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Abstract— Stochastic Model Predictive Control (SMPC) for
discrete-time linear systems subject to additive disturbances
with chance constraints on the states and hard constraints on
the inputs is considered. Current chance constrained MPC
methods—based on analytic reformulations or on sampling
approaches—tend to be conservative partly because they fail to
exploit the predefined violation level in closed-loop. For many
practical applications, this conservatism can lead to a loss in
performance.

We propose an adaptive SMPC scheme that starts with
a standard conservative chance constrained formulation and
then on-line adapts the formulation of constraints based on
the experienced violation frequency. Using martingale theory
we establish guarantees of convergence to the desired level of
constraint violation in closed-loop for a special class of linear
systems. Comments are given on how to extend this to a broader
class of (non-)linear systems. The developed methodology is
demonstrated with an illustrative example.

Keywords: Stochastic model predictive control; Chance con-
straints, Adaptive control; Closed-loop violation.

I. INTRODUCTION

Robust Model Predictive Control (Robust MPC) has been
successfully employed for systems with uncertainties in
various application areas over the last decades [1], [2]. Its
key strength is to guarantee stability and recursive feasibility
as long as the disturbance stays within an a priori defined
bounded disturbance set. Besides ‘classic’ Robust MPC other
advanced formulations have been developed, e.g., Affine
Disturbance Feedback MPC [3]–[5] or Tube-based MPC [2],
[6].

For systems where the uncertainty is known to be in a
bounded set, e.g., when the uncertainty stems from sensor
readings and the manufacturer guarantees the signals to be
in a given range, this approach is very powerful. However,
for many practical applications it is hard to specify a bounded
disturbance set a priori. This is problematic in both possible
cases: if the disturbance realizations are larger than assumed
a priori, all guarantees on stability and recursive feasibility
are lost; on the contrary, if the disturbance set is assumed to
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be too large, the controller is very conservative, which can
lead to a loss in performance.

For this type of applications, Stochastic MPC (SMPC)
employing so-called chance constraints was proposed [7]–
[13]. This method enables the formulation of constraints that
have to be fulfilled with a given level of probability and
hence directly formulates the tradeoff between performance
and (full) constraint satisfaction. Chance constraints and
their reformulation to deterministic and tractable optimiza-
tion problems have been extensively studied in optimization
theory (see e.g. [14] and the references therein) and a number
of different formulations exist.

A. Chance Constrained Stochastic Model Predictive Control

Chance constraints are in general hard to deal with since
they involve the computation of multivariate integrals. For
the use in MPC problems, there are three principle directions
of research: (a) Using an analytic reformulation or approxi-
mations to obtain a deterministic optimization problem [7],
[11]; (b) Imposing an artificial bound on the uncertainty,
solving the resulting robust optimization problem and using
Chernoff bounds on the tails to get a probabilistic guarantee
[10], [15]; (c) Using samples of the uncertainty, also called
scenarios or particles, and using those to formulate an
optimization problem that appropriately replaces the chance
constrained problem [13], [16], [17], [19]–[22].

The main limitations of (a) are the restriction to special
distributions, which might not hold for practical applications,
as well as the restriction to convex problems. The main
limitation of (b) is its conservatism, which often leads to
a loss in performance in practical applications. The restric-
tion to special distributions is overcome by the sampling-
based approach of [16], [17], which is independent of the
distribution and just requires the uncertainties to be i.i.d. as
well as convexity in the decision variables (for fixed uncer-
tain variables). This approach also leads to a conservative
formulation unless the sampling and discarding approach of
[18] is applied, which might be computationally demanding.
The sampling-based approach by [21] does also not require
an assumption on the distribution and even works for non-
convex problems. It might however require a prohibitive
number of samples.

Still, a remaining drawback of all above approaches is
that they only give guarantees on the violation level of the
solution of the open-loop optimization problem, not for the



closed-loop receding horizon problem. This failure to exploit
the allowed violation level in closed-loop might lead to a loss
in performance in many practical applications.

The probability of constraint violation can be interpreted
as a frequency, i.e., “The system is allowed to violate
X times out of Y trials”. From this perspective it makes
sense to measure the violations during operation of the
MPC controller and adapt the formulation along the path
so as to meet the desired constraint violation in closed-loop.
Hence we propose in this work an Adaptive Stochastic MPC
formulation.

B. Main Idea and Outline
The work is organized as follows. Section II provides

some standard definitions and facts of stochastic systems
used in this paper for improving readability. In Section III
the problem formulation is stated. Section IV presents the
Adaptive Stochastic MPC formulation. The convergence re-
sults are presented in Section V as well as comments on the
rate of convergence and a modification for active constraints.
An illustrative example is given in Section VI. Section VII
provides a discussion and conclusions.

