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Abstract: In this paper we present an algorithm to identify MIMO Hammerstein systems under
open and closed-loop conditions. To do so, we formulate the optimized predictor based subspace
identification algorithm in the dual space. In this dual space we utilize ideas from support vector
machines to estimate the state sequence. With the state sequence known, we use the same
machinery to estimate the system matrices and the static nonlinearity. The effectiveness of the
approach is illustrated with a closed-loop simulation example.

1. INTRODUCTION

The identification of Linear Time-Invariant (LTI) and
Hammerstein models is a well-studied subject and has
attracted considerable attention in the past few years
from both fundamental and application oriented research
groups. From an identification perspective, early work
in the input-output setting can be found in Narendra
and Gallman [1966]. However, to deal with Multiple-
Input Multiple-Output (MIMO) systems and to exploit
the numerical properties of subspace techniques (which
are solely depending on well-established techniques from
linear algebra) the focus of this paper is on subspace-
based Hammerstein system identification (see Verhaegen
and Westwick [1996], Goethals et al. [2005a,b]).

For Hammerstein systems, researchers have only consid-
ered the open-loop situation, while from a practical point
of view it is necessary to look at closed loop system
identification. Since, system identification is often used to
identify a part of a complex model, either because the
complete model is too complex or parts of the model are
well-understood and it is not necessary to identify these.
In Figure 1 a sketch of a submodel is given where the user
is interested in the dynamics between u and y. In such
cases, typically the output of the unknown (sub)model
is correlated with the input of the other (sub)model(s).
For this situation it is well known that for the LTI case
the projector type of subspace algorithms (e.g. MOESP
[Verhaegen and Dewilde, 1992] and N4SID [Van Overschee
and De Moor, 1996]) give biased estimates if the identifi-
cation data is generated under closed-loop conditions. The
main reason for the bias is the constraint that the noise
and the input should be uncorrelated. This assumption
is clearly violated if there is a feedback loop present or
the models are bilateral coupled (as clearly explained by
Ljung and McKelvey [1996]). Predictor-based subspace
identification (e.g. PBSID [Chiuso and Picci, 2005] and
SSARX [Jansson, 2005]) methods do not suffer from this
drawback. These methods use high order ARX models
⋆ This research is supported by the Technology Foundation STW,
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Ministry of Economic Affairs.
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Fig. 1. Schematic representation of a coupled dynamic
block.

to remove the correlation between the input and noise
sequence.

In this paper we will present a framework to identify
Hammerstein models using a predictor based subspace
identification method entitled: Predictor Based Subspace
IDentification (PBSIDopt) (see Chiuso [2007a,b]). For this
method we derive the dual problem which enables us to
use the Least Squares Support Vector Machine (LS-SVM)
framework (see Suykens et al. [2002]). In previous work
this machinery was already used to identify Hammerstein
models (Goethals et al. [2005a,b]). However, in this paper
we give a different derivation of the algorithm and we de-
velop the LS-SVM method for a closed-loop identification
scheme. Furthermore, the derivation follows the derivation
used for the identification of Linear Parameter-Varying
(LPV) systems (although, different kernels are used [van
Wingerden, 2008, van Wingerden and Verhaegen, 2009]).

The outline of this paper is as follows; we start in Sec-
tion 2 with the problem formulation and assumptions. In
Section 3 the basic idea behind the PBSIDopt identification
scheme is presented. In Section 4 the problem is translated
to the support vector machine framework. In Section 5, we
show how we can obtain the system matrices and the static
nonlinearity. In Section 6 a brief summary of the algorithm
is given. In Section 7 a simulation example is presented.
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We end this paper with our conclusions and state a number
of directions for future research.

2. PROBLEM FORMULATION

In this section we present the problem formulation and the
assumptions we make.

2.1 Problem formulation

For the derivation of the algorithm we consider the follow-
ing Hammerstein system:

xk+1 = Axk + Bf(uk) + Kek, (1)

yk = Cxk + Df(uk) + ek, (2)

where xk ∈ R
n, uk ∈ R

r, yk ∈ R
ℓ, are the state, input

and output vectors. ek ∈ R
ℓ denotes the zero mean white

innovation process. The matrices A ∈ R
n×n, B ∈ R

n×r,
C ∈ R

ℓ×n, D ∈ R
ℓ×r, K ∈ R

n×ℓ are the local system, in-
put, output, direct feed through, and the observer matrices
and finally f(.) is a static smooth nonlinear function with
as additional constraint that f(0) = 0. We can rewrite (1)-
(2) in the predictor form as:

xk+1 = Ãxk + B̃f(uk) + Kyk, (3)

yk = Cxk + Df(uk) + ek, (4)

with:
Ã = A − KC, B̃ = B − KD.

