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Abstract— This article consists of two parts: a theoretical part
concerned with fault detection schemes, and an application part
dealing with cyber security of power systems. In the first part,
we develop a tractable approach to design a robust residual
generator to detect and isolate faults in high dimensional
nonlinear systems. Previous approaches on fault detection and
isolation problems are either confined to linear systems or they
are only applicable to low dimensional dynamics with more
specific structures. In contrast, we propose a novel methodology
to robustify a linear residual generator for a nonlinear system
in the presence of certain disturbance signatures. To this end,
we formulate the problem into the framework of quadratic
programming which enables us to solve relatively high dimen-
sional systems. In the second part, the application is motivated
by the emerging problem of cyber security in power networks.
We provide description of a multi-machine power system that
represents a two-area power system, and we model a cyber-
physical attack emanating from the vulnerabilities introduced
by the interaction between IT infrastructure and power system.
The algorithm developed in the first part is finally used to
diagnose such an intrusion before the functionality of the power
system is disrupted.

I. INTRODUCTION

The task of fault detection and isolation (FDI) in dy-
namical systems is the problem of generating a diagnostic
signal sensitive to the occurrence of specific faults. This
problem essentially has the connotation of designing a filter
with all available information as inputs which leads to a
non-interactive map from faults to residual. Therefore the
concept of residual plays a central role for the FDI problem.
Earlier works on residual generators for linear systems are
commonly concerned with more specific classes of models
such as transfer function [15], state-space model [9], and
descriptive model [17]. Roughly speaking, for the aforemen-
tioned models the residual generators are classified into two
categories: observer-based and parity-space-like approaches.

In the observer-based approach, Beard [7] and Jones
[19] are the first pioneers where the filter is a Luenberger
observer such that failures of different system components
affect the residuals in linearly independent directions. Some
inherent limitation of Beard-Jones approach was improved in
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Massoumnia et al. [25]. Later, this approach was extended to
more general classes of systems by Seliger and Frank [29]
surveyed in [13], and was comprehensively investigated by
Speyer and coauthors in the presence of measurement noise,
see [10] and [6].

Parity-space-like approaches have been studied in the
framework of descriptor models in several papers e.g. [23]
and [26]. In more recent work, Nyberg and Frisk extended
the class of systems as well as the notion of detectability
[26]. In this article the class of functions is extended to
linear differential-algebraic equations (DAEs) that covers
all the previous classes, and fault detectability is rather
defined as a system property. DAE models appear in many
applications such as electrical systems, robotic manipulators,
and mechanical systems. For instance, a motion of robot
constrained to a certain geometrical area can be modelled
in this class.

In the context of nonlinear systems, a natural approach
is to linearize the model at an operating point, and then
invoke robust techniques, e.g. [18], to treat nonlinear terms
as disturbances and decouple their effects from the residual
using an unknown input observer [30], [16]. This strategy
only works well if either the system closely operates around
the operating point, or the precise decoupling is possible.
The former in the presence of unknown inputs can be
even more problematic as the system may have a wide
dynamic operating range, and the linearization causes a large
mismatch between linear model and nonlinear behavior. The
latter for general nonlinear dynamic is a formidable one;
for a restricted class of nonlinear systems, in particular
bilinear systems, see [8, Section 9.2] and references therein.
A practical limitation for the aforementioned reference is
to transfer the system into the required form that involves
solving a high order partial differential equation.

Along the perfect decoupling scheme, De Presis and
Isidori [27] have proposed a differential geometric approach
to extend the approach of [24], and design the FDI filter
for the observation of certain states in the presence of
unknown disturbances. The problem of fault detection and
isolation has been characterized in terms of the properties of
certain distribution, which can be considered as the nonlinear
analog of the unobservibility subspaces first introduced in
[24, Section IV]. However, as one is required to verify
the conditioned invariant property of certain distributions,
the approach is rather intractable for relatively large and
sophisticated dynamics.

Motivated by this fact, in this article we aim to find
a compromise between theoretical soundness and practical



feasibility. For this purpose, we restrict the class of FDI filters
to linear residual generators which allows us to explicitly
track the contributions of linear and nonlinear dynamic
terms as well as fault signals into the residual. Our main
goal is then to control the nonlinear term contributions
in the presence of certain disturbance patterns. In another
word, in contrast to existing literature toward FDI methods,
we impose constraints on disturbance signals rather than
nonlinearity structure of the system dynamic.

