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SUMMARY

The trend with offshore wind turbines is to increase the rotor diameter as much as possible to decrease
the costs per kWh. The increasing dimensions have led to the relative increase in the loads on the wind
turbine structure. Because of the increasing rotor size and the spatial load variations along the blade, it
is necessary to react to turbulence in a more detailed way: each blade separately and at several separate
radial distances. This combined with the strong nonlinear behavior of wind turbines motivates the need
for accurate linear parameter-varying (LPV) models for which advanced control synthesis techniques exist
within the robust control framework. In this paper we present a closed-loop LPV identification algorithm
that uses dedicated scheduling sequences to identify the rotational dynamics of a wind turbine. We assume
that the system undergoes the same time variation several times, which makes it possible to use time-
invariant identification methods as the input and the output data are chosen from the same point in the
variation of the system. We use time-invariant techniques to identify a number of extended observability
matrices and state sequences that are inherent to subspace identification identified in a different state
basis. We show that by formulating an intersection problem all states can be reconstructed in a general
state basis from which the system matrices can be estimated. The novel algorithm is applied on a wind
turbine model operating in closed loop. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The trend with offshore wind turbines is to increase the rotor diameter as much as possible. The
reason is that the foundation costs of offshore wind turbines amount to a large part of the total
costs. Therefore, designers want to increase the energy yield per wind turbine, which increases
with the square of the rotor diameter, as much as possible to reduce the costs. Hence, modern
wind turbines designed for offshore application have become the largest rotating machines on
earth, with the length of one blade almost equal to the entire span of a Boeing 747. The increasing
dimensions have led to the relative increase in the loads on the wind turbine structure.

There have been two main control concepts to keep the loads within acceptable limits. The
concept used from the seventies until the nineties in the previous century was the ‘Danish
concept’ [1]. The turbines making use of this concept combine constant rotor speed with stall
of the flow around the rotor blades and are stable by design: increasing wind speeds automati-
cally induce increasing drag forces that limit the absorbed power. In that period, all other control
options were considered too complex. However, most modern large wind turbines run at vari-
able rotational speed, combined with the adjustment of the collective pitch angle of the blades
to optimize energy yield and to control the loads [2]. This is a step forward: the control of the
blade pitch angle has not only led to power regulation but also to a significantly lighter blade
construction due to the lower load spectrum and a lighter gear box due to shaved torque peaks.
However, full-span collective pitch control can only handle slow wind changes that affect the
entire rotor. Because of the increasing rotor size, it is necessary to react on turbulence in a more
detailed way: each blade separately and at several separate radial distances. This first item is dealt
with in individual pitch control (IPC), motivated by the helicopter industry [3–6], which is the
latest development in the wind turbine industry to further minimize the loads. With this latest
control concept, each blade is pitched individually to suppress the harmonic loads. The controllers
are designed using linear controller synthesis and are gain scheduled afterwards to compensate
for the nonlinear behavior of the variable-speed wind turbines. However, this method does not
guarantee any stability or performance [7]. In recent work [8–10], the linear parameter-varying
(LPV) framework is proposed for the design of feedback controllers in the wind energy. These
LPV systems can be seen as a particular type of time-varying system, where the variation depends
explicitly on a time-varying parameter referred to as the scheduling or weight sequence. For wind
turbines, this is typically the rotor speed, rotor position, and pitch position. The main advantage
of the LPV controller synthesis problem is that it results in robust gain-scheduled controllers
that have the property to have guaranteed performance and stability over the complete operation
envelop.

For LPV control, it is important to have an accurate mathematical model of the system under
consideration because the synthesis problem requires a model. Common practice in the wind
industry is to model the dynamics using first principles [11]. However, this approach has a number
of disadvantages: time consuming, over/under modeling, uncertainties, and complexity. However,
efficient methods to obtain mathematical models from measurement data exist; these methods are
referred to as system identification. Using the available measurements only the most important
dynamics is modeled. This implies that system identification gives a compact-sized model that is
suitable for controller (re)design, load calculations, and model validation. Linear time-invariant
(LTI) system identification is well established and few applications can be reported in the wind
energy community [12–15]. However, wind turbines are nonlinear systems and as stated before
they can be reformulated in the LPV framework.
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An overview of past literature in LPV identification setting can be found in [16]. It is possible
to distinguish between identification techniques for different types of scheduling sequences. For
the case where this sequence can be arbitrarily varying, the identification problem has proven
to be challenging. The subspace identification method proposed in [17] and later improved in
[18] has the inherent drawback that it requires an approximation, neglecting certain terms and
possibly leading to biased results. This method can, however, be used as an initial estimate for a
parametric identification method as proposed in [19]. Because of these difficulties, it is interesting
to investigate whether the use of dedicated scheduling sequences facilitates the identification of
LPV systems. Specific cases of scheduling sequences have been studied, such as the case of abrupt
switching, which leads to piecewise affine (hybrid) systems [20], and periodic scheduling [21].