It is well-known that an invertible linear transformation
of the state does not change the input-output behavior of
a state-space system. Therefore, we can only determine
the system matrices up to a similarity transformation
T ∈ R

n×n: T−1AT , T−1B, T−1K, CT , and D.

The identification problem can now be formulated as:
given the input sequence uk and the output sequence yk

over a time k = {0, . . . , N − 1}; find all, if they exist,
the system matrices A, B, K, C, and D up to a global
similarity transformation and the nonlinear function f(.).

2.2 Assumptions and notation

Similar as in Jansson [2005], Chiuso [2007a] we define a
past window denoted by p. This window is used to define
the following stacked vector:

f(UP ) =




f(U0)
f(U1)

...
f(Up−1)


 , Y P =




Y0

Y1

...
Yp−1


 ,

and:
f(UF ) = f(Up), Y F = Yp,

with:

f(Ui) = [f(ui), f(ui+1), · · · , f(ui+N−p)] , (5)

Yi = [yi, yi+1, · · · , yi+N−p] . (6)

We assume that the state sequence:

Xp = [ xp, · · · , xN−1 ] ,

has full row rank and the extended observability matrix
given by:

Γ =




C

CÃ
...

CÃf−1


 , (7)

has full column rank and f is referred to as the future win-
dow. We also define the extended controllability matrix:

K = [Ku, Ky] ,

with:

Ku =
[
Ãp−1B̃, Ãp−2B̃, · · · , B̃

]
,

Ky =
[
Ãp−1K, Ãp−2K, · · · , K

]
.

In the next section we revise the idea of predictor based
subspace identification and after that we introduce sup-
port vector machinery to estimate the system matrices for
Hammerstein models.

3. PREDICTOR BASED SUBSPACE
IDENTIFICATION

It is well known that the projector type of subspace algo-
rithms (e.g. MOESP [Verhaegen and Dewilde, 1992] and
N4SID [Van Overschee and De Moor, 1996]) give biased
estimates if the identification data is generated under
closed-loop conditions. The main reason for the bias is
the constraint that for the projector type of algorithms
the noise, ek, and the input, uk, should be uncorrelated.
This assumption is clearly violated if there is a feedback
loop present (as clearly explained by Ljung and McK-
elvey [1996]). Predictor-based subspace identification (e.g.
PBSID [Chiuso and Picci, 2005] and SSARX [Jansson,
2005]) methods do not suffer from this drawback. These
methods use high order ARX models to remove the cor-
relation between the input and noise sequence. In this
section we introduce the PBSIDopt algorithm and for now
we assume that the nonlinearity is known. In the next
section we formulate the dual problem and we explicitly
estimate the nonlinearity.

3.1 Predictors

The first objective of the predictor based algorithms is to
reconstruct the state sequence up to a similarity transfor-
mation. The state Xp is given by:

Xp = ÃpX0 + [Ku, Ky]

[
f(UP )

Y P

]
.

The key approximation in this algorithm is that we assume
that Ãj ≈ 0 for all j ≥ p. It can be shown that if
the system in (3)-(4) is uniformly exponentially stable,
the approximation error can be made arbitrarily small by
making p large [Knudsen, 2001, Chiuso and Picci, 2005,
Chiuso, 2007a]. With this assumption the state Xp is
approximately given by:

Xp ≈ [Ku, Ky]

[
f(UP )

Y P

]
. (8)

In a number of other LTI subspace methods it is well
known to make this step (e.g. N4SID, SSARX, PBSID,
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PBSIDopt, and CVA). The input-output behavior is now
approximately given by:

YF ≈ C [Ku, Ky]

[
f(UP )

Y P

]
+ Df(UF ) + ek.

If the matrix
[

f(UP )T , Y
T

P , f(UF )T

]T
has full row rank

and we know the nonlinear function f(.), which we do not,
the matrices CK and D can be estimated by solving the
following linear regression problem:

min
CK,D

||YF − CK

[
f(UP )

Y P

]
− Df(UF )||2F . (9)

where || · · · ||F represents the Frobenius norm [Golub and
Loan, 1996]. For finite p this linear problem will be biased
due the approximation made in (8). In the LTI literature
a number of papers appeared that studied the effect of
the window size and although they proved the asymptotic
properties of the algorithms (if p → ∞ the bias disappears)
it is hard to quantify the effect for finite p [Knudsen, 2001,
Chiuso and Picci, 2005, Chiuso, 2007a].

