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Abstract— We consider the problem of regulating a genetic
toggle switch by means of an in silico feedback control loop.
To achieve this, we first introduce two basic notions of motion
planning, and then establish a connection to a class of stochastic
optimal control problems concerned with sequential stopping-
times. To characterize the desired set of initial conditions, in the
context of controlled diffusion processes, we propose a sequence
of partial differential equations for which the first one has a
known boundary condition, while the boundary conditions of
the subsequent ones are determined by the solutions to the
preceding steps. We then formulate the control of a bistable
system as stochastic motion planning problem, and derive the
closed-loop control law that maintains the system inside a
prespecified region of its state space. Finally, to provide an
autonomous feedback policy, we establish a connection to an
eigenvalue problem that describes the asymptotic exit-time of
the diffusion process.

I. INTRODUCTION AND PROBLEM STATEMENT

The advances in single-cell experimental techniques dur-
ing the last decade have revealed that bistability underlies
many biological processes related to different aspects of
cellular decision-making. A bistable system can be found
in two distinct and mutually exclusive states, while being
able to switch from one state to the other under the in-
fluence of a transient external signal. Due to the presence
of stochastic fluctuations in cellular components, biological
bistable systems can also switch states randomly under
the influence of molecular noise. Since the state of each
individual cell is randomly determined, such systems can
give rise to phenotypic heterogeneity within isogenic cell
populations [1].

Control of cellular behavior has recently gained popularity
as an approach to generating cells with prescribed target
functions but, most importantly, as a means to better under-
standing cellular processes that are partially known [2]. The
technique of in silico control of biological systems [3], [4],
[5] has been proposed as a complement to synthetic feedback
control schemes implemented inside cells, and makes possi-
ble the precise and fast manipulation of intracellular states to
achieve various control objectives. In this work we examine
the applicability of in silico feedback on single cells for the
control of a small bistable biological system with stochastic
dynamics. Control of naturally occurring bistable systems
can provide useful insights into their functional organization,
as well as enable the generation and study of completely
different phenotypes, by driving the cells away from the
commonly observed states.

We consider a toy system model inspired by the first
synthetically engineered two-gene toggle switch [6], which
can be thought of as an abstraction of several cellular (and
more complex) bistable systems. Assuming that the molec-
ular populations involved are relatively small, our system
is governed by stochastic dynamics that enable it to flip
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randomly between the basins of attraction of the stable equi-
libria of the deterministic equations. Our feedback control
objective is to keep the system for a given amount of time
away from both of these equilibria, in a region that contains
the unstable deterministic equilibrium. To achieve this, we
use tools from the theory of stochastic motion planning
for systems described by stochastic differential equations,
recently introduced in [7], and described in more detail in
Section II. After the presentation of the main theoretical
tools, we evaluate the performance of our controllers on the
toggle switch model in Section III, and discuss the strengths
and weaknesses of our approach.

II. STOCHASTIC MOTION PLANNING

The aim of this section is to introduce different stochastic
motion planning problems, which involve a controlled pro-
cess visiting certain subsets of the state-space while avoiding
others in a sequential fashion. The main objective is to
determine the set of initial conditions for which there exists
an admissible policy to execute the desired maneuver with
probability at least as much as some pre-specified value. To
this end, we first establish a connection from this initial con-
dition set to a class of stochastic optimal control problems.
In the following, we propose a PDE characterization of the
corresponding value functions, which allows us to invoke
existing PDE solvers to numerically compute the desired
initial sets. Here we skip all the proofs and refer interested
readers to our recent work [7] for detailed analysis and more
generalized settings.

A. General Setting and Definitions

Consider a filtered probability space (Ω,F ,F,P) whose
filtration F := (Fs)s≥0 is generated by a d-dimensional
Brownian motion (Ws)s≥0 and enlarged by its right-
continuous P-completion; – the usual conditions of com-
pleteness and right continuity [8, p. 48]. Let U ⊂ Rm be a
control set, and let Ut denote the subset of F-progressively
measurable maps into U that is independent of the Brownian
motion up to time t (W[0,t]). The basic object of our
study concerns the Rn-valued stochastic differential equation
(SDE)

dXs = f(Xs, us) ds+ σ(Xs, us) dWs, s ≥ t, (1)

where Xt = x given, f : Rn×U −→ Rn and σ : Rn×U −→
Rn×d are measurable maps, and u := (us)s≥0 ∈ Ut.