In this paper we tackle a part of the LPV system identification problem for wind turbines.
We will consider the rotational dynamics of the wind turbine where the scheduling sequence
undergoes the same time variation several times, which makes it possible to use a number of
well-established steps from LTI system identification. Furthermore, the focus of this paper will be
on state-space LPV systems operating in closed loop for which the scheduling sequence repeats
itself a number of times (ensemble identification). State-space LPV systems are considered in
particular instead of their input/output counterparts because of their ability to efficiently handle
multiple inputs and outputs, which is essential for wind turbines. Therefore, the identification of
LPV state-space models is of interest. The work we present is strongly related to [21] where an
open-loop LPV system identification scheme with a periodic scheduling sequence is used, which
significantly simplifies the LPV system identification problem. However, the MOESP type of
algorithm used in this particular paper gives biased results for systems operating under closed-loop
conditions. The first main contribution of this paper is that we use ideas from closed-loop system
identification [22–24], where no assumption is made with respect to the correlation between the
input and the noise sequence. The second contribution is that we can deal with ensemble data
(no perfect periodic scheduling signal is required). The third contribution is the application on a
challenging wind turbine model. The first contributions are essential for wind turbines because
wind turbines are unstable systems and consequently have to operate in closed loop, and the
rotational dynamics of a variable-speed wind turbine are not exactly periodic but still it undergoes
the same time variation a number of times.

The remainder of this paper is organized as follows: In Section 2, the theoretic framework is
presented for the identification of closed-loop LPV systems using a dedicated scheduling sequence.
In Section 3, the algorithm is applied to an LPV model of a wind turbine. In the final sections
we present the challenges left in the field of the identification of wind turbines and we present the
conclusions of this paper.

2. LPV IDENTIFICATION FOR DEDICATED SCHEDULING SEQUENCES

For linear time-varying (LTV) systems, it is well known that ensemble identification can be used
to obtain accurate models of the LTV system. However, when the time variation is changing
these models are not valid anymore. In this section an algorithm is presented that uses ensemble
identification to construct an LPV model. First, we describe a general problem formulation and the
assumptions are given. Then a number of extended observability matrices are estimated assuming
that the same time-varying behavior is present a number of times. These observability matrices
have the inherent drawback that they are identified in a different state basis. This can be solved
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by solving an intersection problem. When the similarity transformations are known, the states can
be transformed into the same global state basis and the system matrices can be reconstructed by
solving a set of linear equations.

2.1. Problem formulation

Consider the LPV system

xk+1 = Akxk+Bkuk+Kek (1)

yk =Ckxk+Dkuk+ek (2)

where xk ∈Rn , uk ∈Rr , and yk ∈R�, are the state, input, and output vectors, and the noise sequence
ek ∈R� is a zero-mean white-noise sequence.

The time-varying system matrices are given by

Ak =
m∑
i=1

A(i)�(i)
k (3)

where m represents the number of LPV system matrices. In an identical manner, the matrices Bk ,
Ck , and Dk are defined. In these expressions, A(i) ∈Rn×n , B(i) ∈Rn×r , C (i) ∈R�×n , D(i) ∈R�×r ,
and K ∈Rn×� are referred to as the system matrices. The model weights are �(i)

k ∈R. Note that
the system matrices depend in a linear manner on the time-varying scheduling vector

�k =(�(1)
k �(2)

k · · · �(m)
k )T (4)

To include the case of affine dependence, one can set the first entry of the scheduling vector to
unity: �(1)

k =1, ∀k. It is required that the terms of the scheduling sequence are linearly independent,
such that

rank([�0 �1 · · · �s−1])=m (5)

and s�m.
The state-space realization given in (1)–(2) can be expressed in the predictor form as follows

xk+1 = Ãk xk+ B̃kuk+Kyk (6)

yk =Ckxk+Dkuk+ek (7)

where Ãk = Ak−KCk and B̃k = Bk−K Dk .‡ It is well known that an invertible linear transforma-
tion of the state does not change the input–output behavior of a state-space system. Therefore, we
can only determine the system matrices up to a similarity transformation T ∈Rn×n: T−1A(i)T ,
T−1B(i), T−1K , C (i)T , and D(i).