3.2 Extended observability times extended controllability
matrix

The product K

[
f(UP )

YP

]
that represents by definition the

state sequence, Xp, can not be estimated directly. In
the predictor based identification algorithms CK is used
to construct the extended observability matrix times the
extended controllability matrix. This matrix is given by
(we assume f = p):

ΓK =




CKu CKy

CÃKu CÃKy

...
...

CÃf−1Ku CÃf−1Ky


 ,

= [ΓKu ΓKy] .

If we look into more detail at for instance the ΓKu term
we have (we assume f = p):

ΓKu =




CÃp−1B̃ CÃp−2B̃ · · · CB̃
CÃpB̃ CÃp−1B̃ · · · CÃB̃

. . .

CÃp+f−2B̃ CÃp+f−3B̃ · · · CÃp−1B̃


 .

This particular matrix is constructed in the PBSID algo-
rithm. The following upper block diagonal matrix is used
in the PBSIDopt algorithm (we assume f = p):

ΓKu ≈




CÃp−1B̃ CÃp−2B̃ · · · CB̃

0 CÃp−1B̃ · · · CÃB̃
...

. . .

0 CÃp−1B̃


 .

The zeros appear in this equation based on the approx-
imation that Ãj ≈ 0 for all j ≥ p 1 . Observe that from
the linear regression problem formulated in (9) we can
construct this matrix. A similar thing can be done for the
matrix ΓKu.

1 Although, in Chiuso [2007b] they showed that these zeros appear
in the solution based on the result of an optimization problem.

From the constructed matrix ΓK we can compute:

ΓK

[
f(UP )

Y P

]
,

which equals by definition the extended observability times
the state sequence, ΓXp. By computing a Singular Value
Decomposition (SVD) of this estimate we can estimate the
state sequence and the order of the system. We will use the
following SVD:

Γ̂K

[
f(UP )

Y P

]
= [ U U⊥ ]

[
Σn 0
0 Σ

] [
V
V⊥

]
, (10)

where Σn is the diagonal matrix containing the n largest
singular values and V is the corresponding row space. Note
that we can find the largest singular values by detecting a
gap between the singular values [Verhaegen and Verdult,
2007]. The state is now estimated by:

X̂p = ΣnV . (11)

It is well known that when the state, input, and output are
known the system matrices can be estimated [Verhaegen
and Verdult, 2007]. The approach presented so far assumed
that we know the nonlinearity. In the next section we
present the dual problem and show how we can solve the
problem without knowing the nonlinear function.

4. SUPPORT VECTOR MACHINES (SVM)

In the previous section we showed that if we have a solution
of the problem formulated in (9) we can reconstruct
the state sequence. In this section we will use Support
Vector Machines (SVM’s) to solve the nonlinear problem
in (9) and we show how we can construct the extended
observability times extended controllability matrix.

4.1 Dual problem

The problem formulated in (9) is nonlinear. By exploiting
ideas from the SVM framework we transform this non-
linear problem to the feature space where the problem
becomes linear. The dual problem is given by:

min
α

||YF − αW ||2F , (12)

with W = f(UP )T f(UP ) + Y T
P YP + f(UF )T f(UF ) the

kernel matrix, which is a square matrix of the size of
the number of data points. This linear problem can be
ill conditioned so regularization is necessary to obtain a
solution:

α = YF (W + I/γ)−1, (13)

where γ is the regularization parameter. It is well known
that regularized problems result in biased estimates. The
estimate of the dual problem, α, can be used to estimate
Ku and Ky and elements therein. These matrices are given
by:

C
[
Ãp−1B̃, Ãp−2B̃, · · · , B̃

]
= αf(UP )T ,

=
[
αf(U0)

T , · · · , αf(Up−1)
T
]
,

and a similar thing can be done for Ky. It is again
important to observe that we are not interested in this
matrix but in the extended observability matrix times the
state. This matrix is now given by:
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ΓXp =




α

(
p−1∑

i=0

(
WUi,Ui

+ W l
Yi,Yi

)
)

α

(
p−1∑

i=1

(
WUi,Ui−1 + W l

Yi,Yi−1

))

...

