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Abstract— Symbolic approaches provide a mechanism to
construct discrete and possibly finite abstractions of continuous
control systems. Discrete abstractions are in turn amenable
to automata-theoretic techniques targeted to the construction
of controllers abiding by complex specifications, which would
otherwise be difficult to enforce over continuous models with
conventional control design methods. Although construction
of discrete abstractions has been extensively studied for de-
terministic continuous-time control systems, it has received
scant attention on stochastic continuous-time non-autonomous
models. In this paper, we propose an abstraction technique that
is applicable to any stochastic continuous-time control system,
as long as we are only interested in its behavior over a compact
set. The effectiveness of the proposed results is illustrated with
the synthesis of a controller for a jet engine model, which is
not stable, affected by noise, and subject to a schedulability
constraint expressed by a finite automaton.

I. INTRODUCTION

Symbolic models are abstract descriptions of physical
systems where each state represents a collection, or an ag-
gregate, of states of the continuous system. Symbolic models
are as well employed in the description of software and
hardware, which are often characterized by discrete, digital
components. The composition of continuous and discrete
models captures the behavior of physical systems interacting
with digital, computational devices, and results in the general
framework known as Cyber-Physical Systems (CPS) [22].
The problems of verification and of controller synthesis over
models as general as CPS can be algorithmically studied
using methodologies and tools developed in the computer
science, and particularly in formal methods.

The quest for symbolic abstractions has a rich recent
history with numerous results on deterministic continuous
control systems [7], [10], [11], [14], [18], [19], [20], [21],
[23], [25]. For stochastic systems the results are less abun-
dant, and deal with discrete-time autonomous systems [1],
[3], [6], with discrete-time control systems [2] equipped
with a finite number of control actions and investigated
over reachability analysis, and finally with continuous-time
control systems under some stability assumptions [24]. As
an extension of [24], this paper shows that a symbolic
model of a continuous-time stochastic control system exists
even in the absence of any stability assumptions. More
specifically, the main contribution of this work is to establish
the following claim: for every continuous-time stochastic
nonlinear control system, one can construct a symbolic
model that is alternatingly approximately simulated1 by the
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1As defined in Definition 3.3.

stochastic control system and that approximately simulates2

the stochastic control system.
The mentioned relationships are weaker than that of ap-

proximate bisimulation relationships established in [24], but
they apply to any continuous-time stochastic control system
since they no longer require any sort of stability assumptions.
Moreover, the relationships established in this paper are still
sufficient to guarantee that any controller synthesized for
the symbolic model enforces the desired specifications on
the original stochastic control system. However, they can no
longer guarantee, as it was the case in [24], that the existence
of a controller for the original stochastic control system leads
to the existence of a controller for the symbolic model.

The technical results in this work are illustrated on a
Moore-Greitzer jet engine model, which is affected by noise
and dwells in a no-stall mode that does not satisfy the
stability assumptions required in [24]. The novel abstraction
approach presented in this paper can be used to synthesize a
controller stabilizing the jet engine, despite the schedulability
constraints imposed by executing the controller actions on a
microprocessor running other tasks.

II. STOCHASTIC CONTROL SYSTEMS

A. Notation
The identity map on a set A is denoted by 1A. If A

is a subset of B we denote by ıA : A ↪→ B or simply by
ı the natural inclusion map taking any point a ∈ A to
ı(a) = a ∈ B. The symbols N, Z, R, R+ and R+

0 denote the
set of natural, integer, real, positive real, and nonnegative
real numbers, respectively. The symbols In, 0n, and 0n×m
denote the identity matrix, the zero vector and zero matrix in
Rn×n, Rn, and Rn×m, respectively. Given a vector x ∈ Rn,
we denote by xi the i–th element of x, and by ‖x‖ the infinity
norm of x, namely, ‖x‖ = max{|x1|, |x2|, ..., |xn|}, where
|xi| denotes the absolute value of xi. Given a matrix M =
{mij} ∈ Rn×m, we denote by ‖M‖ the infinity norm of
M , namely, ‖M‖ = max1≤i≤n

∑m
j=1 |mij |, and by ‖M‖F

the Frobenius norm of M , namely, ‖M‖F =
√

Tr (MMT )
where Tr denotes the trace.

The closed ball centered at x ∈ Rn with radius ε is
defined by Bε(x) = {y ∈ Rn | ‖x− y‖ ≤ ε}. A set B ⊆ Rn
is called a box if B =

∏n
i=1[ci, di], where ci, di ∈ R with

ci < di for each i ∈ {1, . . . , n}. The span of a box B
is defined as span(B) = min {|di − ci| | i = 1, . . . , n}. For
a box B and η ≤ span(B), define the η-approximation
[B]η = {b ∈ B | bi = kiη for some ki ∈ Z, i = 1, . . . , n}.
Note that [B]η 6= ∅ for any η ≤ span(B). Geo-
metrically, for any η ∈ R+ with η ≤ span(B) and
λ ≥ η, the collection of sets {Bλ(p)}p∈[B]η is a fi-
nite covering of B, i.e., B ⊆

⋃
p∈[B]η

Bλ(p). By defin-
ing [Rn]η = {a ∈ Rn | ai = kiη, ki ∈ Z, i = 1, · · · , n}, the
set

⋃
p∈[Rn]η Bλ(p) is a countable covering of Rn for

2As defined in Definition 3.2.



any η ∈ R+ and λ ≥ η. We extend the notions of
span and of approximation to finite unions of boxes as
follows. Let A =

⋃M
j=1Aj , where each Aj is a box.

Define span(A) = min {span(Aj) | j = 1, . . . ,M}, and for
any η ≤ span(A), define [A]η =

⋃M
j=1[Aj ]η .

