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Abstract— This article concerns an application of a model-
based fault detection and isolation (FDI) method for the
cyber security of power systems in a realistic framework,
where the system dynamics are expressed in continuous-time,
whilst system measurements are applied to an FDI filter in
discrete-time samples. Towards the development of a tractable
approach for high dimensional nonlinear systems, an existing
optimization-based technique for residual generator design is
reviewed. However, this requires that both system dynamics and
measurements are in the same time scale, i.e., either continuous
or discrete. To this end, we investigate different variants
of discrete-time modeling approaches for state-space systems,
specifically tailored to meet the needs of the existing FDI filter
design methodology. Finally,the efficiency and limitations of the
presented scheme are illustrated through simulation results for
a two-area power system network, in which the objective is
the diagnosis of a cyber attack at the Automatic Generation
Control signal.

I. INTRODUCTION

In modern electric power systems, the interaction of IT
infrastructure, such as the SCADA system used for monitor-
ing and protection, with the physical power system renders
the system vulnerable not only to operational errors but also
to external attacks. Hence, there is an emerging need for
cyber-security measures alerting the system operator in case
of a signal manipulation. The impacts of such attacks were
studied in [11], [12], where it was assumed that an attacker
could manipulate the control signal of the secondary control
loop existing in power systems, the so called Automatic
Generation Control (AGC). The essential objective of AGC
is to regulate the system frequency as well as guarantee that
power flow in tie lines between interconnected control areas
(e.g. different countries) is in accordance with prescheduled
values. Indeed, AGC is one of the few control loops that
are closed over the SCADA system without human operator
intervention, which renders the signal vulnerable. In case of
an attack, it was shown that unacceptable power oscillations
and frequency deviations are likely to occur causing several
detrimental effects. Nevertheless, in case the intrusion of a
malicious signal is detected sufficiently fast, the manipulated
signal can be disconnected from the system, preventing any
further severe damage to the network. Towards this objective,
in this article we study the implementation of FDI tech-
niques, as a protection layer mitigating the aforementioned
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cyber security concern.

A significant variety of model-based FDI methods exists
in literature, based on different mathematical models of the
monitored system, e.g., in the context of linear dynamics
for descriptor models in [15], [5], state-space models [7]
and models described by general linear differential-algebraic
equations in [3], [13], covering all the previous specific
classes of functions. Regarding nonlinear system models,
a technique through which the problem of FDI has been
tackled is the linearization of the system around an operating
point and the treatment of the nonlinear terms as distur-
bances. The goal is then to decouple these disturbance signals
from the residual, with the aid of an unknown input observer
[4], [16]. The efficiency of this strategy requires that the
assumption of the system operation around an equilibrium
point holds in reality. This assumption is quite problematic,
since some systems may have a wide operating range, which
would cause a significant model-reality mismatch between
the plant dynamics and the model employed for FDI. An
alternative approach is the perfect decoupling of disturbance
signals, [2], [14]. The aforementioned studies essentially
require to deal with a high-order differential equation, which
however, renders it effectively intractable for large systems
with complex dynamics.

The FDI approach presented in this note follows the work
of [10], which proposed a novel quadratic programming (QP)
based methodology for the design of FDI filters, applied to
high dimensional nonlinear systems, achieving a compromise
between theoretical soundness and practical feasibility. The
proposed FDI scheme suggests a protection layer to enhance
the cyber-security of power transmission systems and led to
an EU patent sponsored by ETH Zurich [9].

In the model-based FDI framework, the concept of residual
generation has a principle role. The FDI task involves the de-
sign of a filter generating a diagnostic signal, which indicates
the presence of a fault, when applied to all known system
measurements, while being insensitive to unknown distur-
bances. The model-based framework is illustrated in Fig.
1, where signals d, u, f represent the unknown exogenous
disturbances, the control inputs and the signals to be detected
(faults) respectively, while ymeas contains all the available
measurements. The signal r denotes the generated residual
which diagnoses the presence of fault f . Earlier approaches
in the literature only studied cases in which both system
dynamics and FDI filter are expressed in the same time-
scale evolution, e.g., [13] for linear dynamics and [10] for



an extension to nonlinear systems. However, in practice, an

Fig. 1. FDI setup.