In more details, we first review some results developed
for linear systems of [26] in §III-A. We then propose a
linear programming (LP) formulation, Lemma 3.2, as an
alternative characterization of residual generators. This is
in fact an LP counterpart of matrix polynomial formulation
in the literature. In §III-B, we generalize the DAE model
to contain nonlinear terms as well, see (6). In order to
extend the scheme to the nonlinear model, we propose two
approaches where each approach may be viewed from a
certain class of applications. The first approach in §III is a
straightforward extension of the LP formulation developed in
the preceding subsection, thank to the fact that the FDI filter
can be designed up to a scaler. The idea may be justified in
applications that the system works during normal operation
in a neighbourhood of an equilibrium. This suggests to
neglect the contribution of nonlinear terms, and mainly focus
on the mapping from fault signal into the residual. The
second approach in §III is the main contribution of the article.
Given some particular signatures of possible disturbances,
we approximate the contributions of the nonlinear terms
into the residual. The approximation scheme is based on
the projection of these contributions into a finite-dimensional
function space which is closed under differentiation operator.
In the following we formulate the L2 norm of errors in terms
of a family of quadratic programming (QP) problems where
the number of QP problems is the degree of the FDI filter.

In the second part of the article, §IV, we first describe
the mathematical model of the IEEE 118-bus power network
equipped with primary and secondary frequency control.
The latter is also referred as Automatic Generation Control
(AGC) and is one of the few control loops that are closed
over the SCADA system without human operator interven-
tion. This interaction with the IT infrastructure may give rise
to cyber security issues which are investigated in our earlier
work [11], [12]. It was shown that if an attacker gains access
to the AGC signal, unacceptable frequency deviations and
power oscillations may occur. This can trigger out-of-step,
under frequency and generator frequency protection relays,
and hence lead to load shedding and generation tripping. If
the intrusion is detected on time, one may prevent further
damage by disconnecting the AGC. Therefore, it is crucial
to utilize available measurements to diagnose the AGC
intrusion sufficiently fast, even in the presence of unknown
load deviations. By invoking the proposed FDI scheme, a
protection layer is constructed that permits us to address the
aforementioned security concern.

The article is organized as follows. In §II a general class
of linear model is described, and basic definitions of residual

generators and detectability notion are introduced. §III pro-
vides two algorithms to tackle nonlinear FDI problems. We
then explain a multi-machine power system equipped with
AGC in §IV, and in §V apply our technique developed in
the preceding sections to diagnose the AGC intrusion. We
conclude with some remarks and directions for future work
in §VI.

II. MODEL DESCRIPTION AND BASIC DEFINITIONS

In this section we introduce the class of linear models
proposed in [26], and follow the basic definitions in this
article. The model is considered as

H(p)x+ L(p)z + F (p)f = 0, (1)

where p is the distributional derivative operator [2, Section
I], and H,L, F are polynomial matrices in the operator p.
We assume that x, y, z are piece-wise continuous functions
from R+ into Rnx ,Rnz ,Rnf respectively. We denote these
sets by Wnx ,Wnz ,Wnf . In the model (1), x represents all
unknowns signals, e.g. internal system states and unknown
exogenous disturbances. z contains all the known signals,
for instance control signals and state measurements, and f
stands for the signals to be detected such as faults or intrusion
signals.

One may extend the space of functions x, z, f to Sobolev
spaces, but an elaborate discussion regarding this issue is out-
side the scope of our study. On the other hand, if these spaces
are restricted to the smooth functions, then the operator p
can be understood as the classical differentiation operator.
Throughout this article we will focus on continuous-time
models, but one can obtain similar results for discrete-time
models by changing the operator p to the time-shift operator
q. In the rest of the article, we use p when the matrices
involved are viewed as an operator, e.g. H(p), and if they
are dealt as a polynomial matrices, we shall use the complex
variable s instead of p, e.g. H(s).

The following example indicates that an ordinary state-
space description is indeed a particular case of the linear
model (1). Consider the model{

EẊ(t) = AX(t) +Buu(t) +Bdd(t) +Bff(t)

Y (t) = CX(t) +Duu(t) +Ddd(t) +Dff(t)
(2)

where u(·) is the input signal, d(·) unknown disturbance,
Y (·) state measurements, and f(·) possible faults/attack
signal to be detected. Therefore, defining

x :=

[
X
d

]
, z :=

[
Y
u

]
and matrices

H(p) :=

[
−pE +A Bd

C Dd

]
, L(p) :=

[
0 Bu

−I Du

]
,

F (p) :=

[
Bf

Df

]
,

directly fits the model (2) to (1).
Note that the model (1) affords an appropriate framework

to deal with the algebraic constraints. Moreover, we do not



assume any condition on initial values of the signals x, z, f .
The only assumption one may impose on the model matrices
(1) is that there is no linear dependency in the model when
f ≡ 0. This condition is satisfied when [H(s) L(s)] has full
row rank.

