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woodt@ethz.ch, {mohajerin,lygeros}@control.ee.ethz.ch

Abstract: In this paper we apply reachability analysis to design a controller for an RC-car to
drive autonomously on a given circuit. We introduce a hybrid simplification technique to reduce
the order of the model; this is crucial for reachability analysis. For a successful implementation
on a real system the control problem is divided into two parts: a reachability control strategy
is derived for the simplified hybrid model, and a gain-scheduled controller lets the full system
track the simplified behaviour. We propose a heuristic algorithm to synthesise a hybrid feedback
policy. By considering stochasticity in the model, we improve the performance of the controller
which is finally validated on a real physical system.

1. INTRODUCTION

The objective considered in this work is the design and
implementation of a method for autonomous control of a
remote controlled (RC) car. In particular, the car should
drive on a given circuit and reach a predefined target
region. The hardware of the control loop contains a 1:43
scale model car, a vision system and a computer system
on which the controller is to be implemented; for details
we refer to Jones et al. [2010].

A possible approach to address this objective is to apply
reachability analysis. More specifically, we consider a so-
called reach-avoid problem. This problem consists of de-
termining all initial states from which there exists a con-
trol strategy such that the state of the system eventually
reaches a target set while not entering an avoid set. We
call the set of such initial conditions the reachable set.

There are different methods to investigate reachability. In
a direct approach, as in Cardaliaguet [1996], Cardaliaguet
et al. [2002] the reachable set is formulated in the context
of viability theory. We will however consider an alternative
indirect approach that involves level set methods defined
by value functions that characterise appropriate optimal
control problems. These value functions can be expressed
as the viscosity solutions to the standard Hamilton-Jacobi-
Bellman (HJB) equations by applying dynamic program-
ming techniques as in Lygeros [2004], Mitchell et al. [2001].
These techniques have been studied further in Fialho and
Georgiou [1999], Margellos and Lygeros [2009] in the pres-
ence of state constraints and disturbance inputs respec-
tively. Based on these level set methods, numerical algo-
rithms have been developed by Osher and Sethian [1988],
Sethian [1999] and have been implemented in efficient
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computational tools in Mitchell et al. [2001], Mitchell and
Tomlin [2000].

In the process of computing the reachable set, a control
strategy that steers the system in the desired way can be
derived heuristically. Numerically the controller is imple-
mented as a lookup table on a discrete grid. The model
used in the design of other controllers for this hardware
setup in Wunderli [2011] results in a lookup strategy that
is too large to implement on the real system.

In order to deal with this practical limitation, we propose
a model reduction technique based on a hybrid framework.
Namely, given a convenient particular structure of the
nominal model, we introduce a finite set of discrete modes
and disregard two states of the full model: one state is set
to be a parameter constant in each mode and one state is
modelled as the input to the simplified system. We do the
reachability analysis on the simplified model, which results
in a smaller lookup table on a lower dimensional grid. In
a separate task we control the full system to follow the
desired simplified behaviour.

Due to the hybrid nature of the simplified system, ap-
propriate notions for time, solutions, reachability and
controller synthesis need to be considered. Properties of
hybrid models are discussed in Tomlin et al. [1998]. Reach-
ability in a hybrid context is studied in Gao et al. [2007],
Lygeros et al. [1999]. We will introduce algorithms to com-
pute the reachable set and synthesise a control strategy for
the simplified hybrid system.

The reachability analysis on the simplified model may
lead to policies that are not trackable by the dynamics
of the full system. Therefore, for a robust controller, a
strategy that tends to lead the system away from states
that are in some sense close to the avoid set is beneficial. In
other words, we aim to differentiate between states in the
reachable set according to how “safe” they are. This can
be achieved by introducing noise to the dynamics in each
discrete mode and extracting a reachability controller from
the resulting stochastic systems. The evolution of such a



stochastic system is modelled by a stochastic differential
equation (SDE). Stochastic reach-avoid problems are ad-
dressed in Esfahani et al. [2011] and discussed in more
detail in Esfahani et al. [2012].

For the tracking of the controlled simplified behaviour by
the full system, we consider gain-scheduling control. This
is an adaptive control technique covered in Khalil [1992].

In Section 2 we formulate the problem in detail, and then
introduce the full model and reachability for deterministic
continuous systems. We proceed by defining a simplified
hybrid model and discussing the evolution of such a
hybrid system in Section 3. We then propose algorithms
to compute the reachable set and a corresponding control
strategy. In Section 4 we model stochastic systems for
each discrete mode of the hybrid system. For each of these
stochastic systems, we derive a robust control policy. The
control of the full nominal system to track the simplified
behaviour is discussed in Section 5. We conclude by
illustrating the results of the implementation on the actual
physical system in Section 6.

