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Abstract: It is well-known that system identification is a valuable technique to obtain compact
models for controller design and prediction. Subspace identification methods are of interest since
they solely rely on tools from linear algebra and the relative ease to work with data generated
by systems with multiple inputs and outputs. With respect to other methods (e.g. Prediction
Error (PE)), subspace methods do not have straightforward asymptotic variance expressions.
However, recently some papers appeared with asymptotic variance expressions for a certain
class of identification algorithms that merge ideas from PE and subspace methods. In this
paper we derive the asymptotic variance expression for the PBSIDopt algorithm and come up
with manageable expressions under some reasonable assumptions. We conclude the paper with
two simulation examples where we show the strength of the proposed method.

1. INTRODUCTION

A model for modern model based controller design is
a mathematical model normally governed by (preferably
linear) differential equations. For controller synthesis this
model should only contain the relevant dynamics between
the input, the output, and the disturbances and should
be accurate around the bandwidth of the controller. In
experimental modeling, also referred to as system identifi-
cation, actual input and output data of the system is used
to obtain such a mathematical description of the system.
System identification for Linear Time-Invariant (LTI) is a
well-established methodology to obtain a model for con-
trol [Ljung, 1987]. Since the obtained models are obtained
from noise corrupted data the model is an estimate of the
true system. It is of key importance to acknowledge this
uncertainty during the controller design phase.

For system identification a distinction can be made be-
tween state-space and input-output model representations,
for which the most common identification procedures are
Subspace Model Identification (SMI) and Prediction Er-
ror (PE) identification, respectively. The main differences
between the two approaches are:

• In the PE setting, the first step is to do model
structure selection: to select the structure (e.g. OE,
ARX) and the corresponding orders. In the state-
space setting, the only degree of freedom is the
state order. However, if we consider the subspace
identification scheme, an estimation of the order
is a part of the algorithm. The model structures
for the input-output setting and their corresponding
algorithms are hard to translate to the MIMO setting,
while in the state-space setting this occurs naturally.

• PE methods have well-established expressions for
the uncertainty of the estimates (e.g. bias and vari-
ance)[Ljung, 1987], which provides a quality tag
which can be used for controller design (e.g. robust
control). Since SMI methods are two step procedures

it is hard to find these expression. However, recently
some papers reported asymptotic variance expression
under some mild conditions. Typically these expres-
sion are rather cumbersome.

The asymptotic variance is an important property of
an estimate to quantify the uncertainty. In this paper
we will derive an asymptotic variance expression for
the optimized Predictor Based Subspace IDentification
(PBSIDopt) method of which no asymptotic variance result
is published. 1 This particular algorithm combines ideas
from the PE and the subspace setting (we will illustrate
this in this paper). We are interested in this particular
identification algorithm since it can deal with data gener-
ated under closed loop conditions and the excellent perfor-
mance of this algorithm when dealing with real data [van
Wingerden et al., 2010]. With respect to the traditional
subspace methods (e.g. MOESP [Verhaegen, 1994] and
N4SID [Van Overschee and De Moor, 1996]) the new
methods (e.g. PBSID Chiuso [2007] and SSARX [Jansson,
2005]) have a close relationship with PEM methods since
the first step is to solve a high order Vectorized-ARX
problem while the second step can be viewed at as a model
reduction step.

In Chiuso [2006] asymptotic variance expressions are de-
rived for the original PBSID algorithm 2 and the algo-
rithm derived by Qin and Ljung [2003]. At the end of
that particular paper the assumption is made that the true
system is of the ARX-type and the true system is within
the model set. To make the notation transparent we will
directly make these assumptions and we stay close to the
notation used in the traditional subspace papers which
will result in manageable formulaes for the asymptotic
variance. Combined with the fact that we derive expres-

1 Although in Chiuso [2007] it is shown that the asymptotic variance
of the optimized version is equal or smaller than the original PBSID
algorithm.
2 In this particular paper labelled as whitening filter.



sions for the PBSIDopt algorithm highlight the three main
contributions of this paper.