The identification problem can now be formulated as follows: given the input sequence uk , the
output sequence yk , and the scheduling sequence �k to find all the LPV system matrices A(i), B(i),
C (i), D(i), and K up to a global similarity transformation.

‡Observe that the matrix K is time invariant. This is done to make the notation and derivation not too complex.
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2.2. Definitions and assumptions

We define the stacked output vector ȳik as

ȳik =(yTk yTk+1 · · · yTk+i−1)
T (8)

and similarly the stacked input ūik , stacked noise ēik , and stacked scheduling �̄ik are defined. In
parallel to what is done in LTI identification for time-varying systems also an observability matrix
can be derived

Õ
f
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ck

Ck+1 Ãk

Ck+2 Ãk+1 Ãk

...

Ck+ f −1 Ãk+ f −2 . . . Ãk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈R� f ×n (9)

where Õ
f
k is the time-varying extended observability matrix at time instance k, and f is referred

to as the future window size. In what follows, it is assumed that Õ
f
k has full column rank for

all k’s, which is equivalent to requiring that the system is observable on all intervals of length f
according to the condition for observability of LPV systems in [25].

We also define the matrices

�̃
f
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dk 0 . . . 0

Ck+1 B̃k Dk+1

Ck+2 Ãk+1 B̃k Ck+2 B̃k+1

...
...

. . .

Ck+ f −1 Ãk+ f −2 . . . Ãk+1 B̃k Ck+ f −1 Ãk+ f −2 . . . Ãk+2 B̃k+1 Dk+ f −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R� f ×r f (10)

�̃
f
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

Ck+1K 0

Ck+2 Ãk+1K Ck+2K

...
...

. . .

Ck+ f −1 Ãk+ f −2 . . . Ãk+1K Ck+ f −1 Ãk+ f −2 . . . Ãk+2K 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈R� f ×� f (11)

With the previous definitions it holds that for all k={0, . . . ,N−1}

ȳ f
k = Õ

f
k xk+�̃

f
k ū

f
k +�̃

f
k ȳ

f
k + ē f

k (12)
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This data equation is the starting point for many subspace identification schemes. However, now

the matrices Õ
f
k , �̃

f
k , and �̃

f
k are time varying.

2.3. Step 1: ensemble identification

In this section we assume that the scheduling sequence, which determines the time-varying behavior
of the system repeats itself a number of times or with other words: the system undergoes the same
time variation a number of times. The length of this repeating scheduling sequence is at least
p+ f samples long, where f is referred to as the future window (see the previous section) and in
a similar way p is referred to as the past window. The indices where such a scheduling sequence
starts are defined as

t̃ j =[t j,1, . . . , t j,� j ]
where t j,i ∈N is the starting point of the interval and the number of intervals equals � j . t̃ j with
j ∈{1,2, . . . ,v} are intervals where the scheduling sequence j is active and v∈N represents the
number of different scheduling sequences. This definition is illustrated in Figure 1. A special signal
that satisfies this definition is a period scheduling [21, 26]. In this case the white areas in Figure 1
are removed such that we have a perfect periodic signal left. In [21] the scheduling sequence should
be perfectly periodic during the identification experiment to identify an LPV model, although
afterwards this identified model is also valid for every random scheduling sequence. The rotational
dynamics of variable-speed wind turbines is not perfectly periodic, although it undergoes the same
time variation a number of times. Also for other processes such as the behavior of a wafer stage
or a rotating device, the same dynamics will occur a number of times (ensembles). The periodic
scheduling signal can be seen as a subset of the definition given above. In this paper we show how
we can extend the periodic result to ensemble data.

Figure 1. Illustrative example of a possible scheduling sequence. In the top figure, the gray shaded areas
are of length p+ f and illustrate the areas where the same scheduling segment is active. The starting
points of the intervals are defined by t̃1. In the bottom figure, the same scheduling sequence is given.
However, a different scheduling segment is depicted by the gray areas. The areas start one sample later

and the starting points are defined by t̃2.
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When we evaluate (12) for all k∈ t̃ j + p,§ the observability matrices �̃
f
k and �̃

f
k become time

invariant on that particular set. We define these matrices as follows

Õ
f
j = Õ

f
k ∀k∈ t̃ j + p (13)

�p+ f
j = �p+ f

k ∀k∈ t̃ j (14)

and in a similar way this can be done for �̃
f
k and �̃

f
k .