It is known that under some mild assumptions (Lipschitz
continuity of f and σ) there exists a unique strong solution
to SDE (1). Let us denote it by

(
Xt,x;u
s

)
s≥t [9].

Given sets (Wi, Gi) ∈ B(Rd) × B(Rd) for i ∈
{1, · · · , n}, we are interested in a set of initial conditions
(t, x) in S := [0, T ]×Rd such that there exists an admissible
strategy u ∈ Ut steering the process Xt,x;u

· through the sets
(Wi)

n
i=1 while visiting (Gi)

n
i=1 in a pre-assigned order. In

fact, Wi and Gi stand for “Way” and “Goal” respectively.
One may pose this objective from different perspectives



based on different time scheduling for the excursions be-
tween the sets. We formally introduce some of these notions
which will be addressed throughout this article.

Definition 2.1 (Motion-Planning Events): Consider a
fixed initial condition (t, x) ∈ S and admissible policy
u ∈ Ut. Given a sequence of pairs (Wi, Gi)

n
i=1 ⊂

B(Rd) × B(Rd) and horizon times (Ti)
n
i=1 ⊂ [t, T ], we

introduce the following motion-planning events:{
Xt,x;u
· |=

[
(W1  G1) ◦ · · · ◦ (Wn  Gn)

]
≤T

}
:= (2a){

∃(si)ni=1 ⊂ [t, T ]
∣∣ Xt,x;u

si ∈ Gi and

Xt,x;u
r ∈Wi \Gi, ∀r ∈ [si−1, si[, ∀i ≤ n

}
,{

Xt,x;u
· |= (W1

T1−→ G1) ◦ · · · ◦ (Wn
Tn−→ Gn)

}
:= (2b){

Xt,x;u
Ti

∈ Gi and Xt,x;u
r ∈Wi, ∀r ∈ [Ti−1, Ti], ∀i ≤ n

}
,

where in the above definitions s0 = T0 := t.
The set in (2a), roughly speaking, contains the events in

which the trajectory Xt,x;u
· , initialized at (t, x) ∈ S and

controlled via u ∈ Ut, succeeds in visiting the sets (Gi)
n
i=1

in a certain order, while the entire duration between the two
visits to Gi−1 and Gi is spent in Wi, all within the time
horizon T . In other words, the journey from Gi−1 to the next
destination Gi must belong to the way Wi for all i. In the
case of (2b), the set of paths is more restricted in comparison
to (2a). Indeed, not only is the trajectory confined to the ways
Wi, but also there is a time schedule (Ti)

n
i=1 that a priori

forces the process to be at the goal sets Gi at the specific
times (Ti)

n
i=1.

From the technical standpoint, if the target set Gi is not
closed, then it is not difficult to see that there could be some
continuous transitions through the boundary of the goal Gi
that are not admissible in view of the definition (2a) since
the trajectory must reside in Wi \Gi for the whole interval
[si−1, si[ and just hit the set Gi at the time si. Notice that
we do not need to consider this issue for the set in definition
(2b) since in this case the trajectory only visits the sets Gi
at the specific times Ti while any continuous transition and
maneuver inside the target sets Gi are allowed. In order to
address the aforementioned issue, we may impose the sets
(Gi)

n
i=1 ⊂ B(Rd) are all closed.