α




p−1∑

i=f−1

(
WUi,Ui−f−1

+ W l
Yi,Yi−f−1

)







, (14)

with Wa,b = f(a)T f(b) representing a nonlinear kernel
while W l

a,b = aT b represents a linear kernel. Observe that

the kernel W is now given by: 2

W =

p−1∑

i=0

(
WUi,Ui

+ W l
Yi,Yi

)
+ WUp,Up

.

The kernels depending on y are linear and can be com-
puted in a straightforward manner. The kernel dependent
on u are nonlinear and we do not know the nonlinearity.
For this situation we are going to replace these kernels
by generic kernels like there are: linear, polynomial or
gaussian radial basis functions. For example if we take
radial basis functions in our kernels we have:

WUi,Uj
= · · · (15)




q(ui, uj) q(ui, uj+1) · · · q(ui, uj+N−p)
q(ui+1, uj) q(ui+1, uj+1) · · · q(ui+1, uj+N−p)

...
...

. . .
...

q(ui+N−p, uj) q(ui+N−p, uj+1) · · · q(ui+N−p, uj+N−p)




with q(ui, uj) = exp (−||ui − uj||
2
2/σ). With the construc-

tion of the kernels and the solution of the dual problem
we can construct the observability matrix times the state
in (14). Similar as in the previous section we now can
compute an SVD to recover the state sequence up to a
similarity transformation.

4.2 Centering the kernels

The estimates so far can have a offset due to the fact
that we have component-wise kernels. If we consider for

example the element D(1)U
(1)
p , where superscript (1) in-

dicates the first column of D and the first row of Up.
The estimate of this element is given by αW

U
(1)
p ,U

(1)
p

.

If we would like to guarantee that D(1)f(0) = 0 we
have to subtract the offset term which is given by

αW
U

(1)
p ,0N−p,N−p

. So, the new estimate of D(1)U
(1)
p is now

given by α
(
W

U
(1)
p ,U

(1)
p

− W
U

(1)
p ,0N−p,N−p

)
. We have to do

this for every element separately because we do not know
how the offset enters the solution α. 3

5. RECOVERY OF THE SYSTEM MATRICES

In linear subspace identification the problem is solved if
the state is recovered because the equation in (1)-(2) are
then linear. However, in the case of Hammerstein models
2 Observe that this kernel is a component-wise kernel.
3 Observe that it is also possible to add this centering property to
the definition of the kernels.

this is not true. However, we can use the same machinery
as used before, SVM.

First we define the following matrices:

X̂k+1 = X̂p(:, 2 : end),

X̂k = X̂p(:, 1 : end − 1),

f(U)k = f(UF )(:, 1 : end − 1),

Yk = Y F (:, 1 : end − 1),

Ũk = UF (:, 1 : end − 1).

The primal problem for the system recovery is now given
by

min
A,B,C,D

∣∣∣∣

∣∣∣∣
[
X̂k+1

Yk

]
−

[
A B
C D

] [
X̂k

f(U)k

]∣∣∣∣

∣∣∣∣
2

F

.

The dual problem is given by:[
X̂k+1

Yk

]
− β

[
X̂T

k X̂k + WŨk,Ũk

]
= 0, (16)

and consequently:

A = β(1 : n, :)X̂T
k ,

Bf(uk) = β(1 : n, :)WŨk,uk
,

C = β(n + 1 : end, :)X̂T
k ,

Df(uk) = β(n + 1 : end, :)WŨk,uk
.

The dual problem should again be regularized and conse-
quently we have to do a similar trick as in the previous
paragraph to remove the offset.

Until now we estimate the product between the B matrix
and the nonlinearity (and also the product between the
D matrix and the nonlinear function). It should be clear
that we can find the nonlinearity up to a square invertible
matrix Q. Since:

BQQ−1f(.).

We can compute the nonlinearity up to a similarity trans-
formation by using an SVD. Using this nonlinearity we
can also compute the B and D matrix up to this square
invertible matrix Q.

6. SUMMARY OF THE ALGORITHM

In this section we give a short summary of the proposed
MIMO Hammerstein identification scheme.

Algorithm 1. (Hammerstein-PBSIDopt (kernel)). The algo-
rithm can be summarized as follows:

(1) Create the matrices W and WUi,Uj
using (15),

(2) Solve the linear problem given in (12). If desired
regularized,

(3) Construct ΓXp using (14),
(4) Compute the state sequence using (10) and (11),
(5) With the estimated state, use the SVM machinery to

obtain the system matrices and the static nonlinearity
(see Section 5).

