaegen (2002) the method suffers from
the curse of dimensionality. The number of rows of Z grows
exponentially with the size of the past window. The number of
rows is given by:

ρZ = (r + `)
p∑
j=1

mj.

In Table 1 the curse of dimensionality is illustrated. Observe that
the growth of the dimensions is considerably smaller compared to
the work of Verdult and Verhaegen (2002) (see Table 1 in Verdult
andVerhaegen (2002)). However, the dimensions still grow rapidly
with increasing past window. To overcome this drawback the
kernel method will be introduced in the next section, but first we
summarize the algorithm.

4.5. Summary of the algorithm

Algorithm 1 (LPV-PBSIDopt). The algorithm can be summarized as
follows:

(1) Create the matrices U, Y , and Z using (10)–(12),
(2) Solve the linear problem given in (13),
(3) Construct Γ pKpZ using (12) and (14),
(4) Estimate the state sequence using (15) and (16),
(5) With the estimated state, use the linear relations (1)–(2) to
obtain the system matrices.
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5. Kernel Method

The LPV identification method presented in the previous
paragraph suffers from the curse of dimensionality. However, like
in Verdult and Verhaegen (2005) we can use the kernel method
to overcome this drawback. In Section 5.1 we present the kernel
method for the proposed LPV identification scheme. In Section 5.2
a computationally efficient formula is presented for the proposed
model structure. The kernel method is normally ill-conditioned,
but in Section 5.3 regularization is proposed to overcome this
drawback. In the last subsection a summary of the algorithm with
kernels is given.

5.1. Kernel Method

The LPV identification approach presented in the previous
section resulted in a linear problem formulated in (13), from now
on also referred to as the primal problem. This equation can be
solved by using traditional Least Squares (LS). However, the data
matrices grow exponentially with the past window, p. In Verdult
and Verhaegen (2005) it was shown that the solution of this
primal problem is equal to the solution of the dual problem if
the solution with the minimum-norm (Golub & van Loan, 1996)
is considered. In this subsection we show how the kernel method
can be exploited for the presented LPV identification scheme.
The linear problem in (13) has a unique solution if the matrix[
ZT UT

]T has full row rank and is given by:
[
ĈKp D̂

]
= Y

[
ZT UT

] ([Z
U

] [
ZT UT

])−1
.

When the matrix
[
ZT UT

]T has missing row rank the solution is
not unique. This will occur when the past window is large. How-
ever, the solution with the smallest norm, min ‖

[
CKp, D

]
‖
2
F ,

can still be computed by using the SVD of the matrix:[
Z
U

]
=
[
U U⊥

] [Σm 0
0 0

] [
V T

V T
⊥

]
, (17)

whereΣm is the diagonal matrix containing the non-zero singular
values and V T andU are the corresponding row and column space,
respectively. The solution with the minimum-norm is now given
by:[
ĈKp D̂

]
= YVΣ−1m UT. (18)

The computations take place in a large dimensional space spanned
by the columns of Z and U . If we consider the minimum-
norm solution of (13) the dual problem (Suykens, van Gestel,
DeBrabanter, DeMoor, & Vandewalle, 2002) avoids computations
in this large dimensional space. The dual problem results in:

min
α
‖α‖2F with Y − α

[
ZTZ + UTU

]
= 0, (19)

where α are the Lagrange Multipliers and
[
ZTZ + UTU

]
is referred

to as the kernelmatrix. If thematrix
[
ZT UT

]Thas full column rank
the solution to this dual problem is given by:

α̂ = Y
([
ZTZ + UTU

])−1
, (20)

= YVΣ−2m V
T. (21)

The estimate of
[
CKp D

]
is now given by:[

ĈKp D̂
]
= α̂

[
ZT UT

]
,

= YVΣ−1m UT.
The construction of the matrix ĈKp from the dual problem
requires the matrix Z , explicitly. However, due to the curse of
dimensionality this can lead to dimension problems. For the
construction of CKpZ we do not need the matrix Z explicitly, we
only have to construct ZTZ and UTU for the computation of α and
an estimate of CKpZ is given by:

ĈKpZ = α̂ZTZ . (22)

With this abovewe cannot reconstruct the extended controllability
matrix times the state sequence directly. However, in the following
lemma we show that with similar matrices as ZTZ we can do this.