The events introduced in Definition 2.1 depend, of course,
on the control policy u ∈ Ut and initial condition (t, x) ∈ S.
The central objective of this work is to determine the set of
initial conditions x ∈ Rd for which there exists an admissible
policy u such that the probability of the above path-planning
events is higher than a certain threshold. To this end, we
formally introduce these sets as follows:

Definition 2.2 (Motion-Planning Initial Set): Consider a
fixed initial time t ∈ [0, T ]. Given a sequence of set pairs
(Wi, Gi)

n
i=1 ⊂ B(Rd)×B(Rd) and horizon times (Ti)

n
i=1 ⊂

[t, T ], we define the following motion-planning initial sets:

PP
(
t, p; (Wi, Gi)

n
i=1, T

)
:=
{
x ∈ Rd

∣∣ ∃u ∈ Ut : (3a)

P
{
Xt,x;u
· |=

[
(W1  G1) ◦ · · · ◦ (Wn  Gn)

]
≤T
} > p

}
,

P̃P
(
t, p; (Wi, Gi)

n
i=1, (Ti)

n
i=1

)
:=
{
x ∈ Rd

∣∣ ∃u ∈ Ut : (3b)

P
{
Xt,x;u
· |= (W1

T1−→ G1) ◦ · · · ◦ (Wn
Tn−→ Gn)

}
> p
}
.

B. Connection to Stochastic Optimal Control Problems

In this subsection we establish a connection from stochas-
tic motion-planning initial sets PP and P̃P, defined in

Definition 2.2, and a class of stochastic optimal control
problems involving stopping times. For this purpose let us
introduce a sequence of random times that corresponds to
the times that the process Xt,x;u

· for the first time exits from
the sequence of sets one after another in a certain order:

Definition 2.3: Given an initial condition (t, x) ∈ S and a
sequence of measurable sets (Ai)

n
i=k ⊂ B(Rd), the sequence

of random times
(
ΘAk:n
i

)n
i=k

is called the sequential exit-
time through the set Ak to An, and defined1 by

ΘAk:n
i (t, x) := inf

{
r ≥ ΘAk:n

i−1 (t, x) : Xt,x;u
r /∈ Ai

}
,

where the initial random time is ΘAk:n

k−1 (t, x) := t.

Note that the sequential exit-time ΘAk:n
i depends on the

control policy u in addition to the initial condition (t, x),
but here and later in the sequel we shall suppress this
dependence. For notational simplicity, we also drop (t, x)
in the subsequent sections. Consider the value functions
V, Ṽ : S→ [0, 1] as follows:

V (t, x) := sup
u∈Ut

E

[
n∏
i=1

1Gi

(
Xt,x;u
ηi

)]
, (4a)

Ṽ (t, x) := sup
u∈Ut

E

[
n∏
i=1

1Gi∩Wi

(
Xt,x;u
η̃i

)]
, (4b)

with the stopping times ηi := ΘB1:n
i ∧ T , Bi := Wi \ Gi,

η̃i := ΘW1:n
i ∧Ti, where ΘW1:n

i ,ΘB1:n
i are the sequential exit-

times in the sense of Definition 2.3, and ∧ is the minimum
operator. The main result of this subsection, Proposition 2.4
below, establishes a connection from the sets PP, P̃P and
superlevel sets of the value functions V and Ṽ .

Proposition 2.4: Fix a probability level p ∈ [0, 1], a
sequence of set pairs (Wi, Gi)

n
i=1 ⊂ B(Rd) × B(Rd), an

initial time t ∈ [0, T ], and intermediate times (Ti)
n
i=1 ⊂

[t, T ]. Then
PP
(
t, p; (Wi, Gi)

n
i=0, T

)
=
{
x ∈ Rd

∣∣ V (t, x) > p
}
. (5)

Moreover, suppose (Wi)
n
i=1 ⊂ B(Rd) are open. Then,

P̃P
(
t, p; (Wi, Gi)

n
i=0, (Ti)

n
i=1

)
=
{
x ∈ Rd

∣∣ Ṽ (t, x) > p
}
, (6)

where the value functions V and Ṽ are as defined in (4).
Remark 2.5 (Mixed Motion-Planning Events): In this ar-

ticle we focus on two sets of events as introduced in
Definition 2.1, however, it might be of interest to consider an
event that consists of a mixture of events in (2), e.g., (W1  

G1)≤T1
◦ (W2

T2−→ G2). One can observe that essentially
the same analytical techniques as the ones proposed here
can be employed to address these mixed motion planning
objectives, and establish a connection to a class of optimal
control problems with some appropriate sequential stopping
times. We shall provide an example of this nature in Section
III.

