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Abstract— In this paper we present a novel algorithm to
identify MIMO Hammerstein-Wiener systems under open and
closed-loop conditions. We reformulate a linear regression prob-
lem, commonly used as the first step in closed loop subspace
identification, as an intersection problem which can be solved
by using canonical correlation analysis (CCA). This makes it
possible to utilize ideas from machine learning to estimate the
static nonlinearities of Hammerstein-Wiener systems, using ker-
nel canonical correlation analysis (KCCA). In the second step
the state sequence is estimated and consequently the dynamic
part can be identified. The effectiveness of the approach is
illustrated with a closed-loop simulation example.

Index Terms— Subspace identification, Hammerstein-Wiener
systems, System identification

I. INTRODUCTION

Hammerstein, Wiener, and Hammerstein-Wiener systems

are a particular class of nonlinear systems, which are linear

time-invariant (LTI) models with a static nonlinearity at the

input, output, and output and input, respectively. Although,

Hammerstein and Wiener system identification attracted con-

siderable attention in the past few years (see [1], [2] and ref-

erences therein), Hammerstein-Wiener system identification

did not [2]. Still, the identification of Hammerstein-Wiener

models is of interest since this model structure appears in a

large number of applications [2].

To efficiently handle Multiple-Input Multiple-Output

(MIMO) Hammerstein-Wiener systems and to exploit the

numerical properties of subspace techniques, the focus of

this paper is on subspace-based Hammerstein-Wiener system

identification. In the area of Hammerstein-Wiener model

identification only one subspace method exist [3], [4]. In

this work they formulate the subspace identification problem

as an intersection problem of the past and the future us-

ing Kernel Canonical Correlation Analysis (KCCA). From

this intersection they compute the state sequence and in

the second step they apply Least-Squares Support Vector

Machines (LS-SVM) [5] to obtain the nonlinearities and the

system matrices. The proposed method only applies for data

generated in open loop, while from a practical point of view

it is necessary to look at closed-loop system identification.

Since, system identification is often used to identify a part

of a complex model, either because the complete model is

too complex or parts of the model are well-understood and

it is not necessary to identify these. In Fig. 1 a sketch of

a submodel is given, where the user is interested in the

dynamics between u and y. In such cases, typically the
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Fig. 1. Schematic representation of a coupled dynamic block.

output of the unknown (sub)model is correlated with the

input of the other (sub)model(s). For this situation it is

well known that, for the LTI case, the projector type of

subspace algorithms (e.g. MOESP [6] and N4SID [7]) give

biased estimates if the identification data is generated under

closed-loop conditions. The recently developed predictor-

based subspace identification methods (e.g. PBSID [8] and

SSARX [9]) do not suffer from this drawback.

In this paper we develop a novel subspace identification al-

gorithm for Hammerstein-Wiener systems for data generated

in open and closed loop that first estimates the nonlinearities

and then the system matrices of the LTI part.

The outline of this paper is as follows; we start in

Section II with the problem formulation and assumptions.

In Section III we reformulate the PBSIDopt identification

scheme in a CCA setting. In Section IV we replace the CCA

problem by a KCCA problem which enables us to identify

Hammerstein-Wiener models. In Section V a simulation ex-

ample is presented. We end this paper with our conclusions.

II. PROBLEM FORMULATION

In this section we present the problem formulation and the

assumptions we make.

A. Problem formulation

For the derivation of the algorithm we consider the fol-

lowing Hammerstein-Wiener system1:

xk+1 = Axk + B f (uk)+ Kek, (1)

g−1(yk) = Cxk + D f (uk)+ ek, (2)