Given a measurable function f : R+
0 → Rn, the (essen-

tial) supremum (sup norm) of f is denoted by ‖f‖∞; we
recall that ‖f‖∞ = (ess) sup {‖f(t)‖, t ≥ 0}. A continuous
function γ : R+

0 → R+
0 , is said to belong to class K if it

is strictly increasing and γ(0) = 0; γ is said to belong
to class K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. We
identify a relation R ⊆ A×B with the map R : A→ 2B

defined by b ∈ R(a) iff (a, b) ∈ R. Given a relation
R ⊆ A×B, R−1 denotes the inverse relation defined by
R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.

B. Digital stochastic control systems

Let (Ω,F ,P) be a probability space endowed with a
filtration F = (Fs)s≥0 satisfying usual conditions of com-
pleteness and right continuity [12, p. 48]. Let (Ws)s≥0 be a
q-dimensional F-Brownian motion.

Definition 2.1: A (digital) stochastic control system is a
tuple Σ = (Rn,U,Uτ , f, σ), where
• Rn is the state space;
• U ⊆ Rm is the input set, which is assumed to be a finite

union of boxes;
• Uτ contains piecewise constant curves of duration τ :

Uτ =
{
υ : R+

0 → U | υ(t) = υ((l − 1)τ),

t ∈ [(l − 1)τ, lτ [, l ∈ N
}

;

• f : Rn × U → Rn is a continuous function
of its arguments satisfying the following Lipschitz
assumption: for all x, x′ ∈ Rn and all u, u′ ∈ U,
there exist constants Lx, Lu ∈ R+ such that:
‖f(x, u)− f(x′, u′)‖ ≤ Lx‖x− x′‖+ Lu‖u− u′‖;

• σ : Rn → Rn×q is a function satisfying the
following Lipschitz assumption: for all x, x′ ∈ Rn,
there exists a constant Z ∈ R+ such that:
‖σ(x)− σ(x′)‖ ≤ Z‖x− x′‖.

Note that the results and definitions in Section II and III
are still valid even if Uτ allows for any measurable and
locally essentially bounded curve of time. Furthermore, the
results in Section IV can still be shown even if Uτ contains
curves that are Lipschitz continuous in each interval of
duration τ . However, from the point of view of abstractions
and refinements dealt with in this work, it is natural to
directly handle piecewise constant curves.

A stochastic process ξ : Ω× [0,∞[→ Rn is said to be a
solution process of Σ if there exists υ ∈ Uτ satisfying:

d ξ = f(ξ, υ) d t+ σ(ξ) dWt, (II.1)

P-almost surely (P-a.s.). We also write ξaυ(t) to denote
the value of the solution process at time t ∈ R+

0 under
the input υ and from the initial condition ξaυ(0) = a P-
a.s., in which a is a random variable that is measurable
in F0. Note that F0, in general, is not a trivial sigma-
algebra, and stochastic control system Σ may start from a
random initial condition. Let us emphasize that this solution
process is uniquely determined, up to indistinguishability,
since the assumptions on f and σ ensure the existence and
the uniqueness of solutions [16, Theorem 5.2.1, p. 68].

C. Stochastic incremental forward completeness

The results presented in this paper require a certain prop-
erty on Σ that we introduce in this section.

Definition 2.2: A stochastic control system
Σ = (Rn,U,Uτ , f, σ) is stochastically incrementally
forward complete (δ-SFC) if there exist continuos functions
β : R+

0 × R+
0 → R+

0 and γ : R+
0 × R+

0 → R+
0 such that

for every s ∈ R+, the functions β(·, s) and γ(·, s) belong
to class K∞, and for any Rn-valued random variables a
and a′, which are measurable in F0, any t ∈ R+, and any
υ, υ′ ∈ Uτ , the following condition is satisfied:

E [‖ξaυ(t)− ξa′υ′(t)‖] ≤ β (E [‖a− a′‖] , t)+γ(‖υ − υ′‖∞ , t).
(II.2)

The result in Theorem 2.4 will show that any stochastic
control system Σ is indeed δ-SFC. The notion of δ-SFC can
be characterized in terms of Lyapunov-like functions. It will
be shown later that the proposed Lyapunov-like functions
can be chosen appropriately by solving a matrix inequality
to get a tighter upper bound in (II.2). We start by introducing
the following definition, which is inspired by the notion of
incrementally forward complete (δ-FC) Lyapunov function
presented in [25] for deterministic models.

Definition 2.3: Consider a stochastic control system
Σ = (Rn,U,Uτ , f, σ) and a continuous function
V : Rn × Rn → R+

0 that is smooth on {Rn × Rn}\∆.3
Function V is called a stochastic incrementally forward
complete (δ-SFC) Lyapunov function for Σ if there exist
K∞ functions α, α, ρ, and a constant κ ∈ R such that

(i) α (resp. α) is a convex (resp. concave) function;
(ii) ∀x, x′ ∈ Rn, α(‖x− x′‖) ≤ V (x, x′) ≤ α(‖x− x′‖);

(iii) for any x, x′ ∈ Rn : x 6= x′, and for any u, u′ ∈ U,

Lu,u
′
V (x, x′) := [∂xV ∂x′V ]

[
f(x, u)
f(x′, u′)

]
+

1

2
Tr
([

σ(x)
σ(x′)

] [
σT (x) σT (x′)

] [ ∂x,xV ∂x,x′V
∂x′,xV ∂x′,x′V

])
≤ κV (x, x′) + ρ(‖u− u′‖),

where Lu,u′
is the infinitesimal generator associated to the

stochastic control system (II.1) [16, Section 7.3], which in
this case depends on two separate controls u, u′.

Note that the condition (i) is not required in the context
of deterministic control systems in [25]. Roughly speaking,
condition (ii) implies that the growth rate of functions α and
α are linear, as a concave function is supposed to dominate
a convex one. These conditions are not restrictive, provided
we are interested in the dynamics of Σ on a compact subset
D ⊂ Rn, which is often the case in practice.