2. MODEL DESCRIPTION AND BASIC
DEFINITIONS

The goal is that the car reaches a set of terminal positions
from any initial position while staying on the track along
the way. This can be formulated as a reach-avoid problem:
reach the terminal set Ap ⊂ R2 while avoiding the set of
positions lying outside the circuit Bp ⊂ R2. The terminal
and avoid set can be defined in a two dimensional state
space. However, the problem is subject to the motion
dynamics which are modelled as a four dimensional sys-
tem. Before we discuss the details of the model, we first
introduce some useful definitions.

2.1 Solutions and Reachable States

Consider a continuous time dynamic system expressed in
state space description as an ordinary differential equation
(ODE)

dξ

dt
= f(ξ, u); (1)

where the vector field f : X × U → Rn governs the rate
of change of the the state dξ

dt ∈ Rn, in dependence of the
state itself ξ ∈ X ⊆ Rn and the input u ∈ U ⊆ Rm.

The set of solutions Sξ0
f of a system with vector field f and

initial state ξ0 is roughly speaking the set of continuous
functions ξ(·) such that for all times t ≥ 0 there exists
a feasible input u ∈ U such that these functions solve
the differential equation dξ

dt (t) = f(ξ(t), u) with initial
condition ξ(0) = ξ0.

Definition 1. (Set of Solutions).

Sξ0
f :=

{
ξ(·) ∈ C([0,∞),Rn)

∣∣∣∣ ∀t ≥ 0∃u ∈ U

s.t.
dξ

dt
(t) = f(ξ(t), u), ξ(0) = ξ0

}
.

For a rigorous discussion of solutions of ordinary differ-
ential equations, we refer to Khalil [1992]. The set of
reachable states Rf (A,B) is the set of initial conditions for

which there exists a trajectory ξ(·) in the set of solutions
that hits the terminal set A before the avoid set B.

Definition 2. (Reachable Set).

Rf (A,B) := {z ∈ X | ∃ξ(·) ∈ Sz
f , t ≥ 0

s.t. ξ(t) ∈ A, ξ(s) /∈ B ∀s ≤ t},
where A,B ⊂ Rn.

2.2 Physical Model Description

In previous projects the RC-cars have been modelled. We
consider the simplest model used in Wunderli [2011] where
the state space X is four dimensional. The state vector
ξ ∈ X ⊂ R4 consists of the coordinates of the position of
the rear axle centre (x, y), the orientation of the vehicle ψ

and its velocity v; thus we have ξ := [x y ψ v]
T

. There are
two inputs to the system: the steering angle δ and the duty

cycle of the DC motor d, u := [δ d]
T

, u ∈ U ⊂ R2. The
dynamics are defined by the vector field f : X × U → R4

as

f(ξ, u) :=


v cos(ψ)
v sin(ψ)

1

L
δv

(Cm1 − vCm2) d− Cdv2 − Cr − Cδδ2v2

 (2)

with Cm1 = 5.5, Cm2 = 1.4, Cd = 0.15, Cr = 1.1, Cδ = 1.1
and L = 0.062. Naturally, the orientation is 2π-periodic
ψ ∈ [0, 2π), ψ(t) =

(
ψ(0) +

∫
1
Lδ(s)v(s) ds

)
mod 2π. The

model holds for small speeds and steering angles. Thus,
we introduce a state constraint v ∈ [0, 3], and input
constraints δ ∈ [−π/4, π/4] and d ∈ [−1, 1]. Note that
all numeric values in this paper are in SI units.

2.3 Control Strategy

With the car dynamics given in (2), the task of reaching a
goal set while staying on the circuit is a four dimensional
reach-avoid problem. The terminal set is A = {ξ ∈
X | (x, y) ∈ Ap} and the avoid set is B = {ξ ∈ X | (x, y) ∈
Bp}. To design a controller for this task, we compute the
reachable set Rf (A,B) introduced in Definition 2 and in
the process of this computation derive a feedback control
strategy u(ξ). Let Rf (A,B) be an operator that returns
the reachable set and a corresponding control strategy u:

u : Rf (A,B)→ U, Rf (A,B) :=
(
Rf (A,B),u(·)

)
. (3)

The computation can be done by solving an appropriate
partial differential equation (PDE) as done in Mitchell
and Tomlin [2000]. In this work a finite time horizon
is considered. For the problem in this paper we take
an infinite horizon into account by letting the horizon
parameter grow until the reachable set saturates. An
infinite horizon allows us to heuristically compute a time
invariant state feedback control strategy.

For the numeric computation a level set method Matlab
toolbox, Mitchell and Templeton [2005], can be used. This
numeric PDE solving method involves gridding and there-
fore suffers from the curse of dimensionality. When we use
this four dimensional model, the lookup table capturing
the control strategy is too big to implement on the existing
hardware setup. To design an implementable controller, we
will therefore reduce the model and formulate the problem
in a lower dimensional state space.



3. MODEL SIMPLIFICATION

We need to reduce the order of the model to be able to
obtain a lookup table that can be implemented on the
physical system. For a lower order model to be useful, the
resulting simplified behaviour has to be trackable by the
full dynamics. Then, we can solve a reach-avoid problem
with this reduced model and use a separate control scheme
(see Section 5) to make the system track the desired
references.