C. PDE Characterization

In the preceding subsections a link from the stochastic
motion-planning initial sets, Definition 2.2, and the super-
level sets of the value functions (4) was established. In this
part, under some technical assumptions, we propose a PDE
characterization of the value function (4) so as to numerically
compute the desired initial sets PP and P̃P. The approach

1By convention, inf ∅ =∞.



results in a series of Hamilton-Jacobi-Bellman PDE’s, where
each PDE is understood in the discontinuous viscosity sense
with some boundary conditions; for the general theory of
viscosity solutions we refer to [10] and [11]. To this end we
proceed with a more abstract setting for which both value
functions (4) can be addressed.

Let (Ti)
n
i=1 ⊂ [0, T ] be a sequence of times, (Ai)

n
i=1 ⊂

B(Rn) be a family of open sets, and payoff functions `i :
Rr → R that are measurable and bounded, i = 1, . . . , n. We
define the sequence of value functions Vk : [0, T ]×Rd → Rd,
k = 1, . . . , n,

Vk(t, x) := sup
u∈Ut

E
[ n∏
i=k

`i
(
Xt,x;u

τk
i

)]
, (7)

where τki (t, x) := Θ
Ak:n
i (t, x) ∧ Ti in the sense of Definition

2.3. Notice that the sequential exit-times of the value function
Vk correspond to an excursion through the sets (Ai)

n
i=k

irrespective of the first (k − 1) sets. It is straightforward
to observe that the value functions V and Ṽ in (4) are
particular cases of the value function V1 defined as in (7)
for an appropriate selection of the sets (Ai)

n
i=1, functions

(`i)
n
i=1, and intermediate times (Ti)

n
i=1.

Assumption 2.6: We stipulate that
a. The diffusion term σ of the SDE (1) is uniformly non-

degenerate, i.e., there exists δ > 0 such that for all x ∈
Rd and u ∈ U, ‖σσ>‖ > δ.

b. The open sets Ai satisfy the exterior cone condition;
for mathematical explanation we refer to [7, Assumption
5.2].

c. (`i)
n
i=1 are all lower semicontinuous.

Definition 2.7 (Dynkin Operator): Given u ∈ U, we de-
note by Lu the Dynkin operator (also known as the infinites-
imal generator) associated to the controlled diffusion (1) as

LuΦ(t, x) := ∂tΦ(t, x) + f(x, u).∂xΦ(t, x)

+
1

2
Tr[σσ>(x, u)∂2xΦ(t, x)],

where Φ is a real-valued function smooth on the interior
of S, with ∂tΦ and ∂xΦ denoting the partial derivatives with
respect to t and x respectively, and ∂2xΦ denoting the Hessian
matrix with respect to x. We refer to [12, Theorem 17.23]
for more details on the above differential operator.
The following Theorem is the main result of this section and
we refer to [7, Section 5] for the detailed proofs and further
discussion on numerical issues.

Theorem 2.8: Consider the system (1), and suppose that
Assumptions 2.6 hold. Let the value functions Vk : S→ Rd
be as defined in (7). Then, for all k in {1, · · · , n} with a
convention Vn+1 ≡ 1, we have{
− sup

u∈U
LuVk(t, x) = 0 on [0, Tk[×Ak,

Vk(t, x) = Vk+1(t, x)`k(x) on [0, Tk]×Ac
k

⋃
{Tk} × Rd

Notice that Theorem 2.8 allows us to obtain the value
function Vk, given value function Vk+1, by solving a certain
PDE with some boundary (possibly both terminal and lateral)
conditions. Hence, in light of Vn+1 ≡ 1, one can infer that
Theorem 2.8 suggests a series of PDE equations for which
the first one has known boundary condition `n, while the
boundary conditions of the subsequent steps are determined
by the solution of the preceding PDE step, i.e., Vk+1 provides
boundary conditions for the PDE corresponding to the value
function Vk. Let us highlight that the basic motion planning
maneuver involving only two sets is effectively the same as

the first step of this series of PDEs and was studied in our
earlier work [13], [14].