1Note that we use g−1 in the notation to emphasis the relation between
the common formulation of Hammerstein-Wiener model structures. Further,
for the identification algorithm we do not require the assumption that g−1

is invertible.
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where xk ∈ Rn, uk ∈ Rr, yk ∈ Rℓ, are the state, input and out-

put vectors. ek ∈ Rℓ denotes the zero-mean white innovation

process. The matrices A ∈ Rn×n, B ∈ Rn×r, C ∈ Rℓ×n, D ∈
Rℓ×r, K ∈Rn×ℓ are the local system, input, output, direct feed

through, and the noise matrices and finally f (.) : Rr → Rr

and g(.)−1 : Rℓ → Rℓ are static smooth nonlinear functions

with as additional constraint that f (0) = 0 and g(0) = 0. We

can rewrite (1)-(2) in the predictor form as:

xk+1 = Ãxk + B̃ f (uk)+ Kg−1(yk), (3)

g−1(yk) = Cxk + D f (uk)+ ek, (4)

with Ã = A−KC, and B̃ = B−KD. It is well-known that

an invertible linear transformation of the state does not

change the input-output behavior of the dynamic part of a

Hammerstein-Wiener system. A similar linear transformation

appears between the nonlinearities and the dynamic part. So,

the static nonlinearities can be estimated up to a square

invertible transformation. These transformations are given

by: T−1AT , T−1BTu, T−1KTy, T−1
y CT , T−1

y DTu, T−1
y g(.)−1,

and T−1
u f (.) with T ∈ Rn×n,Ty ∈ Rℓ×ℓ,Tu ∈ Rr×r.

The identification problem can now be formulated as:

given the input sequence uk and the output sequence yk over

a time k = {0, . . . ,N −1}; find all, if they exist, the system

matrices A, B, D, C, K and static nonlinearities, f (.) and

g(.), up to the mentioned similarity transformations.

B. Assumptions and notation

We define a past window denoted by p. This window is

used to define the following stacked vector:

f (UP) =




f (U0)
f (U1)

...

f (Up−1)


 , g−1(Y P) =




g−1(Y0)
g−1(Y1)

...

g−1(Yp−1)


 ,

and

f (U F) = f (Up), g−1(Y F) = g−1(Yp),

with:

f (Ui) =
[

f (ui), f (ui+1), · · · , f (ui+N−p)
]
,

g−1(Yi) =
[
g−1(yi), g−1(yi+1), · · · , g−1(yi+N−p)

]
,

Xi =
[
xi, xi+1, · · · , xi+N−p

]
.

Considering the LTI part of the model structure, we assume

that the state sequence, Xp, has full row rank and the

extended observability matrix given by:

Γ =

[
CT , (CÃ(1))T , . . . , (C

(
Ã(1)

) f−1

)T

]T

,

has full column rank and where f is referred to as the

future window and f ≤ p. We also define the extended

controllability matrix:

K =
[
Ku, Ky

]
,

with:

Ku =
[
Ãp−1B̃, Ãp−2B̃, · · · , B̃

]
,

Ky =
[
Ãp−1K, Ãp−2K, · · · , K

]
.

In the next section we revise the idea of predictor based

subspace identification, in particular we will look at the

PBSIDopt algorithm [8]. Although, we will formulate the first

step of the algorithm as an intersection problem which can

be solved using Canonical Correlation Analysis (CCA). This

step is required to estimate the static nonlinearities in the

Hammerstein-Wiener setting.

III. PREDICTOR-BASED SUBSPACE IDENTIFICATION

It is well known that the projector type of subspace

algorithms (e.g. MOESP [6] and N4SID [7]) give biased

estimates if the identification data set is generated under

closed-loop conditions. The main reason for the bias is the

constraint that for the projector type of algorithms the noise

and the input should be uncorrelated. This assumption is

clearly violated if there is a feedback loop present (as clearly

explained in [10]). Predictor-based subspace identification

(e.g. PBSID [8] and SSARX [9]) methods do not suffer from

this drawback. In this section we introduce the PBSIDopt

algorithm and for now we assume that the nonlinearity is

known. In the next section we reformulate the problem and

we explicitly estimate the nonlinearities.

A. Predictors

The first objective of predictor based subspace algorithms

is to reconstruct the state sequence up to a similarity trans-

formation. The state Xp is given by:

Xp = ÃpX0 +
[
Ku, Ky

][
f (UP)

g−1(Y P)

]
.

The key approximation in this algorithm is that we assume

that Ã j ≈ 0 for all j ≥ p. It can be shown that if the

system in (3)-(4) is uniformly exponentially stable, the

approximation error can be made arbitrarily small by making

p sufficiently large [8]. With this assumption the state Xp is

approximately given by:2 3

Xp ≈
[
Ku, Ky

][
f (UP)

g−1(Y P)

]
.