Since the original objective of reaching a terminal set of
positions Ap, while not entering an avoid set of positions
Bp, is two dimensional, it is reasonable to suggest a two
dimensional simplified model. The obvious choice for the

state is the position ξ := [x y]
T

. Note that we use ξ to
denote the continuous state in both the full physical model
and the simplified model, despite it having a different
physical meaning and the corresponding continuous state
space X ⊆ Rn being of different order n. Similarly, the
notation u ∈ U ⊆ Rm will stand for the input of the full
and simplified system regardless of what it is physically
and its dimension m.

In the full model introduced in Section 2.2 the inputs only
act on the orientation ψ and speed v directly. This specific
structure of the nominal model allows us to consider the
following two ideas for simplification: neglect the dynamics
of ψ and v treating them either as inputs or, more
restrictively, as constant parameters.

Empirically we see that modelling ψ and v as inputs to
the simplified system does not work because the resulting
optimal strategy for v is not trackable. We can however
model just ψ as an input and v as a parameter of the
dynamics. If the velocity v is to be constant, it needs to be
selected small enough that the car can drive around the
sharp turns of the track. This results in slow driving on
parts of the circuit where higher speeds would be possible.
Therefore, we design k different regions on the race track.
In each of these regions the parameter v can take on a
different constant value. This allows us to express a hybrid
model with two dimensional continuous state space in
Section 3.1.

In Section 3.3 we formulate the task at hand as a hybrid
reach-avoid problem, define the reachable set in a hybrid
context, and introduce an algorithm to compute it.

3.1 Hybrid Model Description

Let the continuous state ξ = [x y]
T

be able to take on
values in the entire real plane ξ ∈ X := R2. With the
velocity v being a piecewise constant parameter taking on
k different values, we introduce an additional discrete state
q ∈ Q = {1, 2, ..., k} making the state space S = Q × X
hybrid. The input to the hybrid system is the orientation
only, u := ψ ∈ U , where the control set is now U := [0, 2π).

The hybrid system is characterised by three functions:
the vector field f : Q × X × U → R2, the domain map
Dom : Q → 2X , and the guard map G : Q × Q → 2X ,
where 2X denotes the power set of X . The vector field
f determining the dynamics in dependence of the hybrid
state (q, ξ) and the input u is defined as

f(q, ξ, u) :=

[
vq cos(ψ)
vq sin(ψ)

]
(4)

with constants vq ∈ {v1, ..., vk}, 0 < vq ≤ 3. We will also
use the shorthand fq(ξ, u) := f(q, ξ, u).

The race track is made up of k overlapping regions
D1, D2, ..., Dk ⊆ R2 (Figure 1). The domain of a discrete
state q ∈ Q is the union of the region Dq with all po-
sitions outside the circuit; more formally, for all q ∈ Q,
Dom(q) := Dq ∪ (D1 ∪D2 ∪ · · · ∪Dk)c; where Dc denotes
the the complement of a set D. The guard of a discrete
state transition from q ∈ Q to g ∈ Q is the domain of q;
that is G(q, g) := Dom(g), for all q, g ∈ Q.

Fig. 1. Regions of the circuit

Standard definitions of hybrid systems contain an addi-
tional reset function that determines the continuous state
after a discrete transition as in Tomlin et al. [1998]. For
this model the reset map r : Q × Q × X → X is the
identity map for all transitions, r(q, g, ξ) = ξ ∀q, g ∈ Q,
and is therefore not considered further. Overall, this model
can be seen as a special case of a hybrid game automaton
defined in Gao et al. [2007]. Hybrid time sets, trajectories
and runs are also specified in that work. We will define a
similar concept next, before discussing hybrid reachability
in Section 3.3.

3.2 Hybrid Time Sets, Trajectories and Executions

To characterise the evolution of the hybrid system, we need
to introduce generalised notions of time and trajectory
that capture both the continuous change of the continuous
state and the transitions of the discrete state as in Gao
et al. [2007].

Definition 3. (Hybrid Time Set). A hybrid time set τ =
{Ii}Ni=0 is a finite or infinite sequence of intervals of the
real line, such that

• for all i < N, Ii = [τi, τ
′
i ];

• if N < ∞, then either IN = [τN , τ
′
N ) (possibly with

τ ′N =∞), or IN = [τN , τ
′
N ];

• for all i, τi ≤ τ ′i = τi+1.

Without loss of generality we can assume that τ0 = 0.

Definition 4. (Hybrid Trajectory). A hybrid trajectory o-
ver a set of variables taking values in a set A is a pair (τ, a)
where τ = {Ii}Ni=0 is a hybrid time set and a = {ai(·)}Ni=0
is a sequence of functions ai(·) : Ii → A.

Now we can define a hybrid execution which will be the
hybrid object corresponding to a solution for continuous
systems.