The state can be expressed in the known past inputs u p
k , outputs y pk , and the initial state. This

state xk+p is given by

xk+p =( Ãk+p Ãk+p−1 . . . Ãk)xk+(C̃
p
k K̃

p
k )

(
u p
k

y pk

)
(15)

where C̃
p
k is the time-varying controllability matrix, which is defined as

C̃
p
k =( Ãk+p−1 . . . Ãk+1 B̃k . . . Ãk+p−1 B̃k+p−2 B̃k+p−1) (16)

and

K̃
p
k =( Ãk+p−1 . . . Ãk+1K . . . Ãk+p−1K K ) (17)

We assume that the LPV system given in (6)–(7) is LPV stable [7].¶ By choosing p large enough,
the contribution of the initial state to the state xk+p can be made arbitrarily small. In a number
of LTI subspace methods, it is well known to disregard the effect of the initial state resulting in
a biased estimate, although this bias can be made arbitrarily small by choosing p larger [23, 27].
The first step in the closed-loop system identification scheme is to use this approximation to get an

estimate of �̃
f
k and �̃

f
k . If we evaluate (16) for k∈ t̃ j , the matrices Õ

f
k , �̃

f
k , and �̃

f
k are constant.

Substituting (15) into (12) and disregarding the effect of the initial state gives

ȳ f
k+p = Õ

f
j (C

p
j K

p
j )

(
u p
k

y pk

)
+�̃

f
j ū

f
k+p+�̃

f
j ȳ

f
k+p+ ē f

k+p ∀k∈ t̃ j (18)

An estimate of the matrices �̃
f
j and �̃

f
j can be found by performing a linear regression [22, 23]

where we assume that the matrix Õ
f
j (C

p
j K

p
j ) has full rank. Subtracting this estimate from (18)

we end up with

z jk+p = ȳ f
k+p−�̂

f
j ū

f
k+p−�̂

f
j ȳ

f
k+p ≈ Õ

f
j xk+p+ ē f

k+p ∀k∈ t̃ j (19)

The stacked vectors can be used to build the following matrices

Y
f
j =(y f

t̃ j,1
y f
t̃ j,2

. . . y f
t̃ j,� j

), j ∈[1, . . . ,v] (20)

§We add to every element of t̃ j the scalar p.
¶Observe that we assume that the matrix Ã is stable and not A. The rotational dynamics of a wind turbine includes
a pure integrator.
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where the matrices U
f
j and E

f
j can be constructed in the similar way, and X j = xt̃ j+p. With these

definitions, we can write (19) as

Z j =Y
f
j −�̂

f
j U

f
j −�̂

f
j Y

f
j ≈ Õ

f
j X j +E

f
j (21)

Equation (21) can be used to determine the observability matrix, Õ
f
j , and the state sequence, X j ,

up to a similarity transformation, using the SVD of the matrix Z j

Z j =(U
j
n U

j
n⊥)

(
� j
n 0

0 � j
0

)(
V

j
n

V
j⊥
n

)

where � j
n is the diagonal matrices containing n dominant singular values and U

j
n is the corre-

sponding column space. Note that we can find the dominant singular values by detecting a gap
between the singular values. In the limit for � j →∞ and p→∞, it then holds that

Õ j =U
j
nTj (22)

X̂ j = T−1
j � j

nV
j
n (23)

This can be done for all j ={1, . . . ,v}, obtaining different column spaces. The similarity transfor-
mations Tj will also be different at each time; hence, the models are identified in a different state
basis. With a finite number of data points and past window size still a gap can be detected (see
[28] for more detailed information). We have to stress that if the identified states are in the same
state basis, the LPV system identification problem is solved.