Theorem 2.4: A stochastic control system
Σ = (Rn,U,Uτ , f, σ) is δ-SFC if and only if it admits a
δ-SFC Lyapunov function.

Proof: We first prove the sufficient part of the proof.
The proof is a consequence of applications of Gronwall’s
inequality and Ito’s lemma [16, p. 80 and 123]. Assume there
exists a δ-SFC Lyapunov function in the sense of Definition
2.3. For any t ∈ R+

0 , any υ, υ′ ∈ Uτ , and any Rn-valued

3∆ =
{
χ ∈ Rn × Rn | χ =

[
xT , xT

]T
, x ∈ Rn

}
is a diagonal set.



random variables a and a′, measurable in F0, we obtain

E [V (ξaυ(t), ξa′υ′ (t))] =

E

[
V (a, a′) +

∫ t

0
Lυ(s),υ

′(s)V (ξaυ(s), ξa′υ′ (s))ds

]
≤

E

[
V (a, a′) +

∫ t

0

(
κV (ξaυ(s), ξa′υ′ (s)) + ρ(‖υ(s)− υ′(s)‖)

)
ds

]
≤ κ

∫ t

0
E [V (ξaυ(s), ξa′υ′ (s))] ds+ E[V (a, a′)] + ρ(‖υ − υ′‖∞)t,

where, by virtue of Gronwall’s inequality, it leads to

E [V (ξaυ(t), ξa′υ′(t))] ≤ E[V (a, a′)]eκt + teκtρ(‖υ − υ′‖∞).
(II.3)

Hence, using property (ii) in Definition 2.3, we have

α (E[‖ξaυ(t)− ξa′υ′ (t)‖]) ≤ E [α(‖ξaυ(t)− ξa′υ′ (t)‖)]
≤ E [V (ξaυ(t), ξa′υ′ (t))]

≤ E[V (a, a′)]eκt + teκtρ(‖υ − υ′‖∞)

≤ E
[
α
(
‖a− a′‖

)]
eκt + teκtρ(‖υ − υ′‖∞)

≤ α
(
E
[
‖a− a′‖

])
eκt + teκtρ(‖υ − υ′‖∞), (II.4)

where the first and last inequalities follow from property (i)
and the Jensen inequality [16, p. 310]. Since α ∈ K∞, the
inequality (II.4) yields

E [‖ξaυ(t)− ξa′υ′ (t)‖] (II.5)

≤ α−1
(
α
(
E
[
‖a− a′‖

])
eκt + teκtρ(‖υ − υ′‖∞)

)
≤ α−1

(
α
(
E
[
‖a− a′‖

])
eκt + α

(
E
[
‖a− a′‖

])
eκt
)

+ α−1
(
teκtρ(‖υ − υ′‖∞) + teκtρ(‖υ − υ′‖∞)

)
≤ α−1

(
2α
(
E
[
‖a− a′‖

])
eκt
)

+ α−1
(
2teκtρ(‖υ − υ′‖∞)

)
.

Therefore, by introducing functions β and γ as

β
(
E
[
‖a− a′‖

]
, t
)

:= α−1
(
2α
(
E
[
‖a− a′‖

])
eκt
)
,

γ
(
‖υ − υ′‖∞, t

)
:= α−1

(
2teκtρ(‖υ − υ′‖∞)

)
,

the condition (II.2) is satisfied. Hence, the system Σ is δ-
SFC.

Now, we prove the necessary part of the proof by show-
ing that any stochastic control system Σ admits a δ-SFC

Lyapunov function as V (x, x′) =

√
(x− x′)T (x− x′). It is

not difficult to check that the function V satisfies properties
(i) and (ii) of Definition 2.3 with functions α(y) := y and
α(y) :=

√
ny. It then suffices to verify property (iii). By the

definition of V , for any x, x′ ∈ Rn such that x 6= x′, one
has

∂xV = −∂x′V =
(x− x′)T

V (x, x′)
,

∂x,xV = ∂x′,x′V = −∂x,x′V

=
V 2(x, x′)In − (x− x′)(x− x′)T

V 3(x, x′)
.

Therefore, following the definition of Lu,u′
, for any

x, x′ ∈ Rn such that x 6= x′, and any u, u′ ∈ U, one obtains

Lu,u
′
V (x, x′) =

(x− x′)T

V (x, x′)

(
f(x, u)− f(x′, u′)

)
+

1

2
Tr
([

σ(x)
σ(x′)

] [
σT (x) σT (x′)

] [
∂x,xV −∂x,xV
−∂x,xV ∂x,xV

])
=

(x− x′)T

V (x, x′)

(
f(x, u)− f(x′, u′)

)
+

1

2
Tr
((
σ(x)− σ(x′)

) (
σT (x)− σT (x′)

)
∂x,xV

)
=

(x− x′)T

V (x, x′)

(
f(x, u)− f(x′, u′)

)
+

1

2V 3(x, x′)

(∥∥(σ(x)− σ(x′)
)∥∥2
F
V 2(x, x′)

−
∥∥∥(x− x′)T

(
σ(x)− σ(x′)

)∥∥∥2
F

)
≤
‖x− x′‖
V (x, x′)

(
Lx‖x− x′‖+ Lu‖u− u′‖

)
+
‖σ(x)− σ(x′)‖2F

2V (x, x′)

≤ Lx‖x− x′‖+ Lu‖u− u′‖+
min{n, q}nZ2‖x− x′‖2

2V (x, x′)

≤
(
Lx +

min{n, q}nZ2

2

)
V (x, x′) + Lu

∥∥u− u′∥∥ ,
where Lx, Lu, and Z are the Lipschitz constants,
as introduced in Definition 2.1. Therefore, V (x, x′) =√

(x− x′)T (x− x′) is a δ-SFC Lyapunov function for Σ.