Definition 5. (Execution). A execution of the hybrid sys-
tem introduced in Section 3.1 is a hybrid trajectory
(τ, q, ξ, u) over the state and input variables that satisfies
the following conditions:

• Discrete Evolution: for i < N ,
(1) ξi(τ

′
i) ∈ G(qi(τ

′
i), qi+1(τi+1)).

(2) ξi+1(τi+1) = ξi(τ
′
i).

• Continuous Evolution: for all i with τi < τ ′i ,
(1) ui(·) is a Lebesgue measurable function on Ii.
(2) qi(t) = qi(τi) for all t ∈ Ii.
(3) xi(·) is the solution of the differential equation

dξi
dt

(t) = f(qi(t), ξi(t), ui(t))

over the interval Ii with initial condition ξi(τi).
(4) ξi(t) ∈ Dom(qi(t)) for all t ∈ [τi, τ

′
i).

Since the discrete state qi(·) remains constant during
continuous evolution, we can use the shorthand qi := qi(t)
for all t ∈ Ii.
Definition 6. (Set of Finite Executions). An execution is
classified as finite if τ is a finite sequence ending with a
compact interval. The set of finite executions starting at
initial continuous state ξ0 is denoted as Eξ0 .

3.3 Hybrid Reach-Avoid Problem

With the model introduced in Section 3.1, the reachability
investigation needs to be formulated in a hybrid context.
Therefore, we define a new reachable set for the hybrid
system, RH(A,B). Consider the terminal set of positions
A = Ap ⊂ X and the set of avoid positions B = Bp =
(D1 ∪ D2 ∪ · · · ∪ Dk)c ⊂ X . The reachable set is the
set of initial continuous states for which there exits a
finite execution (τ, q, ξ, u) such that the continuous state
{ξi(·)}Ni=0 hits the terminal set A before the avoid set B.

Definition 7. (Reachable Set for the Hybrid System).

RH(A,B) := {z ∈ X | ∃(τ, q, ξ, u) ∈ Ez

s.t. ξN (τ ′N ) ∈ A, ξi(t) /∈ B ∀Ii ∈ τ ∀t ∈ Ii}.

The reachable set RH(A,B) can be computed with the fol-
lowing algorithm applying tools introduced in Section 2.1.

Algorithm 1. (Computation of Reachable Set).

1: A0 := A, l = 0
2: repeat
3: Al+1 :=

⋃
j∈QRfj

(
Al ∩Dj , D

c
j

)
4: l← l + 1
5: until Al = Al−1

We define A∞ as the union of all Al and claim that
it is equal to the reachable set RH(A,B) introduced in
Definition 7.

Theorem 8. (Reachable Set).

A∞ :=

∞⋃
l=0

Al = RH(A,B).

Proof. We first show that A∞ ⊇ RH(A,B). Consider an
arbitrary reachable state z ∈ RH(A,B). From Definition 7
it follows that there exists a finite execution (τ, q, ξ, u)
such that ξ0(τ0) = z, ξN (τ ′N ) ∈ A and ξi(t) /∈ B for
all Ii ∈ τ and t ∈ Ii. Thus, for such an execution,

we have ξN (τ ′N ) ∈ A0 := A and at the N -th discrete
transition we observe that ξN−1(τ ′N−1) = ξN (τN ) ∈
RfqN

(
A0 ∩DqN , D

c
qN

)
⊆ A1 :=

⋃
j∈QRfj (A0 ∩ Dj , D

c
j).

In the same way we can state that if ξN−l(τ
′
N−l) ∈

Al, it follows that ξN−(l+1)(τ
′
N−(l+1)) = ξN−l(τN−l) ∈

RfqN−l
(Al∩DqN−l

, Dc
qN−l

) ⊆ Al+1. By induction it follows

that ξ0(τ ′0) ∈ AN and that z = ξ0(τ0) ∈ AN+1 ⊆ A∞.
Thus, A∞ ⊇ RH(A,B).

To show that A∞ ⊆ RH(A,B), we now consider an
arbitrary z ∈ A∞. Since A∞ =

⋃∞
i=0Ai, there exists an

integer l such that z ∈ Al :=
⋃
j∈QRfj

(
Al−1 ∩Dj , D

c
j

)
.

It follows that there exists a discrete state j ∈ Q such that
z ∈ Rfj

(
Al−1 ∩Dj , D

c
j

)
. From the definition of Rf (·, ·),

Definition 2, we know that there exists a trajectory of
the continuous state Ξ(·) ∈ Sz

fj
with corresponding input

trajectory υ(·) and a time t ≥ 0 such that Ξ(0) = z,
Ξ(t) ∈ Al−1 ∩ Dj and Ξ(s) ∈ Dj ⊆ Bc with υ(s) ∈ U
for all s ∈ [0, t]. Since for all s ∈ [0, t] the solution Ξ(s)
remains in the domain of mode j, Ξ(s) ∈ Dj ⊆ Dom(j),
we can start constructing a hybrid trajectory by letting
I0 = [τ0, τ

′
0] = [0, t], q0 = j, ξ0(·) = Ξ(·) and u0(·) = υ(·).