In a number of other LTI subspace methods it is well known

to make this step (e.g. N4SID, SSARX, PBSIDopt, CVA).

The input-output behavior is now approximately given by:

g−1(YF) ≈C
[
Ku, Ky

][
f (UP)

g−1(Y P)

]
+ D f (UF)+ ek.

This equation can be looked at as a regression problem

and when the nonlinearities are known, an estimate of the

matrices CK , and D can be obtained by solving a least

squares problem. However, the nonlinearities are not known

and that is why we introduce in the next section a kernel-

CCA (KCCA) problem to estimate the nonlinearities. In

this section we continue by assuming that we already have

2Remark: If the matrix (A− KC) is nilpotent the assumption can be
removed. Since, in that case it holds that there exists a p such that
(A−KC)p = 0.

3Remark: In the case that there is no noise present the observer gain will
be a deadbeat observer and under the conditions stated the following will
hold: (A−KC)p = 0 for p ≥ n.
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the nonlinearities and we show how to obtain the system

matrices. But first we show how to obtain a normal CCA

problem if we know the nonlinearities.

B. Intersection problem

We can formulate the following intersection problem,

better known as a CCA problem:4

min
V,W

||VΦ−WΨ||2F , (5)

Subject to VΦΦTVT = Iℓ,

WΨΨTW T = Iℓ,

with:

Φ =

[
−g−1(Y P)
g−1(YF)

]
, Ψ =

[
f (U P)
f (UF)

]
.

The solution is the estimate of the following matrices:

V = T−1
y

[
CKy, I

]
, W = T−1

y

[
CKu, D

]
.

Observe that we retrieve some unknown similarity transfor-

mation which is defined in the problem formulation. In the

case that we know the nonlinearities we can get rid of this

nonlinearity by putting the last ℓ× ℓ rows of V equal to the

identity. So, we end up with estimates of CKu, CKy, and D.

The problem formulated in (5) can be interpreted as

attempting to determine the intersection between the row

spaces of two known matrices, or as a generalization of

angles between subspaces. The constraints in (5) ensure or-

thogonality of the projections. Different methods for solution

exist on which we will not elaborate further [11], [12]. It is

however important to note that when the dimension of the

target space (the number of columns in (5)) is relatively small

compared to the dimension of the signal space (the number

of rows of Φ and Ψ), CCA methods may obtain solution di-

rections which are determined mainly by noise, which in our

case is present because we have some measurement noise.

This is also known as overfitting. A method to decrease the

variance of the solutions, at the cost of introducing a bias,

is to employ regularization as presented in [13]. It can be

shown that a solution of (5) can be found by solving the

regularized generalized eigenvalue problem:
[

0 ΦΨT

ΨΦT 0

][
V T

W T

]
= λ

[
ΦΦT + ν1I 0

0 ΨΨT + ν2I

][
V T

W T

]
,

where λ is referred to as the canonical correlation coefficient

and will be between 0 and 1, indicating the closeness of the

subspaces. The generalized eigenvectors corresponding to the

ℓ highest canonical coefficients are chosen as solutions. The

regularization parameters ν1, ν2 should be chosen appropri-

ately as will be discussed in Section V.

4Remark: In the noise and approximation free case the following equality
should hold:

rank

([
Φ
Ψ

])
+ ℓ = rank (Φ)+ rank (Ψ) .

In the case that there is noise or an approximation the rank conditions are
hard to check but an approximation can be made by using an SVD.

C. Extended observability times controllability matrix

The product K
[

f (UP)T g−1(YP)T
]T

that represents by

definition the state sequence, Xp, can not be estimated

directly. In the predictor-based identification algorithms, CK

is used to construct the extended observability matrix times

the extended controllability matrix. This matrix is given by:

ΓK =




CKu CKy

CÃKu CÃKy

...
...

CÃ f−1
Ku CÃ f−1

Ky


 ,

=
[
ΓKu ΓKy

]
.