Lemma 8. Given the model structure in (1)–(2), the assumptions in
Section 2, and Definition 5, we can define the following matrices:

Z i,j =
[
Pp−j+1|j−i+1zj−i+1, . . . , Pp−j+1|N+j−izN+j−i

]
, (23)

with Z i,j ∈ Rm
p−j+1(r+`)×N and N = N − p+ 1. Now we have:

C
(
Ã(1)

)i−1
Lp−j+1 = α

(
Z i,j
)T
, (24)

and then we can construct the matrix Γ pKpZ as follows:

Γ pKpZ =



α

p∑
j=1

(
Z1,j
)T
Z1,j

α

p∑
j=2

(
Z2,j
)T
Z1,j

...

α

p∑
j=p

(
Zp,j
)T
Z1,j


. (25)

Proof. The proof follows from the derivation of the dual problem.
�

With this lemma we can go back to the original problem and
compute an SVD of this estimate to find the state sequence. Again
it is important to stress that we do not require Z i,j but we only
need

(
Z i,j
)T Z i,j. This observation makes it possible to derive a

computationally more efficient implementation.

5.2. Computation of the kernel matrices

In the previous subsection it was already stressed that we
do not have to compute Z i,j but we only need

(
Z i,j
)T Z i,j. In

this section an analytical expression is given which does not
require the calculation of Z i,j. First we define the matrix Ñ =[
1, 2, . . . , N

]
, and the following Lemma.

Lemma 9. Given the vectors λ1, λ2, . . . , λν ∈ Rκ×1 and θ1, θ2, . . . ,
θν ∈ Rκ×1 the product

(λ1 ⊗ λ2 ⊗ · · · ⊗ λν)
T (θ1 ⊗ θ2 ⊗ · · · ⊗ θν) , (26)

is given by:

ν∏
j=1

λTj θj. (27)

Proof. With the properties of the Kronecker product (⊗) defined
in Brewer (1978), (A⊗ B) (C ⊗ D) = AC⊗BD, we can rewrite (26)
as: λT1θ1⊗ · · ·⊗ λ

T
νθν and observing that all the elements between

the Kronecker products are scalers results in (27). �
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With Lemma 9 we can define the kernels for the model structure
given in (1)–(2).

Theorem 10 (Kernels LPV). Given Lemma 9 and the model structure
given in (1)–(2) we have for j ≥ i:2

(
Z i,j
)T
Z1,j =

(
p−j∏
v=0

µT
Ñ+v+j−i

µÑ+v+j−1

)(
zT
Ñ+j−i

zÑ+j−1
)

and

ZTZ =
p∑
j=1

(
Z1,j
)T
Z1,j.

We can solve (19) and construct (25).

Proof. Using Lemma 9 the proof follows by straightforward
computations. �

For N � p and N � m the computational complexity of the
indirect computation, so first constructing Z and then computing
the product

(
ZTZ

)
, is of orderO(N2q̂)with q̂ =

∑p
j=1m

j and direct
construction of

(
ZTZ

)
is of the order O(N2) which illustrates the

computational efficiency of the algorithm.
The kernels are valid for the model structure given in (1)–(2).

The whole derivation of the kernel matrices can be repeated for
different model structures. For this derivation we refer to van
Wingerden (2008).

5.3. Regularization

The kernel ZTZ described in the previous paragraph is square
and has the size of the number of data points available. This nor-
mally leads to an ill-conditioned set of equations. This conditioning
problem can be circumvented through regularization. There are a
number of regularization techniques (for a detailed overview see
Sima (2006)). In Verdult and Verhaegen (2005) a simulation study
is performed to select the optimal regularization technique and
corresponding regularization parameter selection method. In this
study they concluded that Tikhonov regularization with general-
ized cross validation regularization parameter selection gives the
best result.

5.4. Summary of the algorithm

Weend this sectionwith the summary of the closed-loop kernel
LPV identification algorithm.

Algorithm 2 (LPV-PBSIDopt (kernel)). The algorithmcanbe summa-
rized as follows:

(1) Create the matrices
(
Z i,j
)T Z i,j and ZTZ using Theorem 10 and

compute UTU using (10),
(2) Solve the linear problem given in (19). If desired regularized,
(3) Construct Γ pKpZ using (25),
(4) Compute the state sequence using (15) and (16),
(5) With the estimated state, use the linear relations (1)–(2) to
obtain the system matrices.