Then, for the next interval we have ξ1(τ1) = ξ0(τ ′0) ∈ Al−1.
Similarly, there exists a discrete state q1 ∈ Q such that
ξ1(τ1) ∈ Rfq1

(
Al−2 ∩Dq1 , D

c
q1

)
. Furthermore, there exists

an interval of continuous evolution in mode q1: I1 =

[τ1, τ
′
1], ξ1(·) ∈ S

ξ1(τ1)
fq1

and u1(·) such that ξ(τ ′1) ∈ Al−2 ∩
Dq1 and for all s ∈ I1 we have ξ1(s) ∈ Dq1 ⊆ Bc

and u1(s) ∈ U . Note that ξ0(τ ′0) ∈ G(q0, q1) and that
ξ1(s) ∈ Dom(q1) for all s ∈ I1. Repeating this process
inductively leads to a finite execution (τ, q, ξ, u) ∈ Ez

with initial continuous state z and l number of intervals
such that ξl−1(τ ′l−1) ∈ A0 = A and ξi(t) /∈ B for all
i ∈ 0, 1, 2, . . . , l − 1 and t ∈ Ii. By definition 7 we have
z ∈ RH(A,B). Thus, A∞ ⊆ RH(A,B). �

Considering the specific choice of the k overlapping regions
on the track and the modelled hybrid dynamics, we can
state the following fact.

Fact 9. For this specific problem with dynamics (4), Algo-
rithm 1 converges in at most k iterations since all positions
on the circuit lie in the reachable set, RH(A,B) = Bc.

3.4 Construction of a Hybrid Feedback Controller

The feedback controller in the hybrid setup is dependent
on the continuous and discrete state, uH : Q×X → U . In
this section we propose a heuristic algorithm to synthesise
a hybrid feedback policy in the process of computing the
reachable set. Applying the operator Rf (A,B) introduced
in (3), we can rewrite Algorithm 1 to include the compu-
tation of the control law uH(q, ξ).

Algorithm 2. (Hybrid Controller Construction)

1: A0 := A, l = 0
2: for all (q, x) ∈ Q×X do
3: uH

0 (q, ξ) = NaN
4: end for
5: repeat
6: for all j ∈ Q do
7:

(
Rfj

(
Al ∩Dj , D

c
j

)
,uj(·)

)
= Rfj

(
Al ∩Dj , D

c
j

)
8: end for
9: Al+1 :=

⋃
j∈QRfj

(
Al ∩Dj , D

c
j

)



10: for all (q, ξ) ∈ Q×X do
11: if ξ ∈ Al+1 and uH

l (j, ξ) = NaN ∀j ∈ Q then
12: uH

l+1(q, ξ) = uq(ξ)
13: else
14: uH

l+1(q, ξ) = uH
l (q, ξ)

15: end if
16: end for
17: l← l + 1
18: until Al = Al−1
19: uH(·, ·) = uH

l (·, ·)

where NaN stands for an object not being a number.

Note that we do not specify the order in which the iteration
over the discrete state q in the for-loop starting in line 10
takes place. This order does however have influence on the
resulting control strategy uH. Regardless of the applied
order of iteration, for every reachable continuous state
ξ ∈ RH

f (A,B) there always exists a unique discrete state

j, for which the resulting control law uH is defined:

∀ξ ∈ RH
f (A,B) ∃!j ∈ Q s.t. uH(j, ξ) 6= NaN . (5)

Thus for a given reachable continuous state, the control
function uH contains information on what input u is to be
applied and also in what mode q the hybrid system is:

q(ξ) = j, u(ξ) = uH(q(ξ), ξ), (6)

where j is the unique mode in (5) for which uH(·, ξ), with
ξ ∈ RH

f (A,B), is defined.

(a) 2D-simulation with a
controller derived from de-
terministic reachability

(b) 2D-simulation with
a controller derived from
stochastic reachability

Fig. 2. Simulation of the simplified system with a con-
troller derived from deterministic reachability (a) and
stochastic reachability (b) starting at two different
initial positions.

In practice, a controller designed using the deterministic
model leads to problems as it does not differentiate be-
tween different points of the reachable set. As an illustra-
tion, one may obtain a strategy to drive close to the edge
of the road in corners (see Figure 2 (a)). Moreover, we
empirically observe that instantaneous changes in orienta-
tion resulting from the deterministic nature of the model
are hard to track. From a practical point of view, it is
clear that the difference in behaviour of the full system
compared to the simplified system is more problematic the
closer the continuous state is to the avoid set. For better
results there should therefore be some measure of how
“safe” a state is. This motivates the addition of some noise

to the simplified dynamics in Section 4. The additional
stochasticity also has a positive effect on the trackability
of the lower order system; the resulting reference for the
orientation is smoother.