7. EXAMPLE

We have tested the proposed identification algorithm on
a fourth order MIMO closed-loop model with r = 2,
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f(.) A,B,C,D,K
rk

ek

Controller

ykuk

Fig. 2. Schematic representation of the simulation scheme.

and ℓ = 2. The collected data uk, yk, are used for the
identification algorithm. We will use the following model
(as illustrated in Figure 2):

xk+1 = Axk + Bf(uk) + Kek,

yk = Cxk + ek,

uk = Fbyk + rk,

where Fb is the feedback controller and rk the reference
signal. The system matrices are given by:

A =




0.67 0.67 0 0
−0.67 0.67 0 0

0 0 −0.67 −0.67
0 0 0.67 −0.67


 ,

B =




0.6598 −0.5256
1.9698 0.4845
4.3171 −0.4879
−2.6436 −0.3416


 ,

C =

[
0.3749 0.0751 −0.5225 0.5830
−0.8977 0.7543 0.1159 0.0982

]
,

K =



−0.6968 −0.1474
0.1722 0.5646
0.6484 −0.4660
−0.9400 0.1032


 ,

Fb =

[
0.5 0
0 0.5

]
,

f(uk) =



 sinc
(
u

(1)
k

)(
u

(1)
k

)2

sin
(
(u

(2)
k

)



 ,

and cov(ek) = 0.04 · Iℓ. As reference signal we take a
zero mean white noise signal with var(rk) = Ir. For the
identification experiment we used N = 1000 and p = f =
10. The collected data (uk and yk ) is used to identify
a Hammerstein model. The performance of the identified
system is evaluated by looking at the value of the Variance-
Accounted-For (VAF) on a data set different from the one
used for identification. The VAF value is defined as:

V AF (yk, ŷk) = max

{
1 −

var(yk − ŷk)

var(yk)
, 0

}
∗ 100%

where ŷk denotes the output signal obtained by simulating
the identified Hammerstein system, yk is the output signal
of the true Hammerstein system, and var() denotes the
variance of a quasi-stationary signal. To investigate the
sensitivity of the identification algorithm with respect to
noise, a Monte-Carlo simulation with 100 runs was carried
out. For each of the 100 simulations a different realization
of the input uk is used.

m
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)
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Regularization γ

m
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(y
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)
)

10−3 10−2 10−1 100 101 102 101
0

25

50

75

100

0

25

50
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Fig. 3. The VAF for the validation data as function of the
regularization parameter γ.
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Fig. 4. True and estimated eigenvalues of A in one plot for
100 experiments and γ = 2.4.

The choice of γ was made by plotting the average valida-
tion VAF for 100 simulations against a logarithmic grid of
different values of the parameter and choosing the value
corresponding to a peak. From Fig. 3 we can conclude that
γ = 2.4 is a motivated choice. With the regularization
parameter we show in Figure 4 the poles of A for the 100
Monte Carlo simulation and we see that we have an almost
unbiased estimate.

In Fig. 5 we show the nonlinearity by plotting the esti-
mated product CB(uk) as function of uk. We clearly see
that we can estimate the nonlinearity quite accurately for
different realizations of the noise.

8. CONCLUSIONS

In this paper we presented a novel algorithm to identify
MIMO Hammerstein systems under open and closed-
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Fig. 5. Presentation of the product CBf(uk) based on 20
Monte Carlo simulations. The solid line represents the
real system, the dashed line the estimate with the
highest VAF and the dots are function evaluation of
20 Monte Carlo simulations (γ = 2.4).

loop conditions. To do so, we formulated the optimized
Predictor Based Subspace IDentification algorithm in the
dual space. In this dual space we utilized the ideas from
support vector machines to estimate the state sequence.
With the state sequence known, we use the same support
vector machine tools to estimate the system matrices and
the static nonlinearity. The effectiveness of the approach
was illustrated with a closed-loop example.

9. OUTLOOK

In the near future we are going to apply this technique to
the identification of wind turbine dynamics, which have
a strong Hammerstein nature in both the below and the
above rated operating area (for more information see Man-
well et al. [2002], Bianchi et al. [2007]). Furthermore, if we
consider a number of LPV identification problems (see for
instance Bianchi et al. [2005]) we can change the virtual
system boundaries of the problem and consequently the
problem can be reformulated as a closed-loop Hammer-
stein identification problem.

The algorithm proposed in this paper can be made re-
cursive using similar techniques as presented in Houtzager
et al. [2009], which enables us to do closed loop recursive
Hammerstein identification, which is of interest for model
based monitoring and fault detection.
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