Let us proceed with some basic definitions and clarify
what we mean by sensitivity and residual generator. To this
end, let us formally characterize all possible observations of
the model (1) in the absence of the fault signal f :

M :=
{
z ∈ Wnz

∣∣ ∃x ∈ Wnx : H(p)x+ L(p)z = 0
}
.

This set of observation is called behavior of the system used
in the behavioral approach to systems theory, see [28, Section
2.4] for more details.

Definition 2.1 (Residual Generator): A proper linear time
invariant filter r := R(p)z is a residual generator for (1) if
for all z ∈M, it holds that limt→∞ r(t) = 0.

The following Definition provides a notion of sensitivity
for the above residual generators with respect to a specific
fault:

Definition 2.2 (Fault Sensitivity): The residual generator
introduced in Definition 2.1 is sensitive to fault fi if the
transfer function from fi to r is nonzero, where fi is the ith

element of the signal f .

III. DESIGN OF RESIDUAL GENERATOR

The main objective of this section is to establish a tractable
approach, possibly for nonlinear systems, to design a sensi-
tive linear residual generator in the sense of Definitions 2.1
and 2.2. For this purpose we first characterize the residual
generator as a polynomial matrix equation and then make
a link from the polynomial matrix formulation to an LP
problem. In the sequel we extend the approach to a class of
nonlinear models. To that end, we propose a new framework,
in a QP formulation, so as to minimize the contributions of
nonlinear terms into the residual of the designed filter.

A. Linear Models

Consider a linear model as defined in (1). Along the same
vein as [28, Section 2.5.2], one may observe that the behavior
set M can alternatively be characterized as

M =
{
z ∈ Wnz

∣∣ NH(p)L(p)z = 0
}
,

where the collection of the rows of NH(s) forms an ir-
reducible polynomial basis for the left null-space of the
matrix H(s). This representation is the basic idea to design a
residual generator of model (1). Namely, by picking a linear
combination of NH(p) rows and adding stable dynamic d(p)
of sufficiently order, we arrive at a residual generator in the
sense of Definition 2.1 with transfer operator

R(p) = d−1(p)γ(p)NH(p)L(p) := d−1(p)N(p)L(p) (3)

The above filter can easily be realized by an explicit state-
space description (2) with the input z and output r. Hence,

a sensitive residual generator can be characterized as the
polynomial matrix equations

N(s)H(s) = 0, (4a)
N(s)F (s) 6= 0, (4b)

where the polynomial vector N(s) is to be chosen. Let us
recall that equations (4a) and (4b) in fact address the required
conditions of Definition 2.1 and Definition 2.2 respectively.

Remark 3.1 (Fault Isolation): Consider the model in (1)
and suppose nf > 1. The goal is to design a filter in order
to only detect one of the fault signal, say f1, and isolate
the residual from the other faults fi, i ∈ {2, · · · , nf}. To
this end, one can easily infer that augmenting the unknown
signal with all the faults fi (i ≥ 2) leads to a new model
that indeed addresses the goal, i.e.,

[H(p) F̃ (p)]

[
x

f̃

]
+ L(p)z + F1(p)f = 0,

where F1(p) is the first column of F (p), F̃ (p) :=
[F2(p), · · · , Fnf

(p)], and f̃ := [f2, · · · , fnf
], see [14, The-

orem 2] for more details on fault isolation.
Next, we move on to translate the nontrivial matrix poly-

nomial equations (4) to a linear programming framework.
Lemma 3.2: Let N(s) be the solution of (4), where

H(s) :=

dH∑
i=0

His
i, F (s) :=

dF∑
i=0

Fis
i,

N(s) :=

dN∑
i=0

Nis
i.

Then the conditions in (4) can equivalently be written as

N̄H̄ = 0, (5a)∥∥N̄ F̄∥∥∞ ≥ 1, (5b)

where ‖ · ‖∞ is infinite vector norm, and

N̄ :=
[
N0 N1 · · · NdN

]
,

H̄ :=


H0 H1 · · · HdH

0 · · · 0

0 H0 H1 · · · HdH
0

...
...