4. INCREASING ROBUSTNESS BY INTRODUCING
NOISE

In the methods discussed so far we have examined the
state space to determine for each continuous state whether
it lies in the reachable set or not. To have more robust
control we would like to differentiate between the reachable
states such that we can quantify how likely it is to reach
the terminal set while not hitting the avoid set starting
at a particular state. To this end, we add some noise to
the deterministic dynamics given in (4). For each discrete
mode q ∈ Q, the dynamics are modified by adding a
stochastic term modelled by a two dimensional Brownian
motion. This leads to a new type of continuous evolution
characterised by a SDE in each mode. The individual
modes can therefore be considered as stochastic continuous
systems. In Section 4.1 we formalise such a system and
in Section 4.2 formulate a stochastic reach-avoid problem
according to Esfahani et al. [2011]. Quantifying in some
sense how “safe” states are allows us to derive a controller
for the simplified hybrid system in Section 4.3 that can be
tracked by the full system more reliably.

4.1 Stochastic Continuous Time Systems

Consider a probability space (Ω,F ,P) whose filtration
F = (Fs)s≥0 is generated by the n-dimensional Brownian
motion (Ws)s≥0 adapted to F. Let the natural filtration
of the Brownian motion (Ws)s≥0 be enlarged by its right-
continuous completion; the usual conditions of complete-
ness and right continuity as in Karatzas and Shreve [1991].
Let U ⊂ Rm be a compact control set, and let U denote
the set of F-progressively measurable maps into U as in
Dellacherie and Meyer [1978]. The stochastic counter part
of the ODE in (1) is the Rn-valued SDE

dΞs = f(Ξs, us) ds+ σ(Ξs, us) dWs, s ≥ 0 (7)

where Ξ0 = ξ is given, f : Rn × U → Rn and σ : Rn ×
U → Rn×n are measurable maps, and u := (Us)s≥0 ∈ U .

Under some mild reasonable assumptions it is known from
Borkar et al. [2005] that there exists a unique strong
solution to the SDE (7). We let (Ξt,ξ;us )s≥t denote the
unique strong solution of (7) starting from time t at the
state ξ under control policy u.

4.2 Stochastic Reach-Avoid Problem

Given an initial condition (t, ξ), we define the stochastic
reachable set RS

f (t, p;A,B) as the set of all initial condi-
tions such that there exists an admissible control strategy
u ∈ U such that with probability more than p the state
trajectory Ξt,ξ;us hits the set A before set B within the
time horizon T .

Definition 10. (Stochastic Reachable Set).

RS
f (t, p;A,B) :=

{
ξ ∈ Rn

∣∣∃u ∈ U s.t.

p < P
(
∃s ∈ [t, T ], Ξt,ξ,us ∈ A

and ∀r ∈ [t, s] Ξt,ξ;ur /∈ B
)}
.



In Esfahani et al. [2011] it is shown that the stochastic
reachable set RS

f is equal to a superlevel set of a certain

value function V : [0, T ]×Rn → R:

RS
f (t, p;A,B) = {ξ ∈ Rn|V (t, ξ) > p}. (8)

Furthermore this value function V is the solution of a
PDE in the sense of discontinuous viscosity solutions as
in Fleming and Soner [2006]. In Esfahani et al. [2011] this
is formalised by the following definition and theorem.

Definition 11. (Differential Operator) Given u ∈ U , we
denote by Luf the differential operator associated to the

controlled diffusion (7) as

LufΦ(t, ξ) := ∂tΦ(t, x) + 〈f(ξ, u), ∂ξΦ(t, ξ)〉

+
1

2
Tr[σσT (ξ, u)∂2ξΦ(t, ξ)],

where Φ is a real-valued function smooth on the interior
of S := [0, T ]×Rn, with ∂tΦ and ∂ξΦ denoting the partial
derivatives with respect to t and ξ respectively, andc ∂2ξΦ
denoting the Hessian matrix with respect to ξ.

Theorem 12. (Dynamic Programming Equation). Consider
the system (7) and suppose that it is well behaved (i.e.
conditions defined in Esfahani et al. [2011] hold). Then:

• the lower semicontinuous function of the value func-
tion V , defined as V∗(t, ξ) := lim inf(t′,ξ′)→(t,ξ)V (t′, ξ′),
is a viscosity supersolution of

− sup
u∈U
LufV∗(t, ξ) ≥ 0 on [0, T )×Oc,

• the upper semicontinuous function of V , defined as
V ∗(t, ξ) := lim sup(t′,ξ′)→(t,ξ)V (t′, ξ′), is a viscosity
subsolution of

− sup
u∈U
LufV ∗(t, ξ) ≤ 0 on [0, T )×Oc,

both with boundary conditions{
V (t, ξ) = 1A(ξ) ∀(t, ξ) ∈ [0, T ]×O (Lateral),

V (T, ξ) = 1A(ξ) ∀ξ ∈ Rn (Terminal),

where O denotes the closure of O := A ∪ B and 1A(·) :
Rn → {0, 1} is the indicator function defined as

1A(ξ) :=

{
1 if ξ ∈ A,
0 if ξ /∈ A.