III. APPLICATION TO THE TOGGLE SWITCH

As described in Section I, we consider the toggle switch
model structure proposed in [7, Section 6] that describes the
dynamics of a system consisting of two mutually repress-
ing genes. Starting from a continuous time Markov chain
description of the process [15], we consider its Langevin
approximation given by the following set of stochastic dif-
ferential equations:

dXt =
(
f(Yt,ux)− µxXt

)
dt+

√
f(Yt,ux)dW 1

t (8a)

+
√
µxXtdW

2
t ,

dYt =
(
g(Xt,uy)− µyYt

)
dt+

√
g(Xt,uy)dW 3

t (8b)

+
√
µyYtdW

4
t ,

where Xt and Yt are the concentrations of the two tran-
scription factors with the respective degradation rates µx
and µy; (W i

t )t≥ are independent standard Brownian motion
processes. The production rate functions f and g are defined
by Hill functions as follows [16]:

f(y, u) :=
k1θ

n1
1

yn1 + θn1
1

u, g(x, u) :=
k2θ

n2
2

xn2 + θn2
2

u, (9)

where θi are the threshold of the production rate with
respective Hill exponents ni, and ki are the production rate
scaling factors. The parameter u plays the role of an external
control signal that can affect the production rate of a gene
(e.g., through a light-sensitive response element [3]). The
control signals ux and uy are assumed to take values in the
sets Ux := [ux, ux] and Uy := [uy, uy] respectively, and to
be fixed to a nominal value û when no control is applied.
The model parameters are chosen in a way such that when
u ≡ û the system without noise exhibits two stable equilibria
at za and zc, separated by an unstable one at zb. Note that
the model equations are well-posed only when Xt, Yt ≥ 0
(a common characteristic of Langevin approximations [17]).
This issue will be taken into account in the design of the
control objective.
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Fig. 1. The setA is an avoidance region contained in the region of attraction
of the stable equilibria za and zc, B is the target set around the unstable
equilibrium zb, and C is the maintenance margin.

A. Motion-Planning Results

In this example we consider system (8) with the rate
functions (9) along with the following parameters: θi = 40,
µi = 0.04, ki = 4 for both i ∈ {1, 2}, and the exponents



n1 = 4, n2 = 6, where the nominal control value is
û := 1. Figure 1 shows the locations of the system equilibria
under this parametrization. Our objective is to first steer the
number of proteins towards a target set around the unstable
equilibrium by synthesizing appropriate input signals ux
and uy within a certain time horizon, say T1. During this
task we opt to avoid the region of attraction of the stable
equilibria as well as low numbers for each protein; the
latter justifies our model being well-posed in the region
of interest. The aforementioned target and avoid sets are
denoted, respectively, by the closed sets B and A in Figure 1.
In the second phase of the task, once the trajectory visits the
target set B, it is required to keep the molecular populations
within a slightly larger margin around equilibrium zb for
some time, say T2; Figure 1 depicts this maintenance margin
by the open set C.

Therefore, the motion planning consists of two parts:
reaching the target set B while avoiding the set A within
the certain horizon T1, and staying in the set C for a certain
time T2 after visiting the set B for the first time. In view of
motion-planning events introduced in Definition 2.1, the first
phase of the path can be expressed as (Ac  B)≤T1

, and the
second phase as (C

T2−→ C); see (2) for detailed definitions
of these symbols. By defining the joint process Zt,z;u

· :=[
Xt,x;u
· , Y t,y;u

·
]
, with the initial condition z := (x, y), the

desired excursion is a combination of the events studied in
the preceding sections and, with a slight abuse of notation,
can be expressed by{

Zt,z;u· |= (Ac  B)≤T1
◦ (C

T2−→ C)
}
.