. . . . . . . . . 0
0 · · · 0 H0 H1 · · · HdH

 ,

F̄ :=


F0 F1 · · · FdF

0 · · · 0

0 F0 F1 · · · FdF
0

...
...

. . . . . . . . . 0
0 · · · 0 F0 F1 · · · FdF

 .
Proof: By definitions, it is easy to observe that

N(s)H(s) = N̄H̄[I sI · · · skI]′, k := dN + dH .

Moreover, in light of the linear structure of equations (4), one
can simply scale the equations and arrive at the assertion of
the Lemma.



Remark 3.3: It is straightforward to inspect that if N̄ is
a solution to (5), then so is −N̄ . Hence, the inequality (5b)
can be understood as an m different LP problems where
m = nf (dF + dN + 1) is the number of F̄ columns, and
nf is the dimension of signal f in the model (1). That is, in
each true LP problem, one can only focus on a component
of the vector N̄ F̄ and replace the inequality (5b) with

N̄ F̄ v ≥ 1, v := [0, · · · , 1, · · · , 0]′.

We close this section with the following Fact that provides
a necessary and sufficient condition for the existence of the
solution to polynomial matrix equations (4).

Fact 3.4: There exists a solution N(s) to (4) if and only
if Rank [H(s) F (s)] > Rank H(s).

Note that the formulation of Lemma 3.4 is indeed an
alternative implication of Fact 3.4, see [14, Corollary 3] for
a similar result.

B. Nonlinear Models

In this section we extend the model of (1) with a nonlinear
term E(·) as a function of unknown signal x:

E(x) +H(p)x+ L(p)z + F (p)f = 0. (6)

It is straightforward to see that the residual of the filter (3)
is obtained as

r := R(p)z = −d−1(p)N(p)
(
F (p)f + E(x)

)
. (7)

Therefore, the main objective, roughly speaking, is to reduce
the contribution of E(x) into residual (7) while increase
the residual sensitivity with respect to the fault f . For this
purpose, we propose two approaches focusing on different
terms of the residual (7). In both approaches we assume that
the denominator of the FDI filter is fixed and the main target
to design is the numerator coefficients, i.e., N(p) in (7).

Approach (I): The main objective of this approach is to
somehow increase the sensitivity of the residual (7) with
respect to the fault f . Without loss of generality, one may
extract the linear part of E(x) and assume that

lim
x→xe

∥∥E(x)
∥∥

‖x− xe‖
= 0,

where xe ∈ Rnx is an equilibrium state of the system, and
‖ · ‖ stands for the Euclidean norm of a vector. Therefore,
one may assume that the contribution of the nonlinear term
E(x) can be neglected providing that the system (6) nor-
mally works around the equilibrium point xe. From practical
perspective this could be a reasonable assumption since in
many applications a system dynamic is considerably deviated
from a nominal operating point if there exists a fault/attack
signal. In these cases it is essentially important to only detect
the fault/attack signal on time. However, since the signal
E
(
x(·)

)
passes through the FDI filter, and consequently the

derivatives of the contribution signals are also involved, it is
not clear any more if the assumption holds in view of the
residual. This issue will be addressed in the next approach.

Hence, as a first approach, one can slightly modify the
formulation in (5) and arrive at

max
N̄

∥∥N̄ F̄∥∥∞ (8a)

s.t.

{
N̄H̄ = 0∥∥N̄∥∥∞ ≤ 1

(8b)

where the objective function (8a) targets the contribution of
signal f into the residual. Let us recall that N̄ F̄ is the vector
containing all numerator coefficients of the transfer function
from signal f to residual r, i.e., N(s) in (4a). Moreover, in
a similar fashion as Remark 3.3, it is immediate to consider
the objective function (8a) essentially as an m different
LP formulations, where m is the number of F̄ columns.
Regarding the optimization constraints, we add the second
constraint in (8b) to avoid unbounded solutions. Obviously
this constraint does not loose generality as the filter R(p) in
(6) can be computed up to a scalar. It is also a classical result
that the second constraint in (8b) is indeed an LP constraint
in an augmented state space, see for instance [22, Section
5.4.3].