2.4. Step 2: relating the v-extended observability matrices

For this step we need to relate the different observability matrices to the same basis. This can
be done by writing the observability matrices of the different repeating scheduling sequences
as a product between a matrix containing only the scheduling terms and a constant matrix that
depends only on the system matrices Ã(i), C (i). This factorization was introduced in [21]. First,
define the m-tuple A={ Ã(1), . . . , Ã(m)} containing all matrices A(i) and similarly the m-tuple
C={C (1), . . . ,C (m)} consisting of all matrices C (i). Then define the operator P j on these two
tuples, which returns the block matrix of all ordered products between one element from C and
j−1 elements from A (m j possible combinations). Formally, the �th block row P

�
j (C,A)∈R�×n

of P j (C,A)∈R�m j×n is given by

P
�
j (C,A)=C (i�1)A(i�2 )A(i�3 ) . . . A(i�j ) (24)

with i�1 , . . . i
�
j ∈{1, . . . ,m} ∀�∈{1, . . . ,m j } and ordered by ��+1>�� where

�� =(i�1 i�2 i�3 . . . i�j )

⎛
⎜⎜⎜⎜⎜⎜⎝

m j−1

m j−2

m j−3

...

m0

⎞
⎟⎟⎟⎟⎟⎟⎠
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12 J. W. VAN WINGERDEN ET AL.

To illustrate this definition, notice that for m=2 one obtains

P1=
(
C (1)

C (2)

)
, P2=

⎛
⎜⎜⎜⎜⎜⎝
C (1) Ã(1)

C (1) Ã(2)

C (2) Ã(1)

C (2) Ã(2)

⎞
⎟⎟⎟⎟⎟⎠ , P3=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C (1) Ã(1) Ã(1)

C (1) Ã(1) Ã(2)

C (1) Ã(2) Ã(1)

C (1) Ã(2) Ã(2)

C (2) Ã(1) Ã(1)

C (2) Ã(1) Ã(2)

C (2) Ã(2) Ã(1)

C (2) Ã(2) Ã(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The amount of block rows grows exponentially as m j . The operator P j is used to define

S=

⎛
⎜⎜⎜⎜⎜⎝

P1(C,A)

P2(C,A)

...

Pd(C,A)

⎞
⎟⎟⎟⎟⎟⎠∈Rq×n (25)

Now define

M f
k =

⎛
⎜⎜⎜⎜⎜⎜⎝

�Tk 0 · · · 0

0 �Tk ⊗�Tk+1 · · · 0

...
...

. . .
...

0 0 · · · �Tk ⊗·· ·⊗�Tk+ f −1

⎞
⎟⎟⎟⎟⎟⎟⎠⊗ I� (26)

with M f
k ∈R f �×q . Then it can be shown by simple substitution and using (9) that

O
f
j =M f

j S

where O
f
j is known up to an unknown similarity transformation (22), M f

j depends on the known
scheduling sequence (26) belonging to the scheduling sequence j , and S is an unknown matrix
defined in (25). Note that the number of rows of S (columns of M f

j ), denoted by q , increases

exponentially with f according to the relation q=∑ f
j=1 �m j . We now give a result that relates

the different observability matrices. We present the following result for the noiseless case and for
the case that an unbiased estimate has been obtained. Let U j

n be equal to O
f
j up to a similarity

transformation such that

U
j
nTj =O

f
j

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 19:4–21
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Define

Ũ = diag(U1
n, . . . ,U

v
n)∈Rdv×nv

�̃ = diag(O f
1 , . . . ,O f

v )∈R f v×nv

T̂ = ((T1)
T, . . . , (Tv)

T)T∈Rnv×n

(27)

M̃=((M f
1 )T, . . . , (M f

v )T)T∈Rnv×q (28)

where M f
j is defined in (26). Also, define T̃ equal to T̂ up to an unknown square invertible matrix

T ∈Rn×n , now the following relations hold

T̃ = T̂ T and S̃= ST

Now we can define

null([Ũ M̃])=
(

�

�

)
(29)

which can also be formulated as an intersection problem. With the condition �∈Rnv×�, �∈Rq×�,

and �=q+nv−rank([Õ M̃]) and �=n. Then

� = ST = S̃

� = T̂ T = T̃
(30)

This implies that when the rank conditions hold the matrices S and T̂ can be found up to an
unknown similarity transformation.

In the case of noise, (29) will lead to a smaller (or even an empty) null space. This can be
overcome by using an SVD to compute � and �. Furthermore, the dimensions of the intersection
problem formulated in (29) grow exponential with the window size f . However, to convert all the
states to the same state basis, we only need the similarity transformations. To solve the intersection
problem we only require the column space of M̃ . A method for reducing the matrix dimensions
is proposed in [21].
2.5. Step 3: recovering of the LPV system matrices

In the previous step, all the states sequences are transformed into the same global state basis. It
is well known that when the state, input, output, and scheduling sequences are known the system
matrices can be estimated. First we use (2), which is now a linear relation with C (i) and D(i),
where ek represents a white noise. From this equation an estimate can be found for C (i) and D(i)

matrices while also the noise sequence can be estimated. The estimated noise sequence is used
to transform (1) into a linear expression depending on A(i), B(i), and K . Note that for solving
this linear relation, the state should be known at xk and xk+1 and only the data points that have
this property are selected. Observe that for periodic systems or almost periodic systems this will
always be the case and the complete or almost the complete state sequence is known.