FDI filter is applied to known signals, such as measurements
and control inputs, which are available in samples. At the
same time, the use of continuous-time models in engineering
problems such as power systems is highly motivated, since
the expression of many governing physical laws is made
through differential equations. Hence, in reality, the given
precise system model is based on continuous-time dynamics
but at the same time, the output signals are only available in
samples, measured by a suitable device.

The main focus of the present work is to examine the
application of the FDI scheme proposed in [10] for the
cyber security of a 2-area power network and extend it in a
different system dynamics setting, examining the challenges
occurring from the combination of an available continuous-
time model and discrete-time measured signals. To this end,
we study alternative approaches of discrete-time modeling of
the plant, specifically tailored to meet the requirements for
the design of an FDI filter. We then examine the efficiency of
the aforementioned techniques in this practical framework.

The paper is organized as follows. Section II is concerned
with a review of the existing FDI filter design methodology
derived in [10], extended to meet the needs of a discrete-
time modeling framework. In addition, in Section II, we
discuss alternative approaches for discrete-time modeling of
state-space nonlinear systems. In Section III, as a case study
power system, we provide the mathematical model of the
IEEE 118-bus power network, to which the discussed FDI
methodology and discrete-time modeling techniques will be
implemented towards the objective of detecting an external
attack injected in the AGC signal. Simulation results are
provided to illustrate the efficiency and practical feasibility of
the discussed methods and the paper is concluded in Section
IV.

II. FDI FILTER DESIGN METHODOLOGY

A. Mathematical model description

As a mathematical model describing the dynamic be-
haviour of the system under discussion, we consider the
continuous-time, classical nonlinear ordinary differential
equation:

Ẋ(t) = ex
(
X(t), d(t)

)
+AX(t) +Buu(t) +Bdd(t) +Bff(t)

ymeas = ey
(
X(t), d(t)

)
+ CX(t) +Duu(t) +Ddd(t) +Dff(t)

(1)

where X represents the internal system states, d the unknown
disturbances, f the fault, u the known input signals, ymeas

the available measurements and ex, ey denote the nonlinear
terms of the system.

Assumption: The signals d, f and u in (1) are considered as
piecewise constant within the sampling intervals, as follows:
d(t) = d(tκ), f(t) = f(tκ), u(t) = u(tκ), ∀t ∈ [tκ, tκ+1).

B. FDI filter design for discrete-time systems

In this section, we review the FDI methodology for
nonlinear systems proposed in [10], but expressed in a
discrete-time framework as this will be the main focus of the
present work. Along with the system formulation assumed
in the aforementioned study, we consider systems modeled
by Difference Algebraic Equations (DAE):

E(x(κ)) +H(q)x(κ) + L(q)z(κ) + F (q)f(κ) = 0, (2)

where x represents the vector of unknown signals samples,
for instance internal system states and exogenous distur-
bances, z contains all known signals samples, such as
available measurements and control inputs and f denotes
the signal to be detected. H,L, F are polynomial matrices
in the time-shift operator q and E represents the nonlinear
term of the system, as a function of the unknown signal x. It
is straightforward to fit a discrete-time state-space model into
the form of a DAE (2). We refer to [10] for a similar assertion
in the context of continuous-time dynamics, in particular to
the connection between ordinary differential equations and
differential algebraic equations.

A first principal goal in FDI is that the filter (residual gen-
erator) achieves the decoupling of the residual from unknown
signals x. To this end, [10] proposed a residual generator
with transfer operator of the form R(q) = a−1(q)N(q)L(q),
where N is a polynomial vector, of a predefined order dN , to
be designed such that its rows form an irreducible polynomial
basis for the left null-space of matrix H . In order for the filter
to be physically realizable, stable dynamics a(q) of sufficient
order need to be added as denominator1. When the filter R(q)
is applied to the known signals z, the residual is obtained
as:

r := R(q)z = −a−1(q)N(q)(F (q)f + E(x))

=: −a−1(q)(rf + rE), (3)

which consists of two terms. The first is related to the faults
appearing in the process, defined as rf := N(q)F (q)f , while
the second represents the effect of the nonlinear part of the
system on the residual, defined as rE := N(q)E(x).