4.3 Robust Controller Derivation

In order to synthesise a more robust feedback control
strategy for the simplified hybrid system introduced in
Section 3.1, we define the new operator RS

f that returns

the saturated stochastic reachable set RS ∗
f and a corre-

sponding control function uS as

uS : Rf (A,B)→ U, RS
f (p;A,B) :=

(
RS ∗
f (p;A,B),uS(·)

)
where p ∈ (0, 1) is fixed. The saturated stochastic
reachable set RS ∗

f (p;A,B) is equal to the reachable set

RS
f (t, p;A,B) introduced in Definition 10 when the time

horizon parameter T has been increased until saturation
of the value function V in (8). Note that the domain of
the stochastic controller uS is the deterministic reachable
set Rf defined in Definition 2. Therefore, uS may be
defined for states that do not lie in the saturated stochastic
reachable set RS ∗

f .

In this section we shall discuss the details of the explicit
computation of the feedback control policy uS(ξ) in a
stochastic continuous time system. Applying this tool we
can heuristically construct a new hybrid feedback control
strategy by modifying Line 7 of Algorithm 2: instead of
selecting the control function uj from Rf we set it to be the
control function returned by the stochastic operator RS

f .
The modified Line 7 in an enhanced version of Algorithm 2
then is(

RS ∗
fj

(p;A,B),uj(·)
)

= RS
fj

(
p;Al ∩Dj , D

c
j

)
where p is chosen a priori.

For the explicit derivation of the control function uS,
consider the dynamics of the simplified hybrid model
from Section 3.1 modified by additional Brownian motion
such that in every discrete mode we have a stochastic
continuous time system as defined in Section 4.1. That is
for an arbitrary mode q ∈ Q, we have the continuous state

ξ = [x y]
T

, the input u = ψ, the dynamics defined in (4),

and the diffusion term σ :=

[
σx 0
0 σy

]
where σx and σy are

strictly positive. The evolution of the stochastic system is
then described by the SDE[

dxs
dys

]
=

[
vq cos(ψ)
vq sin(ψ)

]
ds+

[
σx 0
0 σy

]
dWs

and the corresponding differential operator defined in
Definition 11 is

LψfqΦ(t, x, y) = ∂tΦ + vq cos(ψ) · ∂xΦ + vq sin(ψ) · ∂yΦ

+
1

2
σ2
x · ∂2xΦ +

1

2
σ2
y · ∂2yΦ. (9)

For a state ξ ∈ Rf (A,B) we define a time parameter tR
as

tR(ξ) :=

{
sup {t ∈ [0, T ∗] |V (t, ξ) > p} , if V (0, ξ) > p,

0 otherwise,

where the time horizon parameter T ∗ is numerically se-
lected such that the value function V is essentially sat-
urated for small t. We heuristically obtain the controller
uS(ξ) by selecting an input that maximises the differential
operator applied to V (tR(ξ), ξ):

uS(ξ) ∈ arg max
ψ∈[0,2π]

Lψf V (tR(x, y), x, y).

A resulting feedback control function is

uS(ξ) :=



arctan

(
∂yV̂

∂xV̂

)
if ∂xV̂ > 0, ∂yV̂ ≥ 0,

arctan

(
∂yV̂

∂xV̂

)
+ π if ∂xV̂ < 0,

arctan

(
∂yV̂

∂xV̂

)
+ 2π if ∂xV̂ > 0, ∂yV̂ < 0,

π/2 if ∂xV̂ = 0, ∂yV̂ ≥ 0,

3π/2 if ∂xV̂ = 0, ∂yV̂ < 0,

where we use the shorthand notation V̂ := V (tR(ξ), ξ).
Roughly speaking, the control input uS(ξ) for a state
ξ ∈ RS ∗

f (p;A,B) is the direction of the steepest increase of

the value function V (t, ξ) with respect to ξ at the largest
t for which V (t, ξ) is grater than p.

Applying this control strategy to the simplified system in
simulation, we observe that the car tends to drive further



away from the avoid set and that the trajectories are
smoother compared to the deterministic results; compar-
ing Figures 2 (a) and 2 (b) these effects are visible.

The stochastic reachability approach offers also another
advantage with respect to deterministic approach: ex-
plicite design parameters σx, σy, and p are introduced that
have an intuitive effect.

5. REFERENCE TRACKING

In the preceding sections we have derived a controller for
a simplified model. Note that the lookup control policy
uH is numerically computed on a discretised grid of the
continuous state space. Therefore, in practice it is stored
for discrete points of the state space only. We denote the
closest grid point to the position (x, y) as (xg, yg).