C. Notation
The real number set is denoted by R, the non-negative real

numbers including zero is denoted by R+0, the set of non-
negative integers by N (N+ := N\{0}), the set of consecutive
non-negative integers {j, . . . , k} by Nkj . Denote by 0 the
zero matrix with dimension deemed obvious by context. For
matrices A and B of equal dimension inequalities A{<,≤
, >,≥}B hold component-wise. The expectation of a random
variable with respect to the probability measure P is denoted
by E [·]. In order to distinguish between the prediction of a
state and the actual state, denote with xt+k|t ∈ Rnx the
prediction for the actual state xt+k ∈ Rnx at time t, where
k ∈ NN1 and the prediction horizon is N . Furthermore, vec-
tors (and matrices) that contain all predictions of a variable
along the prediction horizon are denoted with bold letters,
i.e. xt+1 := {xt+1|t, xt+2|t, . . . , xt+N |t} denotes an ordered
collection of the vectors xt+k|t, which can also be considered
to be a large stacked-up vector xt+1 ∈ RNnx when used in
algebraic equations. Also note that at time t variables with
a time index larger than t are (unknown) random variables
(since information is only revealed up to time t and the future
is uncertain). For a, b ∈ R let a ∧ b := min{a, b}.

II. PRELMINARIES

As basic datum, we take a filtered space (Ω,F, {Ft},P ),
where (Ω,F,P ) is a probability triple with sample space Ω,
σ-algebra F and probability measure P on (Ω,F). {Ft : t ≥
0} is a filtration, i.e., an increasing family of sub σ-algebras
of F:

F0 ⊆ F1 ⊆ . . . ⊆ F .

We define

F∞ := σ

(⋃
n

Ft

)
⊆ F .

In this work, stochastic processes in discrete time are
considered, i.e. infinite sequences of random variables Z0,
Z1, . . . , Zn, . . . , where the index denotes the time instant.

Definition 1 (Adapted process [25]): A process Z =
(Zt : t ≥ 0) is called adapted to the filtration {Ft} if for
each t, Zt is Ft-measurable.

Definition 2 (Almost surely): A statement S is said to
be true almost surely (a.s.) or with probability 1 if
P [S is true] = 1.

Definition 3 (Martingale, super/sub-martingale [25]): A
process Z is called a martingale (relative to ({Ft},P )) if

(a) Z is an adapted process,

(b) E [|Zt|] <∞, ∀t ,
(c) E [Zt+1 | Ft] = Zt , a.s. (t ≥ 0) .

A super-(sub-)martingale is defined with (c) replaced by

E [Zt+1 | Ft] ≤ (≥) Zt , a.s. (t ≥ 0) .

Lemma 1 (Measurable function [25]): Sums and prod-
ucts of measurable functions are measurable.

Proposition 1 (Properties of conditional expectation [25]):
All X satisfy E [|X|] <∞. G and H denote sub-σ-algebras
of F.

(a) (Linearity) E [a1X1 + a2X2 | G] = a1E [X1 | G]+

a2E [X2 | G], a.s.

(b) If X is G measurable, then E [X | G] = X, a.s.

III. PROBLEM FORMULATION

Consider a discrete linear time-invariant system with time
step t

xt+1 = Axt +But + wt+1 , t ∈ N , (1)

where xt ∈ Rnx , ut ∈ Rnu , and wt ∈ Rnw .

Remark 1: Note the deviation from usual notation in the
index of w. The reason is the assumption in MPC schemes
that the uncertainty is revealed only after the input at time t
is applied resulting in a new state at t+ 1. Hence, at time t,
w is unknown. It will only reveal itself at t+ 1. We therefore
use the notation in (1) to comply with the notation used for
stochastic systems and to highlight that at time t, xt+1 is
a random variable which linearly depends on the random
variable wt+1, whereas both xt and ut are known.

We seek to solve an MPC problem with planning horizon
N .

Assumption 1 (System): (A,B) is stabilizable and at
each sample instant a measurement of the state is available.

Definition 4: Let wt ∈ W ⊂ Rnw , and WN = Ω.
Furthermore, F = σ({w : wt ∈ W} : t ∈ N) and
Ft = σ({ws : ws ∈W} : s ≤ t).



Assumption 2 (Disturbances): (a) The disturbances w
are independent and identically distributed (i.i.d.).
(b) The disturbances w are unbiased.

The system is subject to hard convex constraints on the
inputs and probabilistic constraints on the states, which are
convex in the decision variables. Note that the convexity
is required for the efficient solution of the MPC problem.
In fact any type of constraint that can be handled by the
applied SMPC algorithm can also be handled by the adaptive
SMPC algorithm. Polytopic constraints are considered in the
following for simplicity of presentation.