Approach (II): This approach is the main theoretical
contribution of the article. In contrast to existing literature on
nonlinear FDI methods, here we impose constraints on dis-
turbance signals rather than nonlinearity structure of system
dynamics. Namely, we assume that some rough information
about the disturbances pattern is available, i.e., we restrict the
disturbances to a certain family of signatures. We then aim to
control the contribution of the nonlinear term E(x) into the
residual in the presence of these disturbances. In essence, the
main objective is to train the FDI filter in order to identify
the normal behavior of the system while such disturbances
appear. For this purpose, let us fix a certain pattern for the
signal x. We approximate the mapping t 7→ E

(
x(t)

)
in

the presence of this disturbance over a given time horizon
[0, T ]. The approximation step is in fact the projection of the
function Ek

(
x(·)

)
, kth component of E

(
x(·)

)
, into the linear

vector space N := span{b0, b1, · · · , bn} where {bi(·)}ni=0 is
a basis of smooth functions for N . Let formally introduce
this step as

e(t) := E
(
x(t)

)
≈

n∑
i=0

βibi(t) = βB(t), t ∈ [0, T ] (9)

where β := [β0, · · · , βn] is a constant matrix, and B :=
[b0, · · · , bn]′ is a vector of smooth functions. Further, we
assume that the subspace N is closed under differentiation
operator p. This requirement, for instance, is satisfied for the
polynomial or Fourier basis. The aforementioned assumption
gives rise to translate the linear operator p as a matrix
operator, i.e.,

pB(t) :=
d

dt
B(t) = DB(t). (10)

Let us define re(t) := N(p)e(t). In accordance to approx-
imation (9) and operator (10), and in view of projection
into the subspace N , one can also approximate the error



of residual as follows:

re(t) ≈ N̄D̃B(t), D̃ :=


β
βD

...
βDdN

 (11)

where N̄ is defined as in Lemma 3.2, and dN is the degree
of FDI filter. Hence, it is now straightforward to formulate
the L2 norm of re as a quadratic function of the FDI filter
coefficients N̄ . Namely∥∥re∥∥2

L2
≈ N̄D̃GD̃

′
N̄

′
, Gij :=

∫ T

0

bi−1bj−1dt, (12)

where the matrix D̃ is defined as in (11) and G is a
symmetric matrix with dimension (dN + 1). Note that G
is indeed the Gram matrix of the subspace N contained in
a Hilbert space endowed with the inner product 〈f, g〉 :=∫ T

0
fg dt [21, Section 3.6]. Now we are at a place to modify

the formulation (8) in order to control the nonlinear term
contribution into the residual. To this end, we suggest the
following QP type formulation:

min
N̄

N̄QN̄
′
, Q := D̃GD̃

′
(13a)

s.t.

{
N̄H̄ = 0∥∥N̄ F̄∥∥∞ ≥ 1

(13b)

where D̃ and G are defined in (11) and (12), respectively.
Let us recall once again that in light of Remark 3.3 the
formulation (13) can be viewed as m different true QP
problem where m = nf (dF + dN + 1).

Remark 3.5: In practice it may be required to robustify
the FDI filter to more than one disturbance pattern, say
{xi(·)}ni=1. For this purpose it suffices to first compute the
matrices Qi corresponding to each of xi(·) and then solve
the QP problem in (13) with Q :=

∑n
i=1Qi.

IV. CASE STUDY: MULTI-MACHINE TWO-AREA POWER
NETWORK

In this section a multi-machine power system, based only
on frequency dynamics, is described [5]. The system is
arbitrarily divided into two control areas. The generators are
equipped with primary frequency control and each area is
under the so called Automatic Generation Control (AGC)
which adjusts the generating setpoints of specific generators
so as to regulate frequency and maintain the power exchange
between the two areas to its scheduled value.

A. System description

We consider a system comprising of n buses and g
number of generators. Using the classical generator model
every synchronous machine is modelled as constant voltage
source behind its transient reactance x′d. Therefore, for each
generator a virtual node (the so called internal generator
node) is added to represent the internal voltage source,
resulting in a system with n+ g buses. Denote by EG ∈ Cg

a vector consisting of the generator internal node voltages

EGi = |E0
Gi|∠δi for i = 1, . . . , g The phase angle of the

generator voltage node is assumed to coincide with the rotor
angle δi and |E0

Gi| is a constant. The voltages of the rest
of the nodes are included in VN ∈ Cn, whose entries are
VNi = |VNi|∠θi for i = 1, . . . , n .

Assuming that the turbine dynamics are represented by a
first order transfer function, we introduce the equations of
oscillation of generator i.