The following result provides a sufficient condition on a
particular function V to be a δ-SFC Lyapunov function.

Lemma 2.5: Consider a stochastic control system
Σ = (Rn,U,Uτ , f, σ). Let P ∈ Rn×n be a symmetric
positive definite matrix, and the function V : Rn×Rn → R+

0
be defined as follows:

V (x, x′) :=
√

(x− x′)TP (x− x′), (II.6)

and satisfy

(x− x′)TP (f(x, u)− f(x′, u))+1

2

∥∥∥√P (σ(x)− σ(x′))∥∥∥2
F

≤κV 2(x, x′), (II.7)

or, if f is differentiable, let V satisfy

(x− x′)TP∂xf(z, u)(x− x′)+
1

2

∥∥∥√P (σ(x)− σ(x′))∥∥∥2
F

≤κV 2(x, x′), (II.8)

for all x, x′, z in Rn, for all u ∈ U, and for some constant
κ ∈ R. Then V is a δ-SFC Lyapunov function for Σ.

Proof: It is not difficult to check that the function V
in (II.6) satisfies properties (i) and (ii) of Definition 2.3 with
functions α(y) :=

√
λmin(P )y and α(y) :=

√
nλmax(P )y,

where λmin(P ) and λmax(P ) are minimum and maximum
eigenvalues of P , respectively. Property (iii) can be readily
verified similarly to the second part of the proof of Theorem
2.4 and using the mean value theorem [8] applied to the
differentiable function x 7→ f(x, u), for a given input value
u ∈ U and for point z within x and x′.

The next result provides an equivalent condition to (II.7)
for linear stochastic control systems in the form of a linear
matrix inequality (LMI).

Corollary 2.6: Consider a stochastic control system
Σ = (Rn,U,Uτ , f, σ), where f(x, u) := Ax+Bu
for any x ∈ Rn and any u ∈ U, and



σ(x) := [σ1x σ2x · · · σqx], where σi ∈ Rn×n.
Then, the function V in (II.6) is a δ-SFC Lyapunov function
for Σ if there exists a constant κ̂ ∈ R satisfying the
following LMI:

PA+ATP +

q∑
i=1

σTi Pσi ≺ κ̂P. (II.9)

Proof: The corollary is a particular case of Lemma 2.5.
It suffices to show that for linear dynamics the LMI (II.9)
yields to the condition (II.7). First it is straightforward to
observe that∥∥∥√P (σ(x)− σ(x′))∥∥∥2

F
=Tr

((
σ(x)− σ(x′)

)T
P
(
σ(x)− σ(x′)

))
=
(
x− x′

)T q∑
i=1

σTi Pσi(x− x′),

and that

(x− x′)TP (f(x, u)− f(x′, u))

=
1

2
(x− x′)T

(
PA+ATP

)
(x− x′),

for any x, x′, z ∈ Rn and any u ∈ U. Now suppose there
exists κ̂ ∈ R such that (II.9) holds. It can then be verified
that the assertion in (II.7) holds by choosing κ = κ̂/2.

Hence, one can find an appropriate matrix P by solving
the LMI (II.9) to have a tighter upper bound in (II.2).

III. SYMBOLIC MODELS AND APPROXIMATE
EQUIVALENCE NOTIONS

A. Systems
We use systems to describe both stochastic control systems

as well as their symbolic models.
Definition 3.1: [22] A system S is a tuple

S = (X,X0, U,−→, Y,H) consisting of
• A set of states X;
• A set of initial states X0 ⊆ X;
• A set of inputs U ;
• A transition relation −→⊆ X × U ×X;
• An output set Y ;
• An output function H : X → Y .

A system S is said to be
• metric, if the output set Y is equipped with a metric

d : Y × Y → R+
0 ;

• finite, if X is a finite set.

A transition (x, u, x′) ∈−→ is also denoted by x
u- x′.

For a transition x
u- x′, state x′ is called a u-successor,

or simply a successor, of state x. We denote by Postu(x)
the set of u-successors of a state x and by U(x) the set of
inputs u ∈ U for which Postu(x) is nonempty. A system
is deterministic if for any state x ∈ X and any input u,
there exists at most one u-successor (there may be none).
A system is called nondeterministic if it is not deterministic.
Hence, for a nondeterministic system it is possible for a state
to have two (or possibly more) distinct u-successors.

B. Relations among systems
First, we recall the notion of approximate simulation

relation, introduced in [9], which is useful when analyzing
or synthesizing controllers for deterministic systems.

Definition 3.2: Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha)

and Sb = (Xb, Xb0, Ub,
b
- , Yb, Hb) be metric systems

with the same output sets Ya = Yb and metric d, and
consider a precision ε ∈ R+. A relation R ⊆ Xa ×Xb is

said to be an ε-approximate simulation relation from Sa to
Sb, if the following three conditions are satisfied:
(i) ∀xa0 ∈ Xa0,∃xb0 ∈ Xb0 with (xa0, xb0) ∈ R;

(ii) ∀(xa, xb) ∈ R we have d(Ha(xa), Hb(xb)) ≤ ε;
(iii) ∀(xa, xb) ∈ R, xa

ua

a
- x′a in Sa implies the existence

of xb
ub

b
- x′b in Sb satisfying (x′a, x

′
b) ∈ R.

System Sa is ε-approximately simulated by Sb or Sb ε-
approximately simulates Sa, denoted by Sa �εS Sb, if there
exists an ε-approximate simulation relation from Sa to Sb.

Note that when ε = 0, condition (ii) in the above definition
is changed to: (xa, xb) ∈ R ⇔ Ha(xa) = Hb(xb); and R
becomes an exact simulation relation as in [15].