If we look into more detail at for instance ΓKu term we have

for the PBSIDopt algorithm (we assume f = p):

ΓKu ≈




CÃp−1B̃ CÃp−2B̃ · · · CB̃

0 CÃp−1B̃ · · · CÃB̃
...

. . .

0 CÃp−1B̃


 .

The zeros appear in this equation based on the approximation

that Ã j ≈ 0 for all j ≥ p. Although, in [8] they showed that

these zeros appear in the solution based on the result of an

optimization problem. Observe that from the solution of the

CCA problem formulated in (5) we can construct this matrix.

A similar thing can be done for the matrix ΓKy.

From the constructed matrix ΓK we can compute:

ΓK

[
f (UP)

g−1(Y P)

]
,

which equals by definition the extended observability times

the state sequence, ΓXp. By computing a Singular Value

Decomposition (SVD) of this estimate we can estimate the

state sequence and the order of the system. We will use the

following SVD:

Γ̂K

[
f (U P)

g−1(Y P)

]
=

[
U U⊥

][
Σn 0

0 Σ

][
V

V⊥

]
, (6)

where Σn is the diagonal matrix containing the n largest

singular values and V is the corresponding row space. Note

that we can find the largest singular values by detecting a gap

between the singular values [14]. The state is now estimated

by:

X̂p = ΣnV . (7)

It is well known that when the state, input, output, and

nonlinearities are known the system matrices can be esti-

mated [14]. The approach presented so far assumed that we

know the nonlinearities. In the next section we present how

we can solve the problem without knowing the nonlinear

functions beforehand.

IV. HAMMERSTEIN-WIENER PREDICTOR-BASED

SUBSPACE IDENTIFICATION

In the previous section we showed that the first step in

the PBSIDopt algorithm can be replaced by an intersection

problem. The remainder of that particular section was used
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to explain the other steps of the algorithm. In this section

we will show that when we exploit tools derived in machine

learning we can estimate the nonlinearities. Instead of for-

mulating the intersection problem as a CCA problem we now

formulate a kernel CCA problem. From which we directly

estimate the nonlinearities and the solution can be used to

construct the extended controllability times the observability

matrix. From that point on similar steps can be taken as in

the previous section.

A. Kernel Canonical Correlation Analysis (KCCA)

With a number of substitutions the problem in (5) can be

rewritten as:
min
α ,β

||αΦ̃T Φ−β Ψ̃T Ψ||2F , (8)

Subject to:

αΦ̃T ΦΦT Φ̃αT = Iℓ, β Ψ̃T ΨΨT Ψ̃β T = Iℓ,

where Ψ̃ and Φ̃ can be interpreted as basis data which we

will define later and V = αΨ̃T and W = β Φ̃T .

The problem formulated in (8) is still nonlinear. We will

now approximate the matrices Φ̃T Φ and Ψ̃T Ψ by centered

component-wise kernels. These kernels are defined as fol-

lows5:

Definition 1 (Centered component wise kernels): Given

two data matrices:

E =




e1

...

eν


 ∈ R

ν×Nν , and F =




f1

...

fτ


 ∈ R

τ×Nτ .

We define the follow component wise kernel:

K(E,F) = K(e1, f1)+ ....+ K(eν , fτ ),

with K(a,b)∈ RNν×Nτ defined as a centered kernel with a ∈
RNν , b ∈ RNτ and defined as:

K(a,b) =




(qa1,b1
−qa1,0), · · · , (qa1,bNτ

−qa1,0)
(qa2,b1

−qa2,0), · · · , (qa2,bNτ
−qa2,0)

...
. . .

...

(qaNν ,b1
−qaNν ,0), · · · , (qaNν ,bNτ

−qaNν ,0)




where qi, j is a kernel function with the arguments i, and j.

For instance we have radial kernels, qi, j = exp−(i− j)2/σ
(σ is a kernel constant), and linear kernels, qi, j = i× j. The

matrix K has the property that K(a,0)= 0 and this is referred

to as the centering property.

With the definition of the kernels we can redefine (8) in

a KCCA problem. However, we still have the degree of

freedom to pick the ’basis’ data. There is a large amount of

literature written on how to choose these ’basis’ functions

5These kernels are only suited for Hammerstein-Wiener models without
cross-coupling between the different inputs or outputs. The cross-coupling
can be included by changing the definition of the used kernels. For sake of
simplicity this is not included in this paper.