6. Dedicated scheduling sequences

Recently, a number of papers appeared where the structure of
the scheduling sequence is exploited to overcome the computa-
tional complexity of the general LPV identification approach. It

2 We define µÑ+v+j−1 =
[
µ1+v+j−1, . . . , µN+v+j−1

]
.

turns out that if periodic scheduling (Felici et al., 2007; vanWinger-
den et al., 2009), piecewise constant scheduling (van Wingerden
& Verhaegen, 2007; van Wingerden et al., 2007), or white-noise
scheduling (Favoreel et al., 1999; Santos et al., 2005) is used well-
established LTI subspace techniques can be used to identify LPV
systems or bilinear systems. However, in Felici et al. (2007), van
Wingerden et al. (2007) and vanWingerden and Verhaegen (2007)
they have to solve a numerical sensitive intersection problem and
in vanWingerden et al. (2007) and vanWingerden and Verhaegen
(2007) the local models are interconnected by formulating a num-
ber of least squares problems which require accurate local models.
In Santos et al. (2005) an iterative approach is used to obtain the
system matrices. In this section we show how the structure in the
scheduling further reduces the computational complexity of the al-
gorithm presented in this article.

6.1. Periodic scheduling

We will use the kernel algorithm to show that the computa-
tional complexity significantly reduces when the scheduling is pe-
riodic, piecewise constant or is structured in some sense.
The matrix ZTZ is given by:

Q T



(
Np1
)T Np1 (

Np1
)T Np2 · · ·

(
Np1
)T Np

N(
Np2
)T Np1 (

Np2
)T Np2 · · ·

(
Np2
)T Np

N
...

. . .(
Np
N

)T
Np1

(
Np
N

)T
Np2 · · ·

(
Np
N

)T
Np
N

Q ,

with Q = diag
([
zp1, zp2, . . . , zp

N

])
. If the system is periodic

with period P we observe that Npi = Npi+P and consequently
the matrix ZTZ will lose rank. In the kernel method we are only
interested in the row space of CKpZ . In the previous section an
estimate of CKpZ was given by αZTZ: if the matrix ZTZ has not
full row rank we can select the rows that span the row space of
this matrix without altering the row space of CKpZ . This means
that we only have to select the rows of ZTZ that span the row
space of thismatrix. For periodic scheduling it is sufficient to select
the first P × (r + `)p rows if the matrix Q has full rank. For
piecewise constant scheduling (van Wingerden et al., 2007) the
same time-variation will be present a number of times and in this
case the matrix ZTZ will lose rank. For this situation it is harder
to select the rows that span the row space of ZTZ . There are more
scheduling sequences where the same or almost the same time-
variation in the dynamics occurs, structured in some sense. In the
next subsection we present a sketch of an algorithm how to select
the right rows for structured scheduling sequences.

6.2. Kernel selection

To exploit structure, like periodic or piecewise constant
scheduling, it is important to select the linear-independent rows
of ZTZ . However, we can also select the rows that are independent
up to a certain threshold, ε. In this way only the most dominant
rows are selected. There are different methods to select the
most dominant rows but we summarize the most straightforward
approach in Algorithm 3.

Algorithm 3 (Kernel Selection Algorithm). The algorithm can be
summarized as follows:3

3 Matlab notation is used for convenience.
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Init Give a tolerance level ε
define the matrix:
Z =

(
(Z)T(Z)

)
(1, :)+

(
(U)T(U)

)
(1, :)

D = {1}
For j = 2 : N̄
Compute:
Z =

(
(Z)T(Z)

)
(j, :)+

(
(U)T(U)

)
(j, :)

If minΞ ‖ZΞ − Z‖2F > ε

Z =
[
ZT Z

T
]T

Add j to the setD
End

End

Solve minα̃ ‖Y − α̃Z‖2F . The estimate of the extended observability
matrix is now given by (25) where only the rows indicated by
the set D of

∑p
j=i

(
Z i,j
)T Z1,j are used. Similar as in the original

algorithm an SVD can be computed to obtain an estimate of the
state and consequently the system matrices can be estimated.

With this algorithm the number of selected rows can still be
large. More advanced kernel selection algorithms can be used to
select the most dominant rows of ZTZ . In Suykens et al. (2002)
and Espinoza, Suykens, and De Moor (2006) they use fixed-sized
kernels. Inmachine learning literaturemoremethods can be found
on how to select a fixed number of kernels (see for instance Smola
and Scholkopf (2000)).
The advantage of the method presented above is that we can

deal with large data sets when the row space of ZTZ is small. In
the next section we present simulation examples that show the
potential of the proposed LPV identification algorithm. We also
show that we can deal with a large data set if we have periodic
scheduling.