The above event depends, of course, on the initial condition
(t, x) and control policy u, and the objective is to maximize
its probability over all admissible policies u := [ux,uy]. The
desired path is not exactly in the framework of Definition 2.1
but, nonetheless, one can invoke the same ideas as in Section
II and introduce the following value functions:

V1(t, z) := sup
u∈Ut

E
[
1B
(
Zt,z;u
τ1
1

)
1C
(
Zt,z;u
τ1
2

)]
, (10a)

V2(t, z) := sup
u∈Ut

E
[
1C
(
Zt,z;u
τ2
2

)]
, (10b)

where τ11 and τ22 are defined in a same spirit as (7) with given
sets A1 := (A ∪ B)c and A2 := C. However, the stopping
time τ12 requires a slight modification so as to address the
combination of both motion-planning events introduced in
Definition 2.1: τ12 := ΘA1:2

2 ∧ (τ11 + T2).
The solution of our motion planning objective is the

value function V1 in (10a), which in view of Theorem 2.8
is characterized by the Dynkin differential operator in the
interior of [0, T1[×(A ∪ B)c. However, we need first to
solve numerically for the auxiliary value function V2 in
(10b) in order to provide boundary conditions for the PDE
corresponding to V1 by

V1(t, z) = 1B(z)V2(t, z), (11)

for all (t, z) in [0, T1]× (A∪B)
⋃
{T1}×Rn. It is straight-

forward to observe that the boundary condition for the value
function V2 is

V2(t, z) = 1C(z),

for (t, z) in [0, T1 + T2]×Cc
⋃
{T1 + T2} ×Rn. Therefore,

we need to solve the PDE of V2 with the above boundary
condition backward from the time T1 + T2 to the time T1,

and then at time T1 restrict the value function V2 onto the set
B to provide boundary conditions for the value function V1.
Thus, the value function V1 can be computed via solving the
same PDE from T1 to 0 but along with different boundary
conditions provided by the preceding step. According to
Definition 2.7 for any smooth function φ := φ(t, x, y) the
Dynkin operator Lu can be simplified to
sup
u∈U
Luφ(t, x, y)

= max
u∈U

[
∂tφ+ ∂xφ

(
f(y, ux)− µxx

)
+ ∂yφ

(
g(x, uy)− µyy

)
+

1

2
∂2
xφ
(
f(y, ux) + µxx

)
+

1

2
∂2
yφ
(
g(x, uy) + µyy

)]
= ∂tφ−

(
∂xφ−

1

2
∂2
xφ
)
µxx−

(
∂yφ−

1

2
∂2
yφ
)
µyy

+ max
ux∈[ux,ux]

[
f(y, ux)

(
∂xφ+

1

2
∂2
xφ
)]

+ max
uy∈[uy,uy ]

[
g(x, uy)

(
∂yφ+

1

2
∂2
yφ
)]
.

Let us introduce δix := ∂xVi + 1
2
∂2
xVi and δiy := ∂yVi + 1

2
∂2
yVi.

On account of Theorem 2.8 and linearity of the drift terms in
u, one can propose an optimal policy in terms of derivatives
of the value functions V1 and V2 in (10), respectively, for
the first and second phase of the motion:

u∗x(t, x, y) =

{
ux(t, x, y) if δix(t, x, y) > 0,
ux(t, x, y) if δix(t, x, y) ≤ 0,

(12a)

u∗y(t, x, y) =

{
uy(t, x, y) if δiy(t, x, y) > 0,
uy(t, x, y) if δiy(t, x, y) ≤ 0,

(12b)

where i ∈ {1, 2} corresponds to the phase of the path.

(a) V2 in case of full controllability
over both production rates.

(b) V2 in case of half controllabil-
ity over only the production rate of
protein x.

Fig. 2. The value function V2 as defined in (10b) corresponding to
probability of staying in C for 120 time units.

(a) V1 in case of full controllability
over the production rates.

(b) V1 in case of inability to increase
the production rate of protein y.

Fig. 3. The value function V1 as defined in (10a) corresponding to
probability of staying in C for 120 time units, once it reaches B while
avoiding A within 60 time units.