In the example given in Figure 1, the state can be reconstructed at t1,1+ p, t1,2+ p, t1,3+ p,
and t1,4+ p for j =1 with the presented algorithm. For the second constant scheduling segment,
j =2, the state is estimated at t2,1+ p, t2,2+ p, t2,3+ p, and t2,4+ p. The second constant segment
starts one sample later than the segment belonging to j =1. This implies that four linear problems
can be formulated where xk+1 and xk are known.
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3. SIMULATION STUDY

An LTI system identification is well established and a few applications can be reported in the wind
energy [12–15]. However, the techniques used are all based on the open-loop setting and will give
biased results in the closed-loop setting [29]. In this paper, we presented an identification approach
to identify LPV systems assuming that the scheduling sequence repeats itself a number of times.
In this section we use a nonlinear model of the rotational dynamics to illustrate the working of
the proposed algorithm. We start this section with the description of the wind turbine model used
followed by a simulation to obtain input–output data. In the last part of this section, the simulation
results are presented.

3.1. First principle model of a horizontal axis wind turbine

In this paper we consider a seven degrees of freedom model, as described in [4, 30]. The model
describes the rotational dynamics of a wind turbine around a particular operating point. The model
contains degrees of freedom for the main rotation, first torsion mode of the drive train, the first
fore-aft, and sideward bending mode of the tower. In this model, the blades are considered to be
rigid. In Figure 2, a schematic representation of the model is given.

Using a linearized conversion of the aerodynamic behavior, the model equations can be given
in the following continuous-time LPV system

dx(t)

dt
= Ax(t)+

(
B(0)+

3∑
i=1

B(i)�(i)(t)

)
u(t)+

(
F (0)+

3∑
i=1

F (i)�(i)(t)

)
v(t) (31)

y(t) =
(
C (0)+

3∑
i=1

C (i)�(i)(t)

)
x(t)+Du(t)+Gv(t) (32)

Figure 2. Schematic representation of the wind turbine model.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2009; 19:4–21
DOI: 10.1002/rnc



CL IDENTIFICATION OF THE TIME-VARYING DYNAMICS OF HAWTS 15

where the matrices B(i), C (i), and F (i) are multiplied with the scheduling sequence, which is the
azimuth angle �(i) of the accompanying rotor blade. The wind turbine model under consideration
has three rotor blades (i=1,2,3) and is normally used to design IPC controllers. The system state,
input, disturbance, and output vector are given by

x = (	�ro xfa ẋfa xsw ẋsw ε ε̇)T

u = (	
1 	
2 	
3 	Tge)
T

v = (	v1 	v2 	v3)
T

y = (	�ge ẋfa ẋsw 	M1 	M2 	M3)
T

respectively. This model contains thus the control inputs for the variation in generator torque 	Tge
and the pitch angle 	
i of each rotor blade. Furthermore, the model contains the inputs for the
wind speed disturbance 	vi on each of the three rotor blades. The outputs are the variations in
generator speed 	�ge, the fore-aft velocity ẋfa, and the sideward velocity ẋsw of the tower and
the blade root bending moment 	Mi of each rotor blade. The state contains the variations in rotor
speed 	�ro, the fore-aft displacement xfa and velocity ẋfa, the sideward displacement xsw and
velocity ẋsw, and the drive-train displacement ε and speed ε̇.

The model under consideration has a constant A matrix, whereas the input and output matrices
strongly depend on the azimuth angle, �. In [4] the Coleman transformation is used to transform
this model to an LTI model. The Coleman transformation is a nonlinear transformation that is
used to transform the outputs defined in the rotating frame to the fixed nonrotating frame and on a
similar way this can be done for the inputs. However, this transformation cannot cope with a failing
sensor/actuator, gravity, and yaw misalignment. If the Coleman transformation is applied to these
models, still periodic components will be present in the dynamics. However, all the mentioned
phenomena will still lead to an LPV model where the system undergoes the same time variation
a number of times. Still, in this paper we selected the model given in (31)–(32) based on its
simplicity, available documentation [4, 30], and the mentioned phenomena will not change the
proposed LPV system identification algorithm.