The outline of this paper is as follows; we start in Sec-
tion 2 with the problem formulation and assumptions. In
Section 3 the basic idea behind the PBSIDopt identification
scheme is presented. In Section 4 expressions are derived
for the asymptotic variance. In Section 5 a simulation ex-
ample is presented. We end this paper with our conclusions
and state a number of directions for future research.

2. PROBLEM FORMULATION

In this section we present the problem formulation and
the assumptions we make. Furthermore, we introduce the
notation which stays close to the traditional subspace
papers.

2.1 Problem formulation

For the derivation of the algorithm we consider the follow-
ing LTI system:

xk+1 =Axk +Buk +Kek, (1)

yk =Cxk + ek, (2)

where xk ∈ Rn, uk ∈ Rr, yk ∈ Rℓ, are the state, input and
output vectors. The vector ek ∈ Rℓ denotes the zero mean
white innovation process with covariance matrix Λ. The
matrices A ∈ Rn×n, B ∈ Rn×r, C ∈ Rℓ×n, K ∈ Rn×ℓ are
the local system, input, output, and the observer matrices.
We can rewrite (1)-(2) in the predictor form as:

xk+1 = Ãxk +Buk +Kyk, (3)

yk =Cxk + ek, (4)

with Ã = A−KC. It is well-known that an invertible linear
transformation of the state does not change the input-
output behavior of a state-space system. Therefore, we
can only determine the system matrices up to a similarity
transformation T ∈ Rn×n: T−1AT , T−1B, T−1K, and
CT .

The identification problem can now be formulated as:
given the input sequence uk and the output sequence yk
over a time k = {0, . . . , N − 1}; find all, if they exist,
the system matrices A, B, K, C, and D up to a global
similarity transformation. Moreover, find the asymptotic
variance in a data-driven basis, 3 so: 4

plim∆Θ∆ΘT, (5)

with:

∆Θ = [vec(Â− T−1AT)T, vec(B̂− T−1B)T, ... (6)

vec(Ĉ− CT)T, vec(K̂− T−1K)T]T.

3 This data-driven basis will disappear when we look at input output
related invariants such as transfer functions, or poles/zeros of the
system.
4 State space models typically overparameterize the system and this
gives rise to the problem that the following matrix will be positive
semidefinite (in other words will not have full rank).

2.2 Assumptions

The first assumption that we are going to make is that the
matrix Ã is nilpotent, so ||Ãp|| = 0 where we will define
p as the past window. The second assumption is that we
exactly know the model order of the true system.

2.3 Notation

Similar as in Jansson [2005], Chiuso [2007] we define a past
window denoted by p. This window is used to define the
following stacked vector:

z
p
k =




zk
zk+1

...
zk+p−1


 , with zk =

[
uk

yk

]
. (7)

This notation allows us the introduce the following matri-
ces:

Z = [zp1, · · · , z
p
N−p], (8)

Z = [zp2, · · · , z
p
N−p], (9)

Z = [zp1, · · · , z
p
N−p−1]. (10)

We also define:

X = [xp, · · · , xN ], (11)

X = [xp+1, · · · , xN ], (12)

X = [xp, · · · , xN−1], (13)

and in a similar way we have Y , E E, and E. Furthermore,
we define a number of projections:

Z† =ZT
(
ZZT

)−1
, (14)

ΠZ =ZT
(
ZZT

)−1
Z, (15)

Π⊥
Z = I − ZT

(
ZZT

)−1
Z. (16)

At this point we also partition the following matrix:

Z† =
[
Z†
z1
, · · · Z†

zp

]
. (17)

We assume that the state sequence X , X and X have full
row rank and the extended observability matrix given by:

Γf =




C

CÃ
...

CÃf−1


 , (18)

has full column rank and f represents the future window.
We also define the extended controllability matrix:

Kp =
[
Ãp−1B, Ãp−2B, · · · , B

]
, (19)

with B = [B,K].

3. PREDICTOR BASED SUBSPACE
IDENTIFICATION

In this section we give a brief summary of the identification
algorithm (PBSIDopt) and some related equations will be
introduced for the computation of the asymptotic variance.