In the sequel we investigate two scenarios: first, when full
control over both production rates is possible, i.e., ux =



uy = 0 and ux = uy = 2; second, when we only have access
to the production rate of protein x, i.e., uy = uy = û. Figure
2 depicts the probability distribution of staying in set C
within the time horizon T2 = 120 time units 2 in terms of the
initial conditions (x, y) ∈ R2. V2 is zero outside set C, as the
process has obviously left C if it starts outside it. Figures 2(a)
and 2(b) demonstrate the first and second control scenarios,
respectively. Note that in the second case the probability of
success dramatically decreases in comparison with the first.
This result indicates the importance of full controllability of
the production rates for the achievement of the given control
objective.

Figure 3 depicts the probability of successively reaching
set B within the time horizon T1 = 60 time units and
staying in set C for T2 = 120 time units thereafter. Since
the objective is to avoid set A, the value function V1 takes
zero value on A. Figures 3(a) and 3(b) demonstrate the
first and second control scenarios, respectively. It is easy
to observe the non-smooth behavior of the value function
V1 on the boundary of set B in Figure 3(b). This is indeed
a consequence of the boundary condition explained in (11).
All simulations in this subsection were obtained using the
Level Set Method Toolbox [18] (version 1.1), with a grid
121× 121 in the region of simulation.

B. Autonomous Feedback Policy

As pointed out earlier, in the process of solving the
corresponding PDEs of value functions Vi, one can compute
the optimal time-varying feedback controls (12). However,
it is of practical interest to introduce a suboptimal but au-
tonomous (time-invariant) feedback control for the respective
objectives. For this purpose, during the first phase of the
path, (Ac  B)≤T1 , one can employ a heuristic approach
which basically assigns a control action to the state (x, y)
for which the value function V1 crosses a certain probability
level p0 ∈ (0, 1) for the first time while the corresponding
PDE is computed backward in time. Notice that the threshold
level p0 essentially can be viewed as a design parameter that
indicates the trade-off between a direct way towards the goal
versus the risk of hitting the obstacles; for more details on
this idea see [19].
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Fig. 4. Asymptotic exit-rate λ∗ introduced in (13) for different scenarios

The objective of the second phase, (C
T2−→ C), is to stay

in set C for a given amount of time. The probability of such
an event obviously tends to zero in long-run (as T2 goes to
infinity), due to the non-degeneracy of the diffusion terms
(Assumption 2.6.a.) and the unboundedness of the noise.
In order to synthesize an autonomous feedback policy to

2Notice that the half-life of each protein is assumed to be 17.32 time
units
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Fig. 5. Autonomous feedback control policies for the two different control
scenarios. White and black regions denote the lower and upper bounds of
the control sets respectively, while grey indicates the inactive controller.

keep the process inside C, one may aim to minimize the
asymptotic rate with which the process exits C. Formally
speaking, this suggests minimizing

λ := − lim sup
t→∞

1

t
logP

(
τC > t

)
, (13)

where τC is the first exit-time from the set C, and is the
same as ΘA2:2

2 used for the definition of V2 in (10b). Notice
that in general λ could be a function of initial condition.
However, it can be shown that the tail of the distribution of
τC should be independent of the starting state of the process,
which has been studied in literature in the context of quasi-
stationary distributions [20], [21]; hence, the initial state is
omitted from the notation. In this sense, τC has the same tail
as the stopping time ΘA2:2

2 used for the definition of V2 in
(10b). As shown in [22] for controlled diffusion processes,
under some mild assumptions, there exist an optimal exit-rate
λ∗ as defined in (13) and a corresponding twice differentiable
function ψ∗ : C → [0, 1] such that a Markov control u∗

is optimal if and only if u∗ is a measurable selector of
argmax

u∈U
(Luψ∗), where ψ∗ is the unique solution (up to a

scalar multiple) of the following eigenvalue problem:

−Lu∗(x,y)ψ∗(x, y) = λ∗ψ∗(x, y), ∀(x, y) ∈ C. (14)

Let us highlight that the Dynkin operator introduced in Defi-
nition 2.7 is slightly different than the extended generator of
[22]. However, since the eigenfunction ψ∗ is time-invariant,
then ∂tψ∗ = 0, and consequently the implication of [22] holds
for our problem in (14).