The constant state-space matrices A, D, and G are given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −3hMx

Jro
0 0 − kro

Jro
−dro
Jro

0 0 1 0 0 0 0

0 − kto
mto

81R

32H2

hMz

mto
− dto
mto

− 3hFx

mto
0 0 0 0

0 0 0 0 1 0 0

0 0 − 27R

16H2

hFz

mto
− kto
mto

− dto
mto

0 0

0 0 0 0 0 0 1

0 0 −3hMx

Jro
0 0 − Jro+ Jge

Jro Jge
kro − Jro+ Jge

Jro Jge
dro

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(33)
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D=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

kMz 0 0 0

0 kMz 0 0

0 0 kMz 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, G=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 0

0 0 0

hMz 0 0

0 hMz 0

0 0 hMz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(34)

The state-space matrices B, C , and F do have an LPV structure and are given by

(B(0) | B(i)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kMx

Jro

kMx

Jro

kMx

Jro
0 0

0 0 0 0 0

kFx
mto

kFx
mto

kFx
mto

0
3

2H

kMz

mto

0 0 0 0 O7×(i−1) 0 O7×(4−i)

0 0 0
3

2H

1

mto
−kFz
mto

0 0 0 0 0

kMx

Jro

kMx

Jro

kMx

Jro

1

Jge
0︸︷︷︸

i th column

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(35)

(F (0) |F (i)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hMx

Jro

hMx

Jro

hMx

Jro
0

0 0 0 0

hFx

mto

hFx

mto

hFx

mto

3

2H

hMz

mto

0 0 0 O7×(i−1) 0 O7×(3−i)

0 0 0 −hFz

mto

0 0 0 0

hMx

Jro

hMx

Jro

hMx

Jro
0︸︷︷︸

i th column

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(36)
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⎛
⎝C (0)

C (i)

⎞
⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 −1

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 −hMz 0 0 0 0

0 0 −hMz 0 0 0 0

0 0 −hMz 0 0 0 0

O(i+2)×7

0 0
9RhMz

8H
0 0 0 0

O(3−i)×7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ }(i+3)th row

(37)

In these matrices the parameters kMx , kMz , kFx , and kFz describe the aerodynamic gains from
the pitch angle to the root moment, flap moment, root force, and flap force, respectively. The
parameters hMx , hMz , hFx , and hFz describe the gain from the wind speed to the root moment, flap
moment, root force, and flap force, respectively. The constants R and H are the rotor radius and
the height of the hub, respectively; the mass moment of inertia J , the mass m, the stiffness k, and
the damping d . Furthermore, the subscripts ro, to, and ge refer to the rotor, tower, and generator,
respectively. The aerodynamic constants are listed in [30] and are derived for a wind speed of
16m/s, a pitch angle of 10◦, and a rotor speed of 1.795 rad/s.

3.2. Simulation of the closed-loop wind turbine model

The LPV system given in (31) and (32) is used to obtain the input, output, and the scheduling
sequence for the identification algorithm. For this purpose, the equations are converted to discrete
time using a naive zero-order hold discretization method with a sample time of 0.1s. The naive
approach omits the switching behaviors of the sampled scheduling signals. For our case, where
the scheduling sequence is a function of the azimuth angles the scheduling sequences are given
by the smooth signals

�k =
(
sin

(
2�k

v

)
,sin

(
2�k

v
+ 2�

3

)
,sin

(
2�k

v
+ 4�

3

))T

(38)

When an appropriate sample time is chosen, this method gives a good approximation of the
continuous time LPV system.

The wind turbine system is not asymptotically stable; it has an integrator, a collective pitch
controller in a feedback loop is added to the system to stabilize the system. The controller used
can be found in [30] where the collective pitch controller is parameterized. For the pitch-angle
inputs, we take an additional zero-mean white noise with var(
k,i )=1◦, which is added to the
control signal of the collective pitch controller. As input for the generator torque we also take a
zero-mean white-noise signal with var(Tge,k)=1×106Nm. The wind disturbance signal is also
zero-mean white noise with var(vk,i )=1m/s, but this signal is assumed to be unknown.
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3.3. Closed-loop LPV subspace identification results

The collected data of uk , yk , and �k from the simulations are used in the identification experiments.
The scheduling sequence can be rewritten as �k =(1 �k,1 �k,2)

