Iterative Learning Control of Supersaturation in Batch Cooling Crystallization

Marco Forgione1, Ali Mesbah1, Xavier Bombois1, Paul Van den Hof2

1Delft University of Technology
Delft Center for Systems and Control

2Eindhoven University of Technology
Delft Center for Systems and Control

American Control Conference 2012
28 June 2012, Montréal
Outline

1. Batch Crystallization
2. Iterative Learning Control
3. Simulation Results
4. Conclusions
Outline

1 Batch Crystallization

2 Iterative Learning Control

3 Simulation Results

4 Conclusions
Batch Crystallization

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.

1. Hot solution fed into the vessel.
2. Cool to seeding temperature.
3. Introduce seeds.
4. Cool to final temperature.
5. Crystal growth (and nucleation).
6. Remove final product.
Batch Crystallization

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.

1. Hot solution fed into the vessel.
2. Cool to seeding temperature.
3. Introduce seeds.
5. Remove final product.
Batch Crystallization

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.

1. Hot solution fed into the vessel.
2. Cool to seeding temperature.
3. Introduce seeds.
5. Remove final product.
Batch Crystallization

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.

1. Hot solution fed into the vessel.
2. Cool to seeding temperature.
3. Introduce seeds.
5. Remove final product.
Batch Crystallization

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.

1. Hot solution fed into the vessel.
2. Cool to seeding temperature.
3. Introduce seeds.
5. Remove final product.
Batch Crystallization

Process Description

Separation and purification process of industrial interest. A solution is cooled down, solid material (crystals) produced.

1. Hot solution fed into the vessel.
2. Cool to seeding temperature.
3. Introduce seeds.
5. Remove final product.
Batch Crystallization Modeling

Process (after seeding) described by

- Temperature Dynamics (linear, known or easy to estimate)
- Crystallization Dynamics (nonlinear PDE, parametric + structural uncertainties possible)
Batch Crystallization
Modeling

Input
- Jacket temperature T_J

Measured Output
- Vessel Temperature T
- Concentration C

Control Output
- Supersaturation $S = C - C_s(T)$

Disturbances
- Low frequency disturbance on the input
- White measurement noise on the outputs
Batch Crystallization
Modeling

Input
- Jacket temperature T_J

Measured Output
- Vessel Temperature T
- Concentration C

Control Output
- Supersaturation $S = C - C_s(T)$

Disturbances
- Low frequency disturbance on the input
- White measurement noise on the outputs
Batch Crystallization

Control Strategies: industrial practice

Only the crystallizer temperature is measured and controlled on-line. In some cases, T control does not satisfy all requirements.

Advanced strategies in literature. They rely on on-line measurements. Not always available in practice.

Alternative approach based on Iterative Learning Control.
Batch Crystallization

Control Strategies: industrial practice

Only the crystallizer temperature is measured and controlled on-line. In some cases, T control does not satisfy all requirements.

Advanced strategies in literature. They rely on on-line measurements. Not always available in practice.

Alternative approach based on Iterative Learning Control.
Batch Crystallization
Control Strategies: industrial practice

Only the crystallizer temperature is measured and controlled on-line. In some cases, T control does not satisfy all requirements.

Advanced strategies in literature. They rely on on-line measurements. Not always available in practice.

Alternative approach based on Iterative Learning Control.
Outline

1. Batch Crystallization
2. Iterative Learning Control
3. Simulation Results
4. Conclusions
Iterative Learning Control

Control Scheme

ILC control strategy. T_k^r updated from batch to batch.

- Can use measurements available at the end of the batch.
- Built on top of the standard industrial T control.

Objective for batch k: tracking of supersaturation profile \bar{S}_k.
Iterative Learning Control

Control Scheme

ILC control strategy. T'_k updated from batch to batch.

- Can use measurements available at the end of the batch.
- Built on top of the standard industrial T control.

- Objective for batch k: tracking of supersaturation profile \bar{S}_k.
Iterative Learning Control

General Idea

Based on an **additive correction** of a nominal model from T^r to S.

$$\hat{S}(T^r)$$ \hspace{1cm} \textit{nominal model}

$$\hat{S}_k(T^r) \equiv \hat{S}(T^r) + \alpha_k$$ \hspace{1cm} \textit{corrected model}

Note:
- T^r, α vectors of samples $\in \mathbb{R}^N$ ($N =$ batch length)

α can compensate the nominal model for
 - model mismatch (along a particular trajectory)
 - effect of repetitive disturbances
Iterative Learning Control

General Idea

Based on an additive correction of a nominal model from T to S.

$$\hat{S}(T^r) \quad \text{nominal model}$$

$$\hat{S}_k(T^r) \triangleq \hat{S}(T^r) + \alpha_k \quad \text{corrected model}$$

Note:
- T, α vectors of samples $\in \mathbb{R}^N$ ($N =$ batch length)

α can compensate the nominal model for:
- model mismatch (along a particular trajectory)
- effect of repetitive disturbances
Iterative Learning Control

Correction vector

How to obtain the correction vector?