For nondeterministic systems we need to consider relation-
ships that explicitly capture the adversarial nature of nonde-
terminism. The notion of alternating approximate simulation
relation is shown in [20] to be appropriate for this.

Definition 3.3: Let Sa = (Xa, Xa0, Ua,
a
- , Ya, Ha)

and Sb = (Xb, Xb0, Ub,
b
- , Yb, Hb) be metric systems

with the same output sets Ya = Yb and metric d, and
consider a precision ε ∈ R+. A relation R ⊆ Xa ×Xb is
said to be an alternating ε-approximate simulation relation
from Sa to Sb if conditions (i), (ii) in Definition 3.2, and
additionally the following condition, are satisfied:
(iii) for every (xa, xb) ∈ R and for every ua ∈ Ua(xa) there

exists ub ∈ Ub(xb) such that for every x′b ∈ Postub(xb)
there exists x′a ∈ Postua(xa) satisfying (x′b, x

′
a) ∈ R.

System Sa is alternatingly ε-approximately simulated by Sb
or Sb alternatingly ε-approximately simulates Sa, denoted
by Sa �εAS Sb, if there exists an alternating ε-approximate
simulation relation from Sa to Sb.

Note that when ε = 0, condition (ii) in the above
definition is changed to: (xa, xb) ∈ R⇔ Ha(xa) = Hb(xb);
and R becomes an exact alternating simulation relation, as
introduced in [4]. It is readily seen from the above definitions
that the notions of approximate simulation and of alternating
approximate simulation coincide when the systems involved
are deterministic.

IV. SYMBOLIC MODELS FOR STOCHASTIC CONTROL
SYSTEMS

This section contains the main contribution of the paper.
We show that any stochastic control system Σ admits a finite
symbolic model whenever we are interested in the dynamics
of Σ on a compact subset of Rn. The results in this section
rely on the additional assumptions f(0n, 0m) = 0n, and
σ(0n) = 0n×q , used in Lemma 4.1.

Given a stochastic control system Σ = (Rn,U,Uτ , f, σ),
consider the system

Sτ (Σ) = (Xτ , Xτ0, Uτ ,
τ
- , Yτ , Hτ ),

consisting of:
• Xτ is the set of all Rn-valued random variables defined

on the probability space (Ω,F ,P);
• Xτ0 is the set of random variable measurable with

respect to trivial sigma-algebra F0, i.e., the system starts
from a deterministic initial condition;

• Uτ = Uτ ;
• xτ

υτ

τ
- x′τ if xτ and x′τ are measurable, respectively,

in Fkτ and F(k+1)τ for some k ∈ N ∪ {0}, and there
exists a solution process ξ : R+ → Rn of Σ satisfying
ξ(kτ) = xτ and ξxτυτ (τ) = x′τ P-a.s.;



• Yτ is the set of all Rn-valued random variables defined
on the probability space (Ω,F ,P);

• Hτ = 1Xτ .
We assume that the output set Yτ is equipped with the metric
d(y, y′) = E [‖y − y′‖], for any y, y′ ∈ Yτ .

Before introducing the symbolic model for the stochastic
control system, we proceed with the following preliminary
lemma.

Lemma 4.1: Consider a stochastic control system
Σ = (Rn,U,Uτ , f, σ). Suppose that a function V in (II.6)
satisfies (II.7) or (II.8) for Σ. For any x ∈ Rn and any
υ ∈ Uτ , we have

E
[
‖ξxυ(t)− ξxυ(t)‖

]
≤ h(t, σ)eκt, (IV.1)

where κ is the same constant introduced in (II.7) or (II.8),
ξxυ is the solution of the ordinary differential equation
(ODE) ξ̇xυ(t) = f

(
ξxυ(t), υ(t)

)
starting from the initial

condition x, and the nonnegative valued function h tends to
zero as t→ 0 or as supx {‖σ(x)‖} → 0.

The proof of Lemma 4.1 is provided in Appendix.
Remark 4.2: In case of a linear stochastic control system

Σ = (Rn,U,Uτ , f, σ), where f(x, u) := Ax + Bu and
σ(x) := [σ1x σ2x · · · σqx] with σi ∈ Rn×n, one may
deduce a tighter and in fact explicit bound in the previous
lemma as follows. Motivated by inequality (V.2) in the
Appendix, one can obtain

E
[
Tr
(
σσT (ξxυ(s))P − σσT

(
ξxυ(s)− ξxυ(s)

)
P
)]

= E

[
ξTxυ(s)

(
q∑
i=1

σTi Pσi

)
ξxυ(s)

−
(
ξxυ(s)− ξxυ(s)

)T ( q∑
i=1

σTi Pσi

)(
ξxυ(s)− ξxυ(s)

) ]

= ξ
T

xυ(s)

(
q∑
i=1

σTi Pσi

)
ξxυ(s) ≤ nλ(σ, P )

∥∥ξxυ(s)∥∥2 , (IV.2)

where λ(σ, P ) is the maximum eigenvalue of
∑q
i=1 σ

T
i Pσi,

and ξxυ satisfies the ODE ξ̇xυ(t) = Aξxυ(t)+Bυ(t). It can
be readily verified that∥∥ξxυ(t)∥∥ ≤ ∥∥∥eAt∥∥∥ ‖x‖+ (∫ t

0

∥∥∥eAsB∥∥∥ ds) ‖υ‖∞ (IV.3)

≤ C1eλmaxt ‖x‖+ C2

λmax

(
eλmaxt − 1

)
‖υ‖∞,

for some constants C1, C2 ∈ R+, and λmax is the maximum
real part among all eigenvalues of A. The above approxima-
tion, together with (IV.2) and (V.2), leads to an explicit bound
in terms of the system parameters as follows:

h(t, σ) =

√
nλ(σ, P )

λmin(P )
· (IV.4)√∫ t

0

(
C1eλmaxs ‖x‖+ C2

λmax
(eλmaxs − 1) ‖υ‖∞

)2

ds.