(see [5] and references therein) but we continue by taking

the whole data set as basis data:

min
α ,β

∣∣∣∣
∣∣∣∣αK

([
Y P

YF

]
,

[
Y P

YF

])
−β K

([
UP

UF

]
,

[
UP

UF

])∣∣∣∣
∣∣∣∣
2

F

, (9)

Subject to :

αK

([
Y P

YF

]
,

[
Y P

YF

])
K

([
Y P

YF

]
,

[
Y P

YF

])T

αT = Iℓ,

β K

([
UP

UF

]
,

[
UP

UF

])
K

([
UP

UF

]
,

[
UP

UF

])T

β T = Iℓ.

This formula represents the kernel counterpart of the CCA

problem from the previous section. Observe that regulariza-

tion is a must to solve this problem (see discussion in the

previous section).

The key observation that we need for the remainder of

the paper is that the Markov parameters times the static

nonlinearities can be expressed in the solution of (9); α̂ and

β̂ . Since by definition we have:

αK

([
Y P

YF

]
, .

)
= V g−1(.) = T−1

y

[
CKy, I

]
g−1(.),

β K

([
UP

UF

]
, .

)
= W f (.) = T−1

y

[
CKu, D

]
f (.),

and due to the component-wise formulation of the kernels

the following equalities also hold:

αK (Yi, .) = T−1
y CÃp−i−1Kg−1(.),

β K (Ui, .) = T−1
y CÃp−i−1B̃ f (.),

for all i ∈ {0, · · · , p−1} and:

αK (YF , .) = T−1
y g−1(.), β K (UF , .) = T−1

y D f (.).

B. Estimation of the Wiener and Hammerstein nonlinearities

The Wiener nonlinearity is directly a product of the kernel

CCA problem that we formulated. We have:

̂T−1
y g(.)−1 = α̂K(YF , .), (10)

which follows directly by the definition of the component

wise centered kernels as stated at the end of the previous

subsection. To obtain an estimate of the Hammerstein non-

linearity we have to solve an SVD. We have the following

equality:



T−1
y CB

T−1
y CÃB

...

T−1
y CÃp−1B


 f (UF ) =




β K (U0,UF)
β K (U1,UF)

...

β K (Up−1,UF)


 .

The right-hand side of the equation can be estimated and

since it is a low rank matrix we can obtain the Hammerstein

nonlinearity by performing an SVD:



β̂K (U0,UF)

β̂K (U1,UF)
...

β̂ K (Up−1,UF)


 =

[
U f U f ,⊥

][
Σr 0

0 0

][
V f

V f ,⊥

]
.
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Fig. 2. Schematic representation of the simulation scheme

A =




0.67 0.67 0 0
−0.67 0.67 0 0

0 0 −0.67 −0.67
0 0 0.67 −0.67


 , B =




0.6598 −0.5256
1.9698 0.4845
4.3171 −0.4879
−2.6436 −0.3416


 , C =

[
0.3749 0.0751 −0.5225 0.5830
−0.8977 0.7543 0.1159 0.0982

]
,

K =




−0.6968 −0.1474
0.1722 0.5646
0.6484 −0.4660
−0.9400 0.1032


 , Fb =

[
0.5 0
0 0.5

]
, f (uk) =


 sin

(
u
(1)
k

)
u
(1)
k

sin
(

u
(2)
k

)

 , g(yk) =


 sign(y

(1)
k )

√
y
(1)
k

sign(y
(2)
k )

√
y
(2)
k


 ,

TABLE I

SIMULATION PARAMETERS

Using the column space of this matrix we now have an

estimate of the Hammerstein nonlinearity and this one is

given by:

̂T−1
u f (.) = U

†
f




β̂ K (U0,UF)

β̂ K (U1,UF)
...

β̂ K
(
U f−1,UF

)


 ,

where † represents the pseudo inverse and T−1
u the unknown

transformation.