δ̇i = 2π(fi − f0),

ḟi =
f0

2HiSBi

(Pmi
− Pei −

1

Di
(fi − f0)−∆PLoadi

),

Ṗmi
=

1

Tch,i
(P 0

mi
+ ∆Ppi

+ ∆Pagc − Pmi
),

where δi (rad) and fi (Hz) represent the rotor angle and
the rotor electrical frequency respectively. Pmi (MW ) is
the generated power (output of the turbine), Pei (MW )is
the electrical consumed power and ∆PLoadi

) represents a
load deviation that may occur on the generator node. The
initial frequency steady state value is represented by f0, Hi

(sec) denotes the inertia time constant, SBi (MVA) is the
generator’s rated power of the machine and Di represents
the frequency dependency of the load. Tch,i denotes the time
constant of the turbine and P 0

mi
the initial setpoint of the

generator. The terms ∆Pm,pi
and ∆Pm,agc correspond to

the primary frequency control and the AGC respectively.
In the above equations ∆Pm,pi depends directly on the

frequency of the generator, whereas Pei and ∆Pm,agca are
related to the dynamic states via algebraic equations. Recall
that the power flows can be expressed only by the voltages
and the bus admittance matrix of the network. The objective
then is to express the power flows as a function of the voltage
of the internal node EGi . As already mentioned E0

Gi
is as-

sumed to be constant and hence the power flows will depend
only on the dynamic state δ (δ = [δ1, . . . , δg]′). Specifically,
∆Pm,agc depends on the active power exchanged between
the two areas and hence both Pei and ∆Pm,agca can be
expressed as a function of δ. To represent the system by a
set of differential equations we eliminate the algebraic states.

B. Algebraic state elimination

To remove the algebraic constraints, we retain the internal
nodes (behind the transient reactance) of the generators and
eliminate the rest of the nodes. For this purpose we assume
constant impedance loads so that they can be included in the
network admittance matrix.

Partitioning the nodal equation of the augmented network
into the injection currents (and also the node voltages) of the
n nodes of the system and the additional g internal generator
nodes we get

I = Y V ⇔
[
IG
IN

]
=

[
YGG YGN

YNG YNN

] [
EG

VN

]
,

where the bus admittance matrix Y ∈ C(g+n)×(g+n) includes
the transient reactances of the generators and the admittances



that represent the loads. The current injection to the nodes
without generation is equal to zero, i.e IN = 0. Hence,

IG = YGEG, (14a)

VN = KV EG + Y −1
NN , (14b)

where YG = YGG − YGNY
−1
NNYNG, KV = −Y −1

NNYNG.
Equations (14a) and (14b) are used to express the power

flows as a function of δ. Specifically, Pei = <(EGiIGi
∗) is

the electrical power for the generator i, and using (14a) we
get

Pei =

g∑
j=1

|E0
Gi||E0

Gj |(Bred
ij sin(δi − δj) +Gred

ij cos(δi − δj)),

where Gred
ij , Bred

ij are the real and imaginary entries of
the reduced admittance matrix YG, respectively. In general,
the active power flow on line connecting the nodes k,m is
expressed by

Pkm = <(Vk(Vk − Vm)
∗
Y ∗Gkm

),

and using (14b) is expressed as a function of δ as well.
That way the multi-machine system is described by a set of
nonlinear differential equations without algebraic constraints.

C. Two-Area frequency dynamics

In this subsection, we consider a reduced network, as
described in previous §IV-A and IV-B and focus on the
case that the is divided in two control areas. Each area
is equipped with primary and secondary frequency (AGC)
control. Let G = {i}g1 denote the set of generator in-
dices. Denote then by A1 = {i ∈ G | i in Area 1} and
A2 = {i ∈ G | i in Area 2} the set of generators that
belong to Area 1 and Area 2, respectively. Let also Ltie =
{(k,m)|k,m edges of a tie line and k ∈ A1, m ∈ A2}
where a tie line is a line connecting the two independently
controlled areas. The model of the two area power system is
described by the following set of equations.

δ̇i = 2π(fi − f0), (15a)

ḟi =
f0

2HiSBi

(Pmi − Pei(δ)−
1

Di
(fi − f0)−∆Ploadi), (15b)

Ṗm,a1 =
1

Tch,a1

(P 0
m,a1

+ va1∆P sat
p,a1

+ wa1∆P sat
agc1 − Pm,a1),

(15c)

Ṗm,a2 =
1

Tch,a2

(P 0
m,a2

+ va2∆P sat
p,a2

+ wa2∆P sat
agc2 − Pm,a2),

(15d)

∆Ṗagc1 =
∑
j∈A1

c1j(fj − f0)

+
∑
j∈A1

b1j(Pmj − Pej (δ)−∆Ploadj )

− 1

TN1

g11(δ, f)− Cp1g12(δ, f)

− K1

TN1

(∆Pagc1 −∆P sat
agc1).