Note that when we are interested in the dynamics of Σ on
a compact subset D ⊂ Rn, one gets the following upper
bound:

h(t, σ) =

√
nλ(σ, P )

λmin(P )
· (IV.5)√∫ t

0

(
C1eλmaxs sup

x∈D
{‖x‖}+ C2

λmax
(eλmaxs − 1) sup

u∈U
{‖u‖}

)
ds.

We consider a stochastic control system
Σ = (Rn,U,Uτ , f, σ), and a tuple q = (τ, η, µ, θ, k)
of quantization parameters, where τ ∈ R+ is the sampling
time, η ∈ R+ is the state space quantization, µ ∈ R+ is the
input set quantization and θ ∈ R+ and ` ∈ N are design
parameters. Given Σ and q, consider the following system:

Sq(Σ) = (Xq, Xq0, Uq,
q
- , Yq, Hq), (IV.6)

consisting of:
• Xq = [Rn]η;
• Xq0 = [Rn]η;
• Uq = [U]µ;
• xq

uq

q
- x′q if

∥∥∥ξxquq
(τ)− x′q

∥∥∥ ≤ β(θ, τ) + γ(µ, τ) +

h(τ, σ)eκτ + h(`τ, σ)eκ`τ + η, where ξ̇xquq
(t) =

f
(
ξxquq

(t), uq(t)
)

;
• Yq is the set of all Rn-valued random variables defined

on the probability space (Ω,F ,P);
• Hq = ı : Xq ↪→ Yq.

Here β and γ are the functions appearing in (II.2) and h
and κ are the function and constant appearing in (IV.1).
Note that we have abused notation by identifying uq ∈ [U]µ
with the constant input curve with domain [0, τ [ and value
uq. Notice that the proposed abstraction Sq(Σ) is indeed a
nondeterministic system governed by an ordinary differential
equation. However, in order to establish an (alternating)
approximate simulation relation, the output set Yq is defined
similarly to our original stochastic system Sτ (Σ). Therefore,
in the definition of Hq, the inclusion map ı is meant, with
a slight abuse of notation, a mapping from a deterministic
grid point to a random variable with a Dirac probability
distribution centered at the grid point.

The transition relation of Sq(Σ) is well defined in the sense
that for every xq ∈ [Rn]η and every uq ∈ [U]µ there always
exists x′q ∈ [Rn]η such that xq

uq

q
- x′q. This can be seen

since by definition of [Rn]η , for any x̂ ∈ Rn there always
exists a state x̂′ ∈ [Rn]η such that ‖x̂− x̂′‖ ≤ η. Hence, for
ξxquq

(τ) there always exists a state x′q ∈ [Rn]η satisfying∥∥∥ξxquq
(τ)− x′q

∥∥∥ ≤ η ≤ β(θ, τ) + γ(µ, τ) + h(τ, σ)eκτ +

h(`τ, σ)eκ`τ + η.
We can now present the main result of the paper showing

that any stochastic control system Σ admits a finite symbolic
model.

Theorem 4.3: Let Σ = (Rn,U,Uτ , f, σ) be any digital
stochastic control system. For any ε ∈ R+, and any tuple
q = (τ, η, µ, θ, `) of quantization parameters satisfying µ ≤
span(U) and h(`τ, σ)eκ`τ + η ≤ ε ≤ θ, we have:

Sq(Σ) �εAS Sτ (Σ) �εS Sq(Σ), (IV.7)

within the time horizon 0, τ, · · · , `τ .

Before providing the proof, it can be readily seen that
when we are interested in the dynamics of Σ on a compact
subset D ⊂ Rn, assumed to be a finite union of boxes, and
for a given precision ε, there always exists a small choice of
τ such that h(τ, σ)eκτ < ε. Then by choosing a sufficiently
small value of η ≤ span(D), the condition of Theorem 4.3
is satisfied.

Proof: We start by proving Sτ (Σ) �εS Sq(Σ). Consider
the relation R ⊆ Xτ × Xq defined by (xτ , xq) ∈ R if and
only if E [‖Hτ (xτ )−Hq(xq)‖] = E [‖xτ − xq‖] ≤ ε. Since



Xτ0 ⊆
⋃
p∈[Rn]η Bη(p), for every xτ0 ∈ Xτ0 there always

exists xq0 ∈ Xq0 such that

E [‖xτ0 − xq0‖] = ‖xτ0 − xq0‖ ≤ η ≤ ε.
Hence, (xτ0, xq0) ∈ R and condition (i) in Definition 3.2 is
satisfied. Now consider any (xτ , xq) ∈ R. Condition (ii) in
Definition 3.2 is satisfied by the definition of R. Let us now
show that condition (iii) in Definition 3.2 holds. Consider
any υτ ∈ Uτ . Choose an input uq ∈ Uq satisfying

‖υτ − uq‖∞ = ‖υτ (0)− uq(0)‖ ≤ µ. (IV.8)

Note that the existence of such a uq is guaranteed
by the special shape of U, described in Definition 2.1,
and by the inequality µ ≤ span(U), which guaran-
tees that U ⊆

⋃
p∈[U]µ Bµ(p). Consider the transition

xτ
υτ

τ
- x′τ = ξxτυτ (τ) in Sτ (Σ). Since any stochastic con-

trol system Σ is δ-SFC, we have:

E
[
‖x′τ − ξxquq(τ)‖

]
≤ β (E [‖xτ − xq‖] , τ) + γ(‖υτ − uq‖∞, τ)
≤ β(ε, τ) + γ(µ, τ). (IV.9)