The authors of [10] proposed a QP-based technique for
the design of N(q), which is tractable for high dimensional
non-linear systems and focuses on the minimization of the
impact of nonlinearities on the residual (rE in (3)), when
the class of disturbances is restricted to certain signatures. In
fact, the filter is trained to distinguish the normal operation
of the system in the presence of these disturbances. The

1All the roots are strictly contained in the unit circle.



method is based on a finite dimensional projection in which
the projection error decreases as the dimension increases.
However, it can be inspected that in the discrete-time frame-
work the projection error can be set to zero with adequate
number of basis, due to the finite dimension of functional
vector space over a finite horizon. In this way, the procedure
introduced for continuous-time dynamics in [10] is simplified
as follows. In order to train the filter we extract the pattern
of the discrete-time nonlinear signal E(κ) = E(x(κTs))
for a time horizon [0, T ], i.e., for κ = 0, 1, ..., TTs

, where
Ts denotes the sampling time. Note that this is achieved
by considering a collected set of signatures for the system
states x, according to the certain disturbance signature that
has been assumed. By translating the linear operator q as
a matrix left shift operator D : E(κ) 7→ E(κ + 1), the
error of residual can be written as rE(κ) = N̄D̃E(κ), where
D̃ = [I D′ · · · (D′)dN ]′ and dN is the chosen degree of
filter. Then, we can write the `2-norm of the signal rE , as
defined in the finite dimensional space equipped with the
inner product 〈f, g〉 := f ′g:

‖rE‖2`2 = N̄D̃D̃′N̄ ′ =: N̄QN̄ ′ (4)

Note that matrix Q in (4) corresponds to a specific distur-
bance signature d(·). In practice, it may be required to train
the FDI filter for different possible signatures, e.g., (xi)

n
i=1.In

the same spirit of [10, Remark 3.5] one can compute the
corresponding positive matrix Qi for each signature and
arrive at the following QP formulation:

min
N̄

N̄QN̄ ′, Q :=
1

n

n∑
i=1

Qi

s.t.

{
N̄H̄ = 0∥∥N̄ F̄∥∥∞ ≥ 1

(5)

where N̄ contains the decision variables representing all the
coefficients of the polynomial vector N . For the construction
of N̄ , H̄ and F̄ one should refer to [10, Lemma 3.2].

It should be highlighted that the optimization problem in
(5) is not a standard QP problem but as explained in [10,
Remark 3.3], the formulation can be viewed as a family of
dN standard QP programs.

Remark 2.1: In the recent work [8], the authors consider
the case where the disturbance signatures are random vari-
ables on a prescribed probability space, and the objective
is to minimize E[||rE ||2`2 ]. To tackle the problem, one can
generate n independent identically distributed signatures and
invoke the formulation (5) to obtain the filter coefficients.
Notice that the solution is naturally stochastic as it depends
on generated signature samples. We refer to [8, Sec. 4.C] for
the theoretical results and probabilistic performance of the
proposed scheme in the aforementioned setting.

C. Discrete-time modeling methods

As explained earlier, before applying the discussed FDI
techniques, it is essential to transform the continuous-time

model to a discrete-time model of the system. In this
section, we discuss three different discrete-time modeling
approaches, in which the original continuous-time model is
in the form of (1). Let us first clarify that the objective of
the discussed discrete-time modeling approaches is not to
precisely mimic the dynamic behavior of the continuous time
system. Instead, they are tailored to meet the needs of a resid-
ual generator design in the FDI framework. Furthermore, for
a continuous-time system modeled by (1), let us define the
class of discrete-time nonlinear state-space models that will
be considered, as:

X̃(tκ+1) = ẽx(tk)+ ÃX̃(tk)++B̃uu(tk)+ B̃dd(tk)+ B̃ff(tk),

where X̃ denotes the discrete-time state signal,
Ã, B̃u, B̃d, B̃f represent the discrete-time versions of
the corresponding continuous-time matrices and ẽx(tk) is
the discrete-time analog of the nonlinear term in (1). The
objective is to determine both the particular matrices and
the discrete version ẽx(tk), that will allow us to obtain a
discrete-time model for the FDI approach in Section II-B.