7. Simulation results

In this sectionwe show some features of the novel algorithm on
three different simulation examples.

7.1. Open-loop LPV identification example

We have tested the proposed LPV identification on the
benchmark model used in Verdult and Verhaegen (2002) and
Verdult and Verhaegen (2005). This is a fourth-order MIMO open-
loop LPVmodelwithm = 4, r = 2, and l = 3. The collected data uk,
yk, and µk are used for the identification algorithm. The algorithm
described inAlgorithm2with andwithout Tikhonov regularization
is used to identify an LPV model.
The performance of the identified system is evaluated by

looking at the value of the Variance-Accounted-For (VAF) on a data
set different from the one used for identification. The VAF value is
defined as:

VAF(yk, ŷk) = max
{
1−

var(yk − ŷk)
var(yk)

, 0
}
∗ 100%

where ŷk denotes the output signal obtained by simulating the
identified LPV system, yk is the output signal of the true LPV
system, and var() denotes the variance of a quasi-stationary signal.
To investigate the sensitivity of the identification algorithm with
respect to output and process noise, a Monte Carlo simulation
with 100 runs was carried out. For each of the 100 simulations a
different realization of the input uk and scheduling sequence µk is
used.
In Table 2 the results of the different identification methods

are summarized where the VAF values are based on a validation
Fig. 1. The VAF for 100 Monte Carlo simulations as a function of the numbers of
rows of ZTZ that are taken into account. The solid line and the dashed line represent
the regularized and the un-regularized version of the algorithm.

data set. If we look at the identification results for the systemwith
N = 1000 and no noise (SNR = ∞) the results are significantly
better than the results presented in Verdult and Verhaegen (2005).
Remarkably, we observe that the VAF is 100% for a finite p.
However, if we compute the VAF between yk and y

(p)
k defined in

(9), which basically indicates the approximation we made, the
VAF values are significantly smaller. This stresses the point that
although the approximation error is rather largewe cannot predict
how large the bias term is and how it transfers to the final estimate
of the systemmatrices. That is why from a theoretical point of view
we can state that it is better to pick a large p because then the
consistency can be proven (Verdult & Verhaegen, 2002). However,
a large p, due to the curse of dimensionality, and a finite N implies
a large number of variables to be estimated leading to minimum-
norm solutions with a larger variance. From this perspective it is
better to choose a small p. In this particular simulation example
this trade-off already appears for a small p. Estimation with a
finite p is an interesting research field for both LTI and LPV system
identification. In Section 7.3we clearly show the trade-off between
bias and variance on a simple bilinear example.

7.2. Closed-loop LPV identification example

In this sectionwe show the operation of the algorithmwith data
collected in closed loop. We use the model described in Felici et al.
(2007) which represents the flapping dynamics of a wind turbine
blade (Eggleston & Stoddard, 1987). To apply state feedback we
nowassume that thismodel has an identity outputmatrix.We take
a past window of 10 and limit ourselves to 2000 data points. To
show the potential of the closed-loop setting a time-varying state
feedback is used. The controller is synthesized using a discrete-
time periodic Riccati equation (Hench & Laub, 1994; Varga, 2005).
Process noise is added with a variance of 0.1.
An LPV model was identified using Algorithm 2 and we exploit

the fact that the scheduling sequence contains structure, it is
periodic. We take the first M rows of ZTZ into account. As
mentioned earlier there are smarter ways to select these rows
however this will illustrate the effectiveness of the approach.
In Fig. 1 the VAF value as a function of M is presented for the
regularized and the un-regularized situation. We observe that we
can select an optimum of 100 rows and we see that regularization
is not required anymore.
In Fig. 2 the eigenvalues of the estimated models are compared

with their true values. As expected the closed-loop algorithm gives
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Table 2
The mean VAF on a fresh data set for 100 Monte Carlo simulations. The experiments are performed for different settings.

p = 3 Algorithm 2 Algorithm 2+ Tikhonov reg.+ GCV
Output 1 Output 2 Output 3 Output 1 Output 2 Output 3

N = 500, SNR = 40 93.2 93.5 93.8 96.8 96.7 96.8
N = 500, SNR = ∞ 100.0 100.0 100.0 99.9 100.0 100.0
N = 1000, SNR = 40 98.0 98.0 98.0 98.4 98.4 98.5
N = 1000, SNR = ∞ 100.0 100.0 100.0 99.9 99.9 99.9