T to fulfill the assumption that
this scheduling matrix must be of full rank. The third azimuth angle can be written as a linear
combination of the other two angles. For the identification experiments, we used N =1000, v=35,
f =16, and p=10.
The performance of the identified system is evaluated by looking at the eigenvalues of the A

matrix and the value of the variance accounted for (VAF) on a data set different from the one used
for identification. The VAF is defined as VAF=max{1−var(yk− ŷk)/var(yk),0}×100, where ŷk
denotes the output signal obtained by simulating the identified LPV system, yk is the output signal
of the true LPV system, and var is an operator that computes the variance. For meaningful VAF
values, the system under consideration must be asymptotically stable, otherwise a small error will
give low VAF values due to the increasing or decreasing characteristic of the outputs. This problem
occurs for the output of the generator speed; therefore, bode diagrams at a fixed scheduling vector
are used to evaluate the performance at those specific channels.

To investigate the sensitivity of the identification algorithm with respect to the wind disturbances,
a Monte Carlo simulation with 100 runs was carried out. For each of the 100 simulations, a
different realization of the input uk and wind disturbance vk is used. In Figure 3, the eigenvalues
of the estimated models are compared with the true values. It shows that the identified eigenvalues
are very close to the true eigenvalues and that the variance and bias is very small. Figure 4 shows

Figure 3. Eigenvalues of the estimated A matrix in the complex plane for 100 experiments with a wind
disturbance of var(v)=1m/s. The big crosses correspond to the real values of the eigenvalues of the

matrix. The boxes to the right show a magnification of three pole locations.
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Figure 4. Histogram of VAF values (%) of the outputs ẋfa, ẋsw, and M1,2,3. The range of VAF values
from 0 to 100% is divided into bins of 2%. For each bin, it is shown how many data sets out of the total

100 resulted in VAF values that fall into that bin.

the corresponding histograms of the VAF values on a fresh validation set with the same scheduling
vector and without the wind disturbances. The outputs of the blade root moments M1, M2, and M3
score very high VAF values, all within 98 and 100%. The outputs ẋfa and ẋsw are more affected
by the wind disturbance. However, the values are still satisfactorily high. The bode diagrams with
the generator speed �ge as output are given in Figure 5. Also in this figure satisfactory fits are
shown, especially for the transfer function with the pitch angles as input. However, for the transfer
function between the generator torque and the generator speed, the low frequent behavior shows
a large variance due to the high disturbance, which has a significant effect on the estimation of
pole belonging to the integrator. However, this is a well-known phenomena in an LTI system
identification. The resonance frequency is well estimated and for controller design this resonance
frequency will significantly limit the bandwidth.

4. DISCUSSION

For controller synthesis it is important to have accurate mathematical models of the dynamic
behavior of wind turbines. However, wind turbines are nonlinear and nonlinear techniques that
should be used to synthesize controllers that have guaranteed stability and performance margins over
the whole operational range of the turbine. Nonlinear system identification can be used to obtain
accurate models for controller synthesis. In this paper we showed an LPV system identification
scheme to identify the rotational dynamics of a horizontal axis wind turbine (HAWT). However,
we assumed to have a dedicated scheduling sequence. That is a valid assumption for the simulation
example but the dynamics of the wind turbine is also strongly dependent on the wind speed and this
quantity cannot be made periodic. The big challenge from an identification point of view for the
wind energy is to develop efficient algorithms to deal with LPV systems with random scheduling.

5. CONCLUSION

Wind turbines are nonlinear systems, although their nonlinearity is linearly dependent on measur-
able scheduling signals and therefore they can be modeled in the LPV framework. With LPV
controller synthesis, which is strongly related to robust controller design, gain-scheduled controllers
can be calculated with guaranteed stability and performance margins. In this paper we discussed
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Figure 5. Bode diagrams of the original transfer functions (dashed) and the identified transfer functions of
the experiment with the highest mean VAF value (bold). The transfer functions of the other 99 experiments
are within the gray confidence region. To determine the bode diagram, the azimuth angles are fixed at

the values �=(0,
√
3/2,−√

3/2).

LPV system identification and we proposed a subspace algorithm to identify the rotational dynamics
of a HAWT. We exploited the fact that the system experienced the same time variation a number of
times. We used LTI system identification techniques to identify a number of observability matrices
and state sequences that are, inherent to subspace identification, identified in a different state basis.
We showed that by formulating an intersection problem all the states can be reconstructed in a
general state basis from which the system matrices could be estimated. We showed the working of
the proposed algorithm on a nonlinear model of a wind turbine that was operating in closed loop.
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