3.1 Predictor

The first objective of the predictor-based algorithms is to
reconstruct the state sequence up to a similarity transfor-
mation. The state xk+p is given by:

xk+p = Ãpxk +
[
Ãp−1B, Ãp−2B, · · · , B

]
︸ ︷︷ ︸

Kp

z
p
k. (20)

At this point we use the assumption that ||Ãp = 0||. With
this assumption the state xk+p is given by:

xk+p = Kpz
p
k. (21)

The input-output behavior is now given by:

yk+p = CKpz
p
k + ek+p . (22)

If the matrix Z has full row rank the matrix CKp can
be estimated by solving the following linear regression
problem: 5

min
CKp

||Y − CKpZ||2F , (23)

where || · · · ||F represents the Frobenius norm [Golub and
Loan, 1996]. The solution, error, and residual of this
problem are given below:

ĈK= Y Z†,

∆ĈK=EZ†,

Ê = YΠ⊥
Z ,

where (̂.) is the estimated variable and ∆ is defined such

that the following equality holds: ∆(̂.) = (̂.)− (.).

3.2 Extended observability times controllability

With the standing assumptions, the product KpZ rep-
resents by definition the state sequence, X , can not be
estimated directly. In the predictor-based identification
algorithms CKp is used to construct the extended observ-
ability matrix times the extended controllability matrix.
The following upper block triangular matrix is used in the
PBSIDopt algorithm (for f = p) 6 :

ΓfKp =




CÃp−1B CÃp−2B · · · CB

0 CÃp−1B · · · CÃB
. . .

...

0 CÃp−1B


 . (24)

Observe that from the linear regression problems formu-
lated in (23) we can construct this matrix (for f = p):

Γ̂fKp =




Y Z†
z1

Y Z†
z2

· · · Y Z†
zp

0 Y Z†
z1

· · · Y Z†
zp−1

. . .
...

0 Y Z†
z1


 . (25)

And in a similar way we have:

∆Γ̂fKp =




EZ†
z1

EZ†
z2

· · · EZ†
zp

0 EZ†
z1

· · · EZ†
zp−1

. . .
...

0 EZ†
z1


 , (26)

5 This is an vectorized ARX problem and well-known residual tests
can be use to find p.
6 This condition is only given to make the expressions suitable for
presentation purposes. Typically f < p and the corresponding matrix
will be the first f block rows

with the following equality:

Γ̂fKp = ΓfKp +∆Γ̂fKp. (27)

From the constructed matrix Γ̂fKp we can compute

Γ̂fKpZ which equals by definition the extended observabil-

ity matrix times the state sequence, Γ̂fX. By computing
a Singular Value Decomposition (SVD) of this estimate
we can estimate the state sequence and the order of the
system. We will use the following SVD:

W Γ̂fKpZ = [ U U⊥ ]

[
Σn 0
0 Σ

] [
V
V⊥

]
, (28)

where Σn is the diagonal matrix containing the n largest
singular values and V is the corresponding row space. The
matrix W represents a given weighting matrix. In this
article we assume that we know the order of the underlying
true system and consequently the state can be estimated
as:

X̂ =
(
W−1U

)†
︸ ︷︷ ︸

S

Γ̂fKpZ. (29)

It is well-known that this state contains a similarity
transformation. So, the following equality holds:

X̂ = TX +∆X̂. (30)

This observation directly implies that the system matrices
are estimated up to an unknown similarity matrix T .

3.3 Recovery of the system matrices

In the stacked version we have the following relation:

X̂ −∆X =A
(
X̂ −∆X

)
+BU +K

(
Ê −∆E

)
, (31)

Y =C
(
X̂ −∆X

)
+ Ê −∆E. (32)

Assuming we have a consistent estimate (for conditions see
Appendix A) the solution is now given by:

[
Â, B̂, K̂

]
= X̂



X̂
U,

Ê



†

, (33)

[
Ĉ
]
= (Y − Ê)X̂†. (34)

This basically ends the description of the identification
algorithm but before we end this section an important
equation is the uncertainty of the estimates and this is
given by:

[
∆Â, ∆B̂, ∆K̂

]
= (∆X̂ −A∆X̂ −K∆Ê)



X̂
U

Ê



†

,(35)

[
∆̂C

]
= (−C∆X̂ −∆Ê)X̂†. (36)

4. ASYMPTOTIC VARIANCE

In the previous section we gave a rather straightforward
explanation of the identification algorithm. At some points
we already looked at the effect of the noise on the es-
timates. In this section we will continue the analysis to
come up with an expression for the asymptotic variance.