VAF(yk, y
(p)
k )

Output 1 Output 2 Output 3

N = 1000, SNR = ∞ 54.0 34.5 15.7

p = 5 Algorithm 2 Algorithm 2+ Tikhonov reg.+ GCV
Output 1 Output 2 Output 3 Output 1 Output 2 Output 3

N = 500, SNR = 40 66.5 67.2 67.6 90.5 90.6 90.8
N = 500, SNR = ∞ 99.4 99.4 99.4 99.2 99.3 99.3
N = 1000, SNR = 40 17.2 19.1 21.0 94.8 95.0 95.1
N = 1000, SNR = ∞ 100.0 100.0 100.0 100.0 100.0 100.0

VAF(yk, y
(p)
k )

Output 1 Output 2 Output 3

N = 1000, SNR = ∞ 70.8 67.5 56.8
Fig. 2. Eigenvalues of the estimated A(i) matrices in the complex plane, for 100
experiments and M = 100. The big crosses correspond to the real values of the
eigenvalues of the matrices.

consistent results but a small bias arises due to the approximation
made in the algorithm.

7.3. Bilinear identification example

In the previous two examples we demonstrated a number
of key features of the proposed algorithm. In this example we
demonstrate the effect of the pastwindowusing a low-order open-
loop bilinearmodel. As indicated in this article a small pwill lead in
general to biased estimates while for large p, even without noise,
the variance will increase due to the curse of dimensionality. The
bilinear system is given by:[
A(1) A(2)

]
=

[
0.5 0.5 0.2 0.2
−0.5 0.5 −0.2 0.2

]
,

B =
[
1
0

]
, C =

[
1 1

]
, D =

[
0
]
.

The input is generated by filtering a zero-mean white-noise
sequence with a fourth-order low pass Butterworth filter that has
a cutoff frequency of 0.8 times the Nyquist frequency. Because
we work with a bilinear system the scheduling is given by
µk =

[
1, uTk

]T. To investigate the sensitivity of the identification
algorithm with respect to the realization of the input and noise, a
Monte Carlo simulation with 100 runs was carried out with N =
500. Compared with the previous two examples the complexity of
this example is small, which enables us to clearly demonstrate the
trade-off between a large p and a small p. In Fig. 3 we demonstrate
the effect of p on the amount of approximation we introduce
and the consequence for the identification algorithm. The top
figure presents the VAF between yk and y

(p)
k , defined in (9), which

basically indicates the amount of approximation we incorporated
in the algorithm. The system is uniformly exponentially stable and
therefore the approximation error will converge to zero if p goes
to infinity. In the plot in the middle the VAF is given between the
signal generated by the estimatedmodel, using noise free data, and
the validation data. In this figure we see that for really small p we
have a biased estimate, while for large p the variance increases
due to the fact that we look for a minimum-norm solution because
the number of unknowns exceeds the number of data points. In
the bottom figure, noise with an SNR of 15 dB is added to the
identification data and we clearly see a larger variance for a larger
p. This simulation example illustrates the trade-off problem for the
identification for both bilinear and LPV systems. With increasing
complexity it is expected that it is more worthwhile to pick a small
p, as already seen in the first example. However, if the bias is
too large, the biased estimate may serve as an initial estimate for
optimization based identification algorithms (Lee & Poolla, 1999),
which was already suggested in Verdult and Verhaegen (2002).

8. Conclusions

In this paper we presented an open-loop and closed-loop
LPV subspace identification method which is an extension of
LTI subspace closed-loop identification methods. The methodol-
ogy from closed-loop LTI subspace identification is used to for-
mulate the input–output behavior of an LPV system. From this
input–output behavior the LPV equivalent of the Markov pa-
rameters can be estimated. We showed that with this estimate
the product between the observability and state sequence can
be reconstructed and an SVD can be used to estimate the state
sequence and consequently the system matrices. The curse of
dimensionality in subspace LPV identification appeared and the
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Fig. 3. The mean value of the VAF over 100 experiments (solid line) is presented
with respect to the past window size. The VAF values of the 100 experiments are
within the grey confidence region.

kernel method was proposed. A computational efficient repre-
sentation of the kernel is presented which makes the approach
numerical attractive. Furthermore, we showed that if there is
structure in the scheduling, then the computational complexity re-
duces even more. The algorithm was illustrated with three simu-
lation examples.
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