∆Ṗagc2 =
∑
j∈A2

c2j(fj − f0)

+
∑
j∈A2

b2j(Pmj − Pej (δ)−∆Ploadj )

− 1

TN2

g22(δ, f)− Cp2g21(δ, f)

− K2

TN2

(∆Pagc2 −∆P sat
agc2).

where,

∆Ppi = − 1

Si
(fi − f0), (16)

∆P sat
pi =

 ∆Pmin
pi if ∆P pi ≤ ∆Pmin

pi ,
∆Ppi if ∆Pmin

pi < ∆Ppi < ∆Pmax
pi ,

∆Pmax
pi if ∆P pi ≥ ∆Pmax

pi .
(17)

∆P sat
agci =

 ∆Pmin
agci if ∆P agci ≤ ∆Pmin

agci ,
∆Pagci if ∆Pmin

agci < ∆Pagci < ∆Pmax
agci ,

∆Pmax
agci if ∆P agci ≥ ∆Pmax

agci ,

Pei =

g∑
j=1

EGiEGj (Bij sin(δi − δj) +Gij cos(δi − δj)) ,

g11(δ) = ∆PT12 =
∑

(i,j)∈Ltie

Pij − PT0
12
,

g22(δ) = ∆PT21 =
∑

(i,j)∈Ltie

Pji − PT0
21
,

with,

Pij = |VNi ||VNj |
(
Gij cos(θi − θj) +Bij sin(θi − θj)

)
,

and g12(δ) = ∆ṖT12
, g21(δ, f) = ∆ṖT21

. The power flows
Pij correspond to the tie lines and hence Gij and Bij are
based to the initial network admittance matrix YNN . Note
that in (15) i ∈ G, a1 ∈ A1 and a2 ∈ A2.

Inside each area only some of the generators are equipped
with primary frequency control. To encode this we introduce
the binary vector v, see (15c), (15d). The primary frequency
control is activated independently and locally for each gener-
ator with objective to regulate the frequency by adjusting the
generating power as described by (16). The control signal is
subjected to saturation limits as shown in (17).

AGC utilizes frequency measurements from its control
area and power flow measurements on the tie lines so as to
bring their values back to their operating setpoints (i.e f0 for
the frequency, ∆P 0

Tij for the total active power exchange).
AGC centralized signal is distributed to some generators
inside its control area. The participation of the generators in
the AGC action is represented by a weighted vector w (see
15c,15d), whose elements are based on the contracts that the
generation utilities have established with the Transmission
System Operator (TSO) of the area. The AGC signal is also
subjected to saturation limits. Constants c and b are based
on the weighted frequency measurement that AGC gets as
an input. TN , Cp and K are design constants for the AGC
control loop. For details on the AGC modelling one should
refer to [11] and [4].



The demonstration of the FDI methodology will be based
on a undesirable signal U additive to the AGC signal. For
instance, if the attack signal is imposed in Area i, equation
(15c) or (15d) will be modified as

Ṗm,ai =
1

Tch,ai

(P 0
m,ai

+ vai∆P sat
p,ai

+ wa1(∆P sat
agci

+ U)− Pm,ai ),

The described model can be compactly written as{
Ẋ(t) = h(X(t)) +Bdd(t) +Bff(t)

Y (t) = CX(t)
(18)

where X := [{δi}g1, {fi}
g
1, {Pm,a1

}a1∈A1
, {Pm,a2

}a1∈A1
,

∆Pagc1 ,∆Pagc2 ]′, d := {∆PLoad(t)}g1 is the unknown
load disturbance, and f(t) := U corresponds to the fault
signal we want to detect. The measurement state Y (·) is
assumed to be Y := [{fi}g1, {Pm,a1}a1∈A1 , {Pm,a2}a1∈A1 ]′.
The nonlinear function h(·) and the constant matrices Bd,
Bf and C can be easily obtained by the mapping between
the analytical model (15) and (18).