4.1 Estimate of ∆X̂

In (29) we already found an expression for the estimated
state. Using (27) and (30) and the error on top of this state
sequence if given by:

∆X̂ = S∆Γ̂fKpZ (37)

Where S is a matrix of appropriate dimensions S ∈ Rn×ℓf .
Note that in the previous section this matrix S is for

instance given by S =
(
W−1U

)†
but the result will hold

for different full rank matrices S. Furthermore, we define
the following matrices (for f = p):

Q =




Z†
z1

Z†
z2

· · · Z†
zp

0 Z†
z1

· · · Z†
zp−1

. . .
...

0 Z†
z1


Z. (38)

In a similar way the matrix Q and Q are defined using Z
and Z at the end of the expression, respectively. So, now
we can write:

∆X̂ = S (If ⊗ E)︸ ︷︷ ︸
EIf

Q, (39)

where ⊗ represent the Kronecker product and If and
identity matrix of the size f . Furthermore, you can proof
that ∆Ê = EΠZ and we define Ê = EZ†Z. With these
observations and definitions we can rewrite (35)-(36) as:

[
∆Â, ∆B̂, ∆K̂

]
= (SEIfQ−ASEIfQ−KEZ†Z)



X̂
U

Ê



†

,

[
∆Ĉ

]
= (−CSEIfQ− EZ†Z)X̂†.

This equation is the starting point for further analysis. We
start by simply computing the asymptotic variance.

4.2 Asymptotic variance

The asymptotic variance was already defined in (5) and
with the previous expression we now have:

vec(
[
∆Â, ∆B̂, ∆K̂

]
) = α1vec(EIf ) + β1vec (E) ,

vec(
[
∆Ĉ

]
) = α2vec(EIf ) + β2vec (E) .

The matrices α and β can be computed (but are very large)
and can be found in Appendix B.

Now we define a matrix P such that vec(EIf ) = Pvec(E).
With this definition we have:

vec(
[
∆Â, ∆B̂, ∆K̂, ∆Ĉ

]
) =

[
α1P + β1

α2P + β2

]
vec(E). (40)

The asymptotic variance in now given by:

plim∆Θ∆Θ∗ =

[
α1P + β1

α2P + β2

]
(I ⊗ Λ)

[
α1P + β1

α2P + β2

]T
.(41)

This expression depends on the true system matrices
and covariance of the innovation sequence. Under the

consistency property these quantities can be replaced by
their estimates.

The matrix P if of the size (N−p)p2×(N−p) and can give
rise to memory issues while computing. In Appendix C
the structure in P is exploited to derive manageable
expressions

5. EXAMPLE

5.1 Example I

We have tested the proposed scheme on a fourth-order
MIMO closed-loop model with r = 2, and ℓ = 2. The
collected data uk, yk, are used for the identification algo-
rithm. We will use the following model:

xk+1 = Axk +Buk +Kek,

yk = Cxk + ek,

uk = Fbyk + rk,

where Fb is the feedback gain and rk the reference signal.
The system matrices are given in Table 5.1. As reference
signal we take a zero-mean Gaussian white noise signal
with cov(rk) = Ir and for ek we take a Gaussian white
noise with the following covariance cov(ek) = Iℓ. For the
identification experiment we used N =2000 and p = f =
100 (this corresponds with ||Ãp|| = 1×10−23. The collected
data (uk and yk) is used to identify an LTI model and the
corresponding asymptotic variance. The performance of
the identified system is evaluated by looking at the bode
magnitude plot.

To investigate the sensitivity of the identification algo-
rithm with respect to noise, a Monte-Carlo simulation with
20 runs was carried out. For each of the 20 simulations
a different realization of the input and noise is used.
For the first identification run the asymptotic variance is
computed and the 99% confidence bound is plotted (see
Fig 1). One can observe that for this particular example
the bounds give realistic values. We also compared the
performance of the suggested approach with the exist-
ing PE implementations in Matlab (Ljung’s toolbox) and
similar results are obtained. However, here we have to
say that this implementation uses a subspace method to
obtain an initial estimate before they start a nonconvex
optimization.