1) Approach 1: : As a first approach we consider the
classical forward Euler approximation, where the discrete-
time matrices and discrete-time version of the nonlinear
signal are expressed by:

Ã := TsA+ I B̃d := TsBd B̃f := TsBf

B̃u := TsBu ẽx(tk) := Tsex
(
X(tk)

) (6)

In the above equation, Ts denotes the sampling time, which
has a considerable impact on the efficiency of this method.
In particular, Ts has to be sufficiently small, such that the ap-
proximation of the continuous-time dynamics is satisfactory.
One may observe that even in the case of linear dynamics,
the Euler discretization is not exact and the performance
substantially deteriorates as the sampling time increases.
To address this issue, we propose the following heuristic
approach.

2) Approach 2: : For this approach, let us first define the
following operators for an arbitrary matrix W , given matrix
A and sampling time Ts:

[W ]1 := eWTs , [W ]2 :=

∫ T̄

0

eA(Ts−τ)Wdτ, (7)

By using the above matrix transformations, we define the
corresponding components of the discrete-time system, as
we did for Approach 1, as:

Ã := [A]1 B̃d := [Bd]
2 B̃f := [Bf ]2

B̃u := [Bu]2 ẽx(tk) := Tsex(X(tk))
(8)

Indeed, the above discrete-time matrices correspond to the
analytical solution for the discretization of the linearized
version of (1), which is based on properties of the matrix
exponential. In (8), the linearized part of the model is
enriched with the discrete-time version of ex. As we observe,
the matrix (TsA+ I) appearing in (6) is only the first order
Taylor series of [A]1. Moreover, the discrete-time modeling
of the nonlinear term in (8) is identical to (6).



3) Approach 3: The reasoning behind the third approach
is that the nonlinearity ex appearing in (1) can be considered
as an extra input in the linearized system, for which the
corresponding matrix is just the identity matrix, denoted by
Be := I . The discrete-time matrices Ã, B̃d, B̃f and B̃u are
the same as the ones obtained with Approach 2 (8). However,
the discrete-time version of e is given by:

ẽx := [Be]
2 = [I]2, (9)

which essentially aims to improve the precision of transition
from continuous to discrete-time for the nonlinear term.
Approach 3 seems to be the most precise one, though
the scheme is not yet exact, as the error signal ex is not
necessarily piece-wise constant within the sampling intervals.

The above discrete-time modeling approaches present dif-
ferent levels of precision regarding the discretization of the
linear and nonlinear part of a continuous state space equation.
The first approach, namely the classical Euler approximation,
may achieve to describe the system dynamics only if Ts
is significantly small, even for linear systems. Approach 2
uses the same form of the discrete-time nonlinear term as
Euler method, but it improves the accuracy for the linear
part of the system. Indeed, it is the exact discrete-time
modeling of a linear state space system when ex vanishes,
but its accuracy decreases as the nonlinear term contribution
increases. Finally, in Approach 3 the goal is to improve
the precision of the discrete-time modeling of the nonlinear
signal ex.

III. MULTI-MACHINE 2-AREA POWER NETWORK

In order to validate the efficiency of the discussed method-
ology towards the cyber security of power systems, we em-
ploy the model of an IEEE 118-bus network: a multi-machine
system consisting of 19 generators, 177 lines, 99 load buses,
7 transmission level transformers and 19 extra transformers
for the connection of the medium-voltage generator buses
with the high voltage transmission buses. The model is
obtained from the analysis made in [10], in which the system
is arbitrarily divided into two control areas, representing, e.g.,
two interconnected countries. The generators are equipped
with primary frequency control, while each area is governed
by an AGC scheme, aiming at adjusting the set points
at particular generators appropriately, as already explained
above. The system is based only on frequency dynamics,
whereas voltage dynamics are neglected. According to the
analysis of [10], after a node elimination procedure, we result
in a 59th-order nonlinear continuous-time model of the form:

Ẋ(t) = h(X(t)) +Bdd(t) +Bff(t)

ymeas = CX(t),
(10)

where X(t) = [δ19
1 , f19

r,1, Pm,a1, Pm,a2,∆Pagc1,∆Pagc2]′

denotes the internal system states vector, composed by the
rotor angles and the frequencies at the generators, the gen-
erated mechanical powers by generators in Area 1 and Area
2 and the AGC control signals in the two areas. In the FDI

context, the disturbance vector d(t) = ∆P 19
load1 represents the

unknown load deviations that may occur at the generators,
∆Pagc1 and ∆Pagc2 are the AGC control inputs for areas
1 and 2 respectively and ymeas(t) = [f19

r,1, Pm,a1, Pm,a2]′

contains the measured system states. The fault vector f(t) =
[f1, f2]′ corresponds to malicious signals superimposed in
the AGC control input of Area 1 and Area 2 respectively,
representing possible cyber attacks in the network. In this
work, we consider the case where one of the two areas
has been attacked but not both of them simultaneously.
Therefore, we consider either f1 = U or f2 = U as a fault
additive to AGC, which is crucial to be detected sufficiently
fast.

As explained earlier, the principal goal of this paper is to
implement FDI techniques in a practical framework, where
the available power system model is in continuous-time,
whilst the FDI filter is given the measured signals, provided
by a measurement device at a specific sampling rate Ts.
Hence, in order to employ the discussed FDI methodology,
we first write (10) in the form of (1), where A = ∂h

∂X
results from the linearization around the operation point Xe,
ex(X) = h(X)−A(X −Xe) represents the nonlinear term
of the system and Bu, Du, Dd, Df are all zero matrices.
The next step is to bring the system into a discrete-time state
space representation form by utilizing the discussed discrete-
time modeling techniques in Section II-C and finally into the
form of (2).

A. Simulation results

In the current section, we provide simulation results from
the application of the QP-based technique and the discrete-
time modeling approaches discussed in the previous sections,
for the detection of attacks in the test case power system.
The designed FDI filter is provided with all available system
measurements and is expected to indicate the undesirable
manipulation of the AGC signal by producing a protective
alarm, whilst being insensitive to acceptable load deviations-
disturbances that happen on a daily basis in the power
network. In the following simulation results the sampling
time is Ts = 0.1 sec and the degree of the filter is fixed to
dN = 7. For the solution of the QP (5) optimization problem,
we have used the YALMIP toolbox [6].

1) Disturbances modeled by step signals: To begin with,
we consider the case in which an attack U = 5MW is
injected in Area 1 at 10s, while one of its nodes is subjected
to a step load deviation ∆Pload = 10MW at 2s, both
shown in Fig. 2(a). Hence, for the QP formulation (5) of
the problem, the disturbance signals are considered to be
step functions of certain amplitude.

We aim to minimize this undesirable impact of the non-
linearities on the residual, with the aid of the QP for-
mulation (5). By considering step functions for the load
deviation (disturbance) signals, appearing individually at
each node-generator, we extract a number of signatures
of the nonlinear signal E within a time horizon [0, 10]s.



The simulation results presented in Fig. 2(b), 2(c), 2(d)
describe the dimensionless residual signal, generated when
the (5) is applied in combination with the three discrete-
time modeling approaches, (6), (8), (9) respectively. In detail,
the QP formulation in which Approach 1, (6), is used as
discretization method, does not succeed in indicating the
attack. This is not surprising, since Euler approximation with
the particular size of discretization step is not sufficient to
provide considerable information on the dynamics of the
system. On the contrary, the results are quite promising
when we employ Approaches 2, (8), and 3, (9), and the QP
formulation for the FDI filter design. The residual which is
generated is sensitive to the attack and at the same time, it is
significantly decoupled from the contribution of the nonlinear
terms in presence of disturbances.

(a) Disturbance at node 15 and AGC attack in Area 1

(b) Residual of QP-Approach 1

(c) Residual of QP-Approach 2

(d) Residual of QP-Approach 3

Fig. 2. Results of the FDI filter for step disturbances ∆Pload

2) Disturbances modeled by stochastic sinusoidal signals:
In order to design an FDI filter which can be efficient in a
more realistic framework, we extend the considered functions
for ∆Pload from step functions to stochastic signals. In
particular, we are motivated by the fact that in a power
network, small imbalances between load and generation
arise continuously, appearing as disturbances at the system’s
nodes. These disturbances are caused by different reasons,
such as load fluctuations, load prediction errors, distributed
generation sources and electricity trading. In specific, based
on realistic data of disturbances in power systems, provided
in [1, p. 59], we consider disturbances modeled by the
superposition of sinusoidal functions in the form:

∆Pload = α+

nsin∑
i=1

gisin(2πfit+ ϕi), (11)

where α, gi, fi, ϕi, nsin are random variables, which are
assumed to belong to certain bimodal distributions with a
high and a low frequency mode.