- In principle, “match” the last measurement.

\[\alpha_k = \tilde{S}_k - \hat{S}(T^r) = \text{model error} \]

Due to disturbances on \(\tilde{S}_k \), might not be a good solution.

- Take into account the deviation from \(\alpha_{k-1} \).

\[\alpha_k = \arg \min_{\alpha \in \mathbb{R}^N} \| \tilde{S}_k - (\hat{S}(T^r) + \alpha) \|_{Q_\alpha}^2 + \| \alpha - \alpha_{k-1} \|_{S_\alpha}^2 \]
Iterative Learning Control

Correction vector

How to obtain the correction vector?

- In principle, “match” the last measurement.

\[\alpha_k = \tilde{S}_k - \hat{S}(T') \]

= model error

Due to disturbances on \(\tilde{S}_k \), might not be a good solution.

- Take into account the deviation from \(\alpha_{k-1} \).

\[\alpha_k = \arg \min_{\alpha \in \mathbb{R}^N} \| \tilde{S}_k - (\hat{S}(T') + \alpha) \|^2_{Q_\alpha} + \| \alpha - \alpha_{k-1} \|^2_{S_\alpha} \]
Iterative Learning Control

Algorithm

Steps of the ILC algorithm. At each batch k:

1. T'_k is set as the input to the PI controller, the batch is executed. \hat{S}_k is estimated from measurements.

2. An additive correction of the nominal model is performed:
 $$\hat{S}_k(T') \triangleq \hat{S}(T') + \alpha_k.$$

3. The corrected model is used to design T'_{k+1} for the next batch:
 $$T'_{k+1} = \arg \min_{T' \in \mathbb{R}^N} \| \bar{S}_{k+1} - \hat{S}_k(T') \|^2 + \lambda \| T' - T'_k \|^2$$
Outline

1 Batch Crystallization
2 Iterative Learning Control
3 Simulation Results
4 Conclusions
Simulation Results

Scenario

- Objective: tracking of a constant set-point $\bar{S} = 2.5 \text{ g/L}$
- $N = 20$ batches
- T^r_k updated from batch to batch using ILC
Simulation Results

Cases

Simulation study in four cases

Case 1: No disturbances, parametric model mismatch
Simulation Results

Cases

Simulation study in four cases

Case 2: Disturbances + parametric model mismatch
Simulation Results

Cases

Simulation study in four cases

Case 3: No disturbances, structural model mismatch
Simulation Results

Cases

Simulation study in four cases

Case 4: Disturbances + structural model mismatch
Simulation Results
Cases 1 & 2

Case 1

- Batch 1
 - Temperature (C) vs. Time (min)
 - Supersaturation (g/L) vs. Time (min)
 - α (g/L) vs. Time (min)

- Batch 2
 - Temperature (C) vs. Time (min)
 - Supersaturation (g/L) vs. Time (min)
 - α (g/L) vs. Time (min)

- Batch 10
 - Temperature (C) vs. Time (min)
 - Supersaturation (g/L) vs. Time (min)
 - α (g/L) vs. Time (min)

- Batch 20
 - Temperature (C) vs. Time (min)
 - Supersaturation (g/L) vs. Time (min)
 - α (g/L) vs. Time (min)

Case 2

- Batch 1
 - Temperature (C) vs. Time (min)
 - Supersaturation (g/L) vs. Time (min)
 - α (g/L) vs. Time (min)

- Batch 2
 - Temperature (C) vs. Time (min)
 - Supersaturation (g/L) vs. Time (min)
 - α (g/L) vs. Time (min)

- Batch 10
 - Temperature (C) vs. Time (min)
 - Supersaturation (g/L) vs. Time (min)
 - α (g/L) vs. Time (min)

- Batch 20
 - Temperature (C) vs. Time (min)
 - Supersaturation (g/L) vs. Time (min)
 - α (g/L) vs. Time (min)
Simulation Results
Cases 2 & 4

Case 2

Case 4
Outline

1. Batch Crystallization
2. Iterative Learning Control
3. Simulation Results
4. Conclusions
Conclusions

An Iterative Learning Control scheme for batch cooling crystallization.
- Can use measurements available at the end of a batch.
- Built on top of standard T control
- Can cope with model mismatches and disturbances.

Future/current work
- Practical implementation.
- Control more properties (growth rate, CSD).
- Improve the tuning of the algorithm.
- Comparison with parametric estimation.
Thank you.

Questions?