Since Rn ⊆
⋃
p∈[Rn]η Bη(p), there exists x′q ∈ Xq such that

E
[∥∥x′τ − x′q∥∥] ≤ h(`τ, σ)eκ`τ + η. (IV.10)

Using the inequalities ε ≤ θ, (IV.9), (IV.10), and triangle
inequality, we obtain:∥∥∥ξxquq

(τ)− x′q
∥∥∥ = E

[∥∥∥ξxquq
(τ)− x′q

∥∥∥]
≤ E

[∥∥∥ξxquq
(τ)− ξxquq(τ)

∥∥∥]+E [∥∥ξxquq(τ)− ξxτυτ (τ)
∥∥]

+E
[∥∥ξxτυτ (τ)− x′q∥∥]

≤ h(τ, σ)eκτ + β(ε, τ) + γ(µ, τ) + h(`τ, σ)eκ`τ + η

≤ β(θ, τ) + γ(µ, τ) + h(τ, σ)eκτ + h(`τ, σ)eκ`τ + η,

which, by the definition of Sq(Σ), implies the existence of
xq

uq

q
- x′q in Sq(Σ). Therefore, from inequality (IV.10) and

since h(`τ, σ)eκ`τ + η ≤ ε, we conclude that (x′τ , x
′
q) ∈ R

and condition (iii) in Definition 3.2 holds.
Now we prove Sq(Σ) �εAS Sτ (Σ). Consider the rela-

tion R ⊆ Xτ ×Xq, defined in the first part of the proof.
For every xq0 ∈ Xq0, by choosing xτ0 = xq0, we have
‖xτ0 − xq0‖ = 0 and (xτ0, xq0) ∈ R and condition (i) in
Definition 3.3 is satisfied. Now consider any (xτ , xq) ∈ R.
Condition (ii) in Definition 3.3 is satisfied by the def-
inition of R. Let us now show that condition (iii) in
Definition 3.3 holds. Consider any uq ∈ Uq. Choose the
input υτ = uq and consider the unique solution process
x′τ = ξxτυτ (τ) ∈ Postυτ (xτ ) in Sτ (Σ). Since any stochastic
control system Σ is δ-SFC, we have:

E
[
‖x′τ − ξxquq(τ)‖

]
≤ β (E [‖xτ − xq‖] , τ) ≤ β(ε, τ). (IV.11)

Since Rn ⊆
⋃
p∈[Rn]η Bη(p), there exists x′q ∈ Xq such that

E
[∥∥x′τ − x′q∥∥] ≤ h(`τ, σ)eκ`τ + η. (IV.12)

Using the inequalities ε ≤ θ, (IV.11), and (IV.12), and
triangle inequality, we obtain:∥∥∥ξxquq

(τ)− x′q
∥∥∥ = E

[∥∥∥ξxquq
(τ)− x′q

∥∥∥]
≤ E

[∥∥∥ξxquq
(τ)− ξxquq(τ)

∥∥∥]+E [∥∥ξxquq(τ)− ξxτυτ (τ)
∥∥]

+E
[∥∥ξxτυτ (τ)− x′q∥∥]

≤ h(τ, σ)eκτ + β(ε, τ) + h(`τ, σ)eκ`τ + η

≤ β(θ, τ) + γ(µ, τ) + h(τ, σ)eκτ + h(`τ, σ)eκ`τ + η,

which, by the definition of Sq(Σ), implies the existence of
xq

uq

q
- x′q in Sq(Σ). Therefore, from inequality (IV.12) and

since h(`τ, σ)eκ`τ + η ≤ ε, we conclude that (x′τ , x
′
q) ∈ R

and condition (iii) in Definition 3.3 holds.
The following remark readily extends the assertion of

Theorem 4.3 to be valid over an infinite time horizon, under
an assumption on the observation of the diffusion.

Remark 4.4: Suppose the symbolic model is allowed to
periodically observe the system Sτ (Σ) after each period
T := `τ . Then, the assertion of Theorem 4.3 holds over
an infinite horizon, since one can update the initial state
of the symbolic model up to precision η with respect to
the realization of Sτ (Σ) at time `τ , and replicate the same
strategy periodically. In particular, if the observation period
is the same as sampling time, then the lower bound of ε
reduces to h(τ, σ)eκτ + η by setting ` = 1.

Let us highlight that the observation assumption in Remark
4.4 implicitly requires to enlarge the class of admissible
inputs to stochastic ones. That is, the input signal synthesized
in symbolic model is deterministic within the time horizon
`τ , but according to the diffusion observation may change
from one realization to another.

We note that the results in [25], explained in the following
theorem, are fully recovered by the results in Theorem 4.3 if
the stochastic control system Σ is not affected by any noise,
implying that h(t, σ) is identically zero and δ-SFC property
becomes δ-FC property. Correspondingly, the definitions of
Sτ (Σ) and Sq(Σ) need slight modifications.

Theorem 4.5: [25] Let Σ = (Rn,U,Uτ , f, 0n×q) be a
δ-FC digital control system. For any ε ∈ R+, and any
quadruple q = (τ, η, µ, θ, `) of quantization parameters
satisfying ` ∈ N, µ ≤ span(U) and η ≤ ε ≤ θ, we have:

Sq(Σ) �εAS Sτ (Σ) �εS Sq(Σ). (IV.13)
Remark 4.6: Although we assume that the set U is infinite,

Theorem 4.3 still holds when the set U is finite, with the
following modifications: first, the system Σ is required to
satisfy the property (II.2) for υ = υ′; second, assume Uq = U
and set γ(µ, τ) = 0 in the definition of Sq(Σ).