In the following, we provide simulation results for a
number of independent experiments, in which an FDI filter
is designed to diagnose a fault occurring in Area 1, in the
presence of random disturbances at the generators. However,
before proceeding to the simulation results, let us first
describe the way we use to evaluate the performance of
the designed filter, when tested in a large number N of
experiments for random disturbance signals. Fig.3(a) shows
a sample case, in which a disturbance ∆Pload occurs at
a generator-node and an AGC attack U is injected in the
system, both expressed in MW. In the particular figure,
two regions are indicated by arrows. The region denoted as
Disturbance Region contains the part of the residual signal
from t = 0s to the time instant where the attack occurs,
whereas the region denoted as Attack Region contains the
residual signal within the whole time interval of observation.
For evaluating the performance of the filter, we define the
following quantity, which is essentially dimensionless:

ratio =
max(rDisturbance Region)

max(rAttack Region)
∈ [0, 1]

Ideally, the FDI filter generates a residual with small ratio
values when a attack is present. In particular, in a case of
successful fault detection, the filter succeeds in distinguishing
the attack from the unknown disturbances, as shown in
Fig.3(b) where ratio � 1. In fact, perfect decoupling of
the disturbances and the contribution of the nonlinear terms
results in ratio ≈ 0. On the contrary, for an unsuccessful
case it holds that ratio ≈ 1, as shown in Fig. 3(c). In
practice, a fault can be detected by the comparison of the
ratio, which is monitored in real-time, with a threshold
function, which can be a predefined constant tailored to the
application. A ratio value exceeding this threshold represents
normal operation of the system, whereas a lower value
indicates the presence of an attack. Indeed, the size of the
observation period is related to how rapidly fault detection
is achieved.

Based on the aforementioned evaluation method and in
view of the Remark 2.1, the FDI filter is tested in N =
1000 independent experiments, in which 2 randomly selected
generators-nodes in the network are subjected to random
disturbances at 2s, generated by (11), when an attack signal
of 5 MW is injected to the AGC of Area 1 at 10s. In
all experiments, we consider that the observation period is
until 3s after the attack, in which it is desired that the filter
diagnoses the fault. Fig. 4 shows the ratio values for FDI
filters designed with the aid of the QP formulation (5). In
particular, Fig. 4(a) and 4(b) show that QP formulation with
both discrete-time modeling approaches 2, (8), and 3, (9),
result in successful FDI filters in all N experiments. In fact,
the comparison of the threshold value with the ratio obtained
by a residual signal declares the occurrence or absence of
an attack. An example would be to set the threshold value
at 0.3, for which we observe that the success rate of the
above FDI filters is 100%. Fig. 5(a) and 5(b) illustrate the
results of filters designed for Ts = 0.5s in terms of ratio
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100 200 300 400 500 600 700 800 900 1000
0

0.5

1

(a) Ratio of filter obtained by QP and Approach 2

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

(b) Ratio of filter obtained by QP and Approach 3

Fig. 4. Results for random ∆Pload with Ts = 0.1s (N=1000 experiments)

values, where it can be observed that sampling time has a
considerable effect on the FDI performance. Indeed, as the
sampling time increases, the results deteriorate due to less
information provided to the filter. Nevertheless, a significant
rate of success can be observed by adjusting the threshold
value appropriately.

IV. CONCLUSION

We investigated a model-based FDI method for the cyber
security of power networks, based on an existing QP-based
technique, extending it in a realistic framework to tackle the
difficulties occurring from the combination of continuous-
time dynamics of the monitored system and discrete-time
measurements. Different variants of discrete-time modeling
approaches were investigated, enabling us to utilize the
discussed FDI method to establish a transition from the
original continuous-time model to the required discrete-time
expression. Finally, simulation results illustrate the efficiency
of the discussed technique, through the application to the test
case system of a two-area power network.
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(a) Ratio of filter obtained by QP and Approach 2
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(b) Ratio of filter obtained by QP and Approach 3

Fig. 5. Results for random ∆Pload with Ts = 0.5s (N=1000 experiments)
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