C. Extended observability times controllability matrix

With the known nonlinearities we can also go back to

the previous section and solve the linear problem. However,

it turns out that from the KCCA problem we directly can

construct an estimate of the controllability time observability

matrix. Again, we exploit the component wise structure of

the kernels. The observability times the state is now given

by:

Γ̂Xp =




∑
p−1
i=0

(
α̂K(Ui,Ui)+ β̂K(Yi,Yi)

)

∑
p−1
i=1

(
α̂K(Ui,Ui−1)+ β̂K(Yi,Yi−1)

)

...

∑
p−1
i= f−1

(
α̂K(Ui,Ui− f−1)+ β̂K(Yi,Yi− f−1)

)




.

With this matrix known we can compute the SVD in (6)

and estimate the state (7). With an estimate of the state and

the nonlinearities the system matrices can be estimated in a

straightforward manner.

V. EXAMPLE

We have tested the proposed identification algorithm on

a fourth-order MIMO closed-loop model with r = 2, and

ℓ = 2. The collected data uk, yk, are used for the identification

algorithm. We will use the following model (as illustrated in

Fig. 2):

xk+1 = Axk + B f (u)k + Kek,

g−1(yk) = Cxk + ek,

uk = Fbg−1(yk)+ rk,

where Fb is the feedback gain and rk the reference signal.

The system matrices are given in Table IV-B. As reference

signal we take a zero-mean Gaussian white noise signal with

cov(uk) = Ir and for ek we take a Gaussian white noise

with the following covariance cov(ek) = 0.01 · Iℓ. For the

identification experiment we used N = 500 and p = f =
4. The collected data (uk and yk ) is used to identify a

Hammerstein-Wiener model. The performance of the iden-

tified system is evaluated by looking at the value of the

Variance-Accounted-For (VAF)6 on a data set different from

the one used for identification. To investigate the sensitivity

of the identification algorithm with respect to noise, a Monte-

Carlo simulation with 20 runs was carried out. For each of

the 20 simulations a different realization of the input rk is

used.

The choice of the regularization parameters, ν1 and ν2,

was made by plotting the validation VAF for 20 simula-

tions against a logarithmic grid of different values of the

parameter and choosing the value corresponding to a peak.

The location of the peak is strongly related to the data

set and consequently is different for every data set. With

6The VAF value is defined as:

VAF(g−1(yk), ̂g−1(yk)) = max

{
1−

var(g−1(yk)− ̂g−1(yk))

var(g−1(yk))
,0

}
∗100%,

where ĝ−1(yk) denotes the signal obtained by simulating the identified
Hammerstein-Wiener model, g−1(yk) is the signal of the true Hammerstein-
Wiener model, and var() denotes the variance of a quasi-stationary signal.
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Fig. 3. True and estimated eigenvalues of A in one plot for 20 experiments.
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Fig. 4. Presentation of f̃ (uk) based on 20 Monte-Carlo simulations. The
solid line represents the estimate with the highest VAF and the gray area
covers the other 19 estimates.

regularization we show in Fig. 3 the poles of A for the

20 Monte-Carlo simulations and we see that we have an

almost unbiased estimate. In Fig. 4 and 5 we show the

nonlinearities by plotting f (uk) and g−1(yk). Although, the

estimates of the nonlinearities are obtained up to an unknown

transformation. We can estimate in this simulation example

this transformation since we know the ‘real’ system. These

estimates are denoted by f̃ (uk) and g̃−1(yk), respectively.

We clearly see that we can estimate the nonlinearities quite

accurately for different realizations of the noise.

VI. CONCLUSIONS

In this paper we presented a novel algorithm to identify

MIMO Hammerstein-Wiener systems under open and closed-

loop conditions. To do so, we formulated the linear time

invariant optimized predictor based subspace identification
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Fig. 5. Presentation of g̃−1(yk) based on 20 Monte-Carlo simulations. The
solid line represents the estimate with the highest VAF and the gray area
covers the other 19 estimates.

algorithm as an intersection problem, better known as CCA.

For Hammerstein-Wiener systems we utilized ideas from

machine learning to estimate both the static nonlinearities

and the Markov parameters. In the second step the state

sequence is directly used to estimate the linear dynamics. The

effectiveness of the approach was illustrated with a closed-

loop simulation example.
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