V. SYMBOLIC CONTROL DESIGN FOR A JET ENGINE

We illustrate the results of this paper over the Moore-
Greitzer jet engine model in no-stall mode, which is affected
by noise and unstable [13]. In this model, the unstable
equilibrium (in the absence of noise) is transferred to the
origin (φ = 0 and ψ = 0) using the following change of
coordinates: φ = Φ − 1, ψ = Ψ − Ψc0 − 2, where Φ is the
mass flow, Ψ is the pressure rise and Ψc0 is a constant. The
resulting model Σ is:[

dφ
dψ

]
=

[
−ψ − 3

2φ
2 − 1

2φ
3

1
ω2 (φ− υ)

]
d t+

[
0.1φdW 1

t

0.1ψ dW 2
t

]
,

(V.1)
where ω is a positive constant parameter set to be equal
to 1, υ(t) = ΦT (t) − 1 is the control input and ΦT (t) is
the mass flow through the throttle. We work on the subset
D = [−2, 2]×[−2, 2] of the state space of Σ. One can readily
verify that Σ satisfies the conditions in Definition 2.1 with
Lx = 13, Lu = 1, and Z = 0.1, when we are interested in
the behaviors of Σ in D.

We show that Σ satisfies (II.8) by finding a suitable matrix
P using SOS programming as described in [5]. The constant
κ in (II.8) takes the value 1.5 and the resulting matrix is
P = I2.



q1

a
q2

u
q3

u
q4

u
q5

u
q6

u
q7

u
q8

u
q9

u

Fig. 1. Finite system describing the schedulability constraint over the controller. The lower part of the states are labeled with the outputs (a and u)
denoting the availability and unavailability of the microprocessor, respectively.

Using results of Theorem 2.4, one obtains the following
δ-SFC bound for the jet engine model:

E [‖ξaυ(t)− ξa′υ′(t)‖] ≤
√
2e1.5tE

[∥∥a− a′∥∥]+te1.5t|υ−υ′|∞.

For a given sampling time τ = 0.1 and choosing a δ-SFC
Lyapunov function V (x, x′) = (x − x′)T (x − x′), one can
compute that h(0.1, σ) = 0.05.

We assume that u ∈ [−2, 2] and that the control input can
take only three different values from the set {−2, 0, 2}. In
order to synthesize a controller under this constraint on the
input, we select µ = 2. The objective is to design a controller
forcing the trajectories of the system to reach and stay (in
the 1st moment) within the target set W = [−0.25, 0.25] ×
[−0.25, 0.25], which can be expressed in LTL as 32W .

Furthermore, we assume that the controller is implemented
on a microprocessor, executing other tasks in addition to the
control scheme. Let us consider a schedule with epochs of
nine time slots, in which at most one slot is allocated to
the control task and the rest of them to other tasks. A time
slot is an interval of the form [kτ, (k + 1)τ [, with k ∈ N
and where τ is the sampling time. Therefore, some of the
possible microprocessor schedules are given by:

|auuuuuuuu|auuuuuuuu|auuuuuuuu|auuuuuuuu| · · · ,

|uauuuuuuu|uauuuuuuu|uauuuuuuu|uauuuuuuu| · · · ,

|uuuuuuuua|uuuuuuuuu|auuuuuuuu|uuuuuuuuu| · · · ,

where a denotes a slot available for the control task and
u denotes a slot allotted to other tasks. The schedulability
constraint on the microprocessor can be represented by
the finite system (labeled automaton) in Figure 1, where
the allowed initial states are distinguished as targets of a
sourceless arrow.

Note that we embedded the schedulability constraint by
composing the finite system in Figure 1 by the constructed
finite system Sq(Σ).

For a precision ε = 0.07, we construct a symbolic model
Sq(Σ) by choosing θ = 0.07, ` = 1, and η = 0.01. The
computation of the abstraction Sq(Σ) is performed in the
tool Pessoa [17] on a laptop with CPU 2 GHz Intel Core
i7. The resulting number of states is 1447209. The consumed
CPU time for computing the abstraction and synthesizing the
controller have been 21554 and 542 seconds, respectively.
Here we have assumed that symbolic model can observe
the diffusion process at each sampling time, as discussed
in Remark 4.4.

Figure 2 displays several realizations of the closed-
loop trajectory stemming from the initial conditions in
(−0.75,−1.75) and (1.5, 0), where the finite system ini-
tialized from states q2 and q6, respectively. Figure 3 shows
the evolution of the input signals corresponding to the above
initial conditions.
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Fig. 2. Several realizations of the closed-loop trajectory with initial
conditions (−0.75,−1.75) (upper panel) and (1.5, 0) (lower panel), where
the finite system initialized from states q2 and q6, respectively.

It is readily seen that the specifications are satisfied in the
sense that the first moment of the trajectories of Σ reach
and stay within W ε = [−0.25 − ε, 0.25 + ε] × [−0.25 −
ε, 0.25 + ε], while respecting the schedulability constraint.
(The inflation in the set W expressed in the LTL specification
by means of the accuravcy parameter ε is intuitive and
follows [9].)
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APPENDIX
Proof: [Proof of Lemma 4.1] In the proof, we use

the notation σσT (x) instead of σ(x)σT (x) for the sake of
simplicity. In view of Ito’s formula and similar to calculation
of Lemma 2.5, we have

λmin(P )E
[∥∥∥ξxυ(t)− ξxυ(t)
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+
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where the function ĥ can be computed as
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Inequality (V.2) is a straightforward consequence of (II.7)
where x′ := 0, and (V.3) follows from Gronwall’s inequality.
Using Lipschitz continuity assumption on σ, we get:∫ t
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where the constants C1, C2, and K depend on Lipschitz
constants Lx, Lu, and Z in Definition 2.1. Note that when
we are interested in the dynamics of Σ on a compact subset
D ⊂ Rn, and by defining:
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we obtain:

E
[∥∥ξxυ(t)− ξxυ(t)

∥∥] ≤ h(t, σ)eκt. (V.5)

It can be easily verified that the proposed function h meets
the conditions of Lemma 4.1.