We need to control the full system introduced in Sec-
tion 2.2 such that it follows the simplified behaviour.
More specifically, the orientation ψ and velocity v should
track their reference values fast enough relative to the
change in the reference. The orientation reference denoted
as ψr is the lookup value resulting from the reachability
analysis: ψr(x, y) := uH(q(xg, yg), xg, yg). The reference
for the velocity vr is piecewise constant and depends on
the evolution of the discrete state: vr(x, y) := vq(xg,yg).

We want to use inputs δ ∈ [π/4, π/4] and d ∈ [−1, 1] to
control ψ and v around their reference values ψr and vr.

We define auxiliary variables η := [ψ v]
T

and λ := [δ d]
T

.
Recall from (2) that the dynamics of ψ and v, g(η, λ) :=[

dψ

dt

dv

dt

]T
, are

dψ

dt
=

1

L
δv

dv

dt
= (Cm1 − vCm2)d− Cdv2 − Cr − Cδδ2v2 (10)

For the task of controlling the physical system to track
the desired references, different techniques are consid-
ered. A controller that minimises an appropriate Control-
Lyapunov function described in Khalil [1992] works well in
simulation but, due to delays in the real system, performs
poorly in practice with strong visible chattering. For better
performance on the real system a controller should process
information that in some form measures how “far away”
the controlled variables are from their reference values.
A possible way of doing this is to apply gain-scheduled
feedback control as in Khalil [1992].

5.1 Gain-Scheduled Linear Feedback Control

Gain scheduling is an approach to control non-linear
systems, where the system is linearised around a set of
operating points that are parametrised by a so-called
scheduling variable. We refer to Khalil [1992] for details.
We will now briefly derive a feedback controller using this
technique.

For a given position (x, y) we linearise g(η, λ) given in

(10) around the desired operating point ηe := [ψe ve]
T

=

[ψr(x, y) vr(x, y)]
T

. First we set g(η, λ)|η=ηe,λ=λe = 0

to see that the following values of λe := [δe de]
T

are

appropriate inputs for the equilibrium: δe = 0, de(ve) =
Cdv

2
e+Cr

Cm1−veCm2
. Note that d(ve) is well defined for ve ≤ 3.

Regarding this fact, we can express the linearised system
as

dη̂

dt
= A(ve)η̂ +B(ve)λ̂ (11)

where η̂ := η − ηe, λ̂ := λ− λe,

A(ve) :=
∂g

∂η
(ηe, λe) =

[
0 0
0 −Cm2de(ve)− 2Cdve

]
,

B(ve) :=
∂g

∂λ
(ηe, λe) =

[
1

L
ve 0

0 Cm1 − veCm2

]
.

Note that A and B depend on ve but not on ψe. We
therefore choose ve = vr as the scheduling variable. It is
constant within each discrete mode.

Since the controllability matrix [B AB] has full rank 2
for 0 < ve ≤ 3, the linearised system (11) is controllable.
We can design a linear feedback controller Kq for each

mode q ∈ Q, λ̂ = −Kq η̂. However, recall that there are
input constraints. The controllability analysis above does
not take these constraints into account; saturation of the
inputs may make the controller fail.

We use a linear quadratic regulator (LQR) technique for
the design of the gain matrices Kq. That is, we select
the gain matrices that minimise the cost function J =∫∞
0

(η̂TP η̂ + λ̂TRλ̂) dt, where weight matrices P and R
are design parameters. These explicit design parameters
allow us to tune the controller such that the saturation of
the inputs is minimised.

6. IMPLEMENTATION RESULTS

In the previous sections a feedback control strategy was
derived by simplifying the full system (2), applying reacha-
bility analysis to a resulting lower dimension hybrid system
(4), increasing robustness by considering noise and using
gain-scheduled linear feedback control to make the actual
system behave in the desired way. We have successfully
implemented this control strategy on the physical system.

The physical system is the hardware setup of the project
Optimal RC Autonomous (ORCA) Racer by Jones et al.
[2010]. This configuration contains a vision system that
provides an estimation of the full state of an RC-car on the
track. The controller is implemented on a computer that
communicates with the vision system and the car inputs.
We assume that the hardware is fast enough such that we
can consider the closed loop system as almost continuous
time.

Figure 3 shows measurement data of the implementation
on the real system. The applied parameters are: v1 = 0.99,
v2 = 1.53, v3 = 0.99, v4 = 1.44, v5 = 0.72, v6 = 0.63,
v7 = 1.44, v8 = 0.99, v9 = 1.53, σx = σy = 0.1, p = 0.9,
and the grid spacing is ∆x = ∆y = 0.03.

7. ACKNOWLEDGMENTS

The authors would like to thank S. Summers, K. Margellos
and A. Domahidi for helpful discussions and technical
support.



(a) Trajectory of the position

(b) Orientation and speed tracking: state (blue), reference
(green)

(c) Trajectory of the position and reference vector field
f(q(x, y), x, y, u(x, y)) in sharp corner

Fig. 3. Measurement data of implementation on the real
physical system applying a controller derived from
stochastic reachability analysis combined with gain-
scheduled reference tracking.
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