5.2 Example II

In this second example we tested the proposed scheme
on a challenging 19th-order SISO closed-loop model. The
system matrices are given in Verhaegen and Verdult [2007]
and are derived from an accoustic duct. As input signal
we take a zero-mean Gaussian white noise signal with
cov(rk) = Ir and for ek we take a Gaussian white
noise with the following covariance cov(ek) = Iℓ, which
corresponds with a signal-to-noise ratio of approximately
8 dB. For the identification experiment we used N=2000
and p = f = 100. The collected data (uk and yk) is
used to identify an LTI model and the corresponding
asymptotic variance. The performance of the identified
system is evaluated by looking at the bode plot. As clearly
can be seen in Fig. 2 the proposed method is also suitable
to work with a realistic complex model.



A =




0.67 0.67 0 0
−0.67 0.67 0 0

0 0 −0.67 −0.67
0 0 0.67 −0.67


 , B =




0.6598 1.9698
−0.5256 0.4845
−0.6968 0.1722
0.1474 0.5646


 , K =




−0.6968 −0.1474
0.1722 0.5646
0.6484 −0.4660
−0.9400 0.1032


 ,

C =

[
0.3749 0.0751 −0.5225 0.5830
−0.8977 0.7543 0.1159 0.0982

]
, Fb =

[
0.5 0
0 0.5

]
.

Table 1. Simulation parameters
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Fig. 1. In this figure the real system is represented by means of its Bode magnitude plot (red line) and the black lines
are the identified models based on the 20 Monte Carlo simulations. On top of one of estimates the 99% confidence
bounds is give by a gray shade.

6. CONCLUSION

Under the assumption that Ãp = 0 and the system is
within the model set we derived an expression for the
asymptotic variance of a predictor based subspace iden-
tification method called PBSIDopt which is a dedicated
closed-loop identification algorithm that mixes the ad-
vantages properties of traditional PE and SMI methods.
We derived manageable expression and we stayed close
to the notation used in the traditional subspace papers.
We showed the effectiveness of the approach using two
simulations examples.

Appendix A

For having a consistent estimate the following two equa-
tions have to hold:

lim
N→∞

(∆X̂ −A∆X̂ −K∆Ê)



X̂
U

Ê



†

= 0, (A.1)

lim
N→∞

(−C∆X̂ −∆Ê)X̂† = 0, (A.2)

this is true under the condition that ||Ãp|| = 0 and we
have the true model order (so no undermodeling).
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Fig. 2. In this figure the real system is represented by means of its Bode magnitude plot (red line) and the black lines
are the identified models based on the 20 Monte Carlo simulations. On top of one of estimates the 99% confidence
bounds is give by a gray shade.

Appendix B.

We have the following matrices where we already assume
that the unknown true matrices are replaced by their
estimated equivalent:

α1 =


Q



X̂
U

Ê



†



T

⊗ S −


Q



X̂
U

Ê



†



T

⊗ (Â)S(B.1)

β1 =−


Z†Z



X̂
U

Ê



†



T

⊗ (K̂) (B.2)

α2 =
(
Q
[
X̂
]†)T

⊗ (−Ĉ)S (B.3)

β2 =−
(
ΠZ

[
X̂
]†)T

⊗ I (B.4)

Appendix C.

We define the following matrix

[S1 S2 · · · Sf ] = S (C.1)[
QT

1 QT
2 · · · QT

f

]
= QT (C.2)

with Si ∈ Rn×l and Qi ∈ RN−p×N−p. Similar definitions
hold for Qi and Q

i
. We have the following matrices:

α1P =

f∑

i=1





Qi



X̂
U

Ê



†



T

⊗ Si −


Q

i



X̂
U

Ê



†



T

⊗ (Â)Si




α2P =

f∑

i=1

((
Qi

[
X̂
]†)T

⊗ (−Ĉ)Si

)

This equation basically implies that the biggest matrix you
have to store is of the size N − p×N − p.
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