Therefore, from the asymptotic exit-rate (13) perspective,
eigenfunction ψ∗ can be used to determine the optimal
autonomous feedback policy u∗. Notice that in problem



(14) the eigenfunction ψ∗ can be determined up to a scalar
multiple, i.e., its shape would be enough to form the optimal
feedback policy via u∗ ∈ argmax

u∈U
Luψ∗. To the best of our

knowledge, there is no explicit numerical technique to tackle
problem (14). Nevertheless, one can observe that if during
the process of solving the PDE of Theorem 2.8 backwards in
time the value function V2 gets shape-wise saturated, then the
corresponding PDE turns into the eigenvalue problem (14)
as t → ∞, and consequently the shape and decay rate of
the solution should approximate ψ∗ and λ∗, respectively. As
an illustration, Figures 2 depict the eigenfunction ψ∗ for the
case of two and one controlled production rate scenarios de-
scribed in the preceding subsection. In fact, starting from the
terminal condition 1C , the PDE solutions quickly transform
into the shapes depicted in Figures 2, and thereafter only
decay exponentially over time with a rate equal to the optimal
exit rate λ∗. Figure 4 depicts the decay of V2(0, zb) versus
the final time T2 for three different control scenarios: full and
partial control of production rates, as defined in Subsection
III-A, as well as the case in which neither of the production
rates is controlled, i.e., ux = uy ≡ 1. As expected, the
asymptotic decay rate of V2(0, zb) is smallest when both
genes can be controlled and largest when no control is used.

Returning to the autonomous feedback policy calculation,
using the eigenfunctions shown on Figure 2 in conjunction
with (12), one can propose a bang-bang feedback control for
set C that only takes the extremum values of the control sets.
It then suffices to restrict this policy to set B and concatenate
with the feedback control introduced in the preceding part
so as to derive one autonomous feedback policy for the
objective of Subsection III-A. Figure 5 demonstrates the
autonomous feedback policies obtained in this manner for
the two controllers and the different control scenarios. The
corresponding region for each extremum value is depicted by
a certain color code in Figure 5. Figures 5(a) and 5(b) show
the optimal feedback control for the case of two controlled
production rates. Similarly, Figures 5(c) and 5(d) depict the
feedback policy when only ux can be controlled (for this
reason, in Figure 5(d) the production rate of protein Y is
fixed to the nominal value and uniformly colored).

IV. CONCLUSION AND FUTURE DIRECTIONS

In this work, we have approached the control problem for a
small toggle switch model within the framework of stochastic
motion planning. Assuming that production rates for one or
two genes can be controlled externally within certain bounds,
we calculated the time-invariant feedback control laws that
achieve the prescribed objective of keeping the system within
a region that contains its unstable equilibrium and evaluated
their performance. Our results suggest that control of both
genes is necessary to steer and keep the system in the desired
set with high probability for a significant amount of time,
and serves as a first proof of concept for the application of
feedback control on a bistable biological system. Further test-
ing of different control configurations can be accomplished
relatively easily using our approach.

The generality and flexibility of the stochastic motion
planning permits the formulation of quite complex control
tasks, that can be translated into the solution of a sequence
of PDEs, which in turn completely characterize the proba-
bilistic properties of the resulting closed-loop systems. On
the downside, the need to numerically solve these PDEs
limits applicability of this approach to systems consisting
of just a few states. Moreover, we should remark that our
approach essentially results in single-cell feedback control

laws, that can be practically implemented only if one is
able to perform single-cell measurements of both proteins
and apply the appropriate inputs to each cell separately.
While the first requirement is not too restrictive, given
the current measurement capabilities of fluorescently tagged
proteins, the latter remains technically challenging. A first
implementation of a single-cell feedback control scheme
has been given in [4] using light as input. In any case,
single-cell feedback control provides an “upper bound” to
the performance of cellular population control using a single
input signal for all cells simultaneously.
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