The model can be then written in the form of (6) by

defining x :=

[
X −Xe

d

]
, z := Y − CXe and

E(x) :=

[
h(X)−A(X −Xe)

0

]
, L(p) :=

[
0
−I

]
,

H(p) :=

[
−p+A Bd

C 0

]
, F (p) :=

[
Bf

0

]
,

where Xe is the equilibrium of (15), i.e., h(Xe) = 0, and
A := ∂h

∂X

∣∣
X=Xe

. The following section will highlight via
simulations the security and reliability of the filter.

V. SIMULATION RESULTS

A. Test System

To illustrate the FDI methodology we employed the IEEE
118-bus system. The data of the model are retrieved from
a snapshot available at [1]. It includes 19 generators, 177
lines, 99 load buses and 7 transmission level transformers.
To render the model in a more realistic configuration, the
19 more transformers are added connecting the medium-
voltage generator buses (6.9 24 kV) with the high voltage
transmission level buses (400 kV). Moreover, since there
were no dynamic data available, typical values provided by
[3] were used for the simulations. Figure 1 shows a single-
line diagram of the network and the boundaries of the two
control areas that is divided into. The nonlinear frequency
model of the network was developed according to §IV so as
to be the test case for the filter described in §III.

B. Diagnosis filters

In this part we apply the FDI schemes proposed in (8) and
(13) to detect the cyber attack on the AGC of the first area, in
the presence of load deviations ∆PLoad in all nodes. The fil-
ter must be insensitive to the normal situation of the network
operating conditions (including acceptable load deviations),
and highly reflects any undesirable intrusion in the AGC

Area 1

Area 2

Fig. 1. IEEE 118-bus system divided into two control areas

command. That is, as long as available measurements are
consistent with the normal settings of the power network and
small deviations are normally caused due to load deviations,
the filter does not show anything on the monitor. However,
once an attack signal U is injected to the AGC, the filter
alarms in a few seconds from the time it started. In the
following simulations we fix the degree of filters as dN = 7,
and solve the equations introduced in (8) and (13) using
YALMIP toolbox [20].
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(a) Load deviation at node 5 (dash) and AGC attack (solid)
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Fig. 2. Results of the FDI filter obtained in the first approach

Figure 2 illustrates the results of the FDI filter obtained
from the LP formulation in (8). Fig.2.a depicts a load
deviation in node 5 (∆PLoad5

) at time t = 1, and an attack
signal in the first area AGC at time t = 10. As demonstrated
in Fig.2.b, the FDI filter works very well while the inputs are
measurements from an ideal linearized model. However, as
shown in Fig.2.c, the filter is highly sensitive to nonlinearities
and immediately reacts to the load deviation at node 5.

In the second simulation, we aim to overcome the non-
linearities contributions into the residual with the aid of QP
formulation of (13). To this end, we choose the polynomial
functions up to degree n = 40 as the basis of approximation
scheme. Namely, bi(t) := ti for i in {0, 1, · · · , n} and

B(t) := [1, t, · · · , tn]′.

Moreover, in light of polynomial basis, one can simply
deduce that the differentiation matrix D and Gram matrix



G, introduced respectively in (10) and (12), are

D =


0 0 · · · 0 0
1 0 · · · 0 0
0 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · n 0

, Gij =
T i+j−1

i+ j − 1
,

where we select T = 10 as the approximation horizon.
We further assume step functions as particular signatures
of load deviations which individually appear at each node.
Therefore, each load deviation results in a certain pattern of
e(t) introduced as in (9). For the approximation step in (9)
and computation of matrix β, we refer the reader to [21,
Chapter 3].
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(a) Load deviation at node 5 (dash) and AGC attack (solid)
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Fig. 3. Results of the FDI filter obtained in the second approach

Figure 3 illustrates the results of the FDI filter obtained
from the QP formulation in (8). As demonstrated in Fig.2.c,
not only is the residual sensitive to the attack signal in the
first area, but also the contribution of nonlinear terms in the
presence of load deviation is significantly decoupled.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

We proposed a tractable algorithm to design an FDI
residual generator for nonlinear systems. The technique has
been formulated as a family of QP problems that the number
of problems is linear with respect to the degree of FDI filter.
To illustrate the performance of our theoretical results, we
applied the proposed diagnosis filter to a two-area power
system so as to detect a cyber intrusion in the AGC signal.
It was shown that the filter which takes into account the
nonlinear terms succeeds to identify the intrusion whereas
the filter neglecting the nonlinear contributions fails. In future
work, we plan to test the effectiveness of the proposed
approach on a large scale power network, including also volt-
age dynamics. Moreover, we aim to extend the framework
to address a larger class of disturbances in a probabilistic
fashion.
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