We hence formulate the following constraints on the
predicted inputs and predicted states for setting up the MPC
problem:

Sut+k|t ≤ s ∀k ∈ NN−10 , (2)

where S ∈ Rq×nu and s ∈ Rr and

P
[
Gxt+k|t ≤ g

]
≥ 1− α ∀k ∈ NN1 , (3)

where G ∈ Rr×nx and g ∈ Rr.
Defining

xt+1 := {xt+1|t, xt+2|t, ..., xt+N |t} ∈ RNnx

ut := {ut|t, ut+1|t, ..., xt+N−1|t} ∈ RNnu

wt+1 := {wt+1|t, wt+2|t, ..., wt+N |t} ∈ RNnw

the dynamics along the prediction horizon can be written
more compactly as

xt+1 = Axt + But + Ewt+1 , (4)

with xt+1, ut, and wt+1 denoting the states, inputs, and
disturbances, along the prediction horizon, respectively, and
appropriate matrices A, B, and E.

The aim is to minimize a quadratic cost function J : Rnx×
RNnu × RNnw → R+0

J(xt,ut,wt+1) := uTt Rut + xTt+1Qxt+1 , (5)

where R = RT � 0 and Q = QT � 0.

IV. ADAPTIVE STOCHASTIC MPC

In this section, the adaptive SMPC procedure is described.
The predicted states can be written explicitly as

xt+k|t=Akxt+

k−1∑
i=0

Ak−1−iBut+i|t+

k−1∑
i=0

Ak−1−iwt+1+i|t .

The aim is to tighten the nominal constraint (i.e. the
constraint resulting from setting wt+1+k|t = 0 for all k ∈
NN1 ) by some amount h̃t,k ∈ Rr that needs to be determined
and to include the following constraint in the MPC problem

GAkxt +

k−1∑
i=0

GAk−1−iBut+i|t ≤ g − h̃t,k ∀k ∈ NN1 .

Loosely speaking, a choice for h̃t,k should be made such
that the constraint is robust against most uncertainties wt+1,

but so that the chance constraint in (3) is met in closed-loop
without unnecessary conservativeness.

In most existing approaches, h̃t,k ∈ Rr is determined
such that the chance constraint is fulfilled for the predicted
states xt+k|t (i.e. for the optimization problem) leading to a
constraint violation which is much smaller than required in
closed-loop.

The proposed adaptive SMPC scheme starts by determin-
ing an initial (conservative) constraint tightening, which is
then successively adapted based on the experienced viola-
tions. There are many possibilities for determining an initial
constraint tightening. Here the so-called scenario approach
is used. Let ξ(1), ..., ξ(λ) denote an available collection of
λ i.i.d. random samples from the disturbances along the
horizon N , i.e., ξ(i) = {w(i)

t+1, w
(i)
t+2, ..., w

(i)
t+N} ∈ WN for

i = 1, ..., λ. We then employ the procedure in [22] and
compute

h̃t,k := max
j∈{1,...,λ}

k−1∑
i=0

GA(k−1−i)w
(j)
t+1+i ∀k ∈ NN1 , (6)

where the maximization is applied to each element individ-
ually. Following [23], one should generate

λ ≥ 1

α

(
d+ ln

1

ε
+

√
2d ln

1

ε

)
(7)

samples, where d is the number of decision variables of the
respective optimization problem (in this case d = Nnu)
and ε ∈ (0, 1) is a confidence level. The solution of the
corresponding optimization problem will then guarantee the
chance constraint in (3) with confidence of at least (1− ε).

Remark 2: Due to Assumption 2 it is likely that all entries
of h̃t,k are positive (which corresponds to a tightening of
the nominal constraint). If this is not the case, a new set of
samples is drawn.

In [19], [22] this computation is done once off-line and
then used throughout the receding horizon implementation of
the optimization problem solution. By contrast, in the method
proposed here the off-line computed bound is only used as a
starting point for the constraint tightening at the initial step.
Then on-line the constraint tightening is updated based on
constraint violations experienced along the path so that the
empirical constraint violation probability along the trajectory
converges to the desired value α.

Let h̃t := {0, h̃t,1, h̃t,2, ..., h̃t,N}. Then the above specifi-
cations are assembled to the following finite horizon optimal
control problem with planning horizon N and the time-
dependent constraint tightening h̃t.

Problem 1 (ASMPC Problem): Determine

ut(xt) = arg min
ut|t...ut+N−1|t

J(xt,ut,0)

subject to
Sut ≤ s

G(Axt + But) ≤ g − h̃t ,



where S ∈ RNq×Nnu and s ∈ RNq are describing the input
constraints and G ∈ RNr×Nnx and g ∈ RNr are describing
the state constraints along the prediction horizon.

Remark 3: Note that we choose to optimize over the
nominal cost J(xt,ut,0), which is the cost in (5) with
w = 0.

In order to determine the iterative update of h̃t,k the
violation at time step t is determined as

Vt(wt) :=

{
1 if G(Axt−1 +Bu∗t−1|t−1 + wt) > g

0 if G(Axt−1 +Bu∗t−1|t−1 + wt) ≤ g .

Then the empirical probability of violation is given as

Yt(w) :=

∑t
i=1 Vi(wi)

t
. (8)

Remark 4: V is an Ft-adapted process, i.e. at time t the
random variable Vt is realized and hence known. Being a
function of V , Y is also an Ft-adapted process.

The empirical probability of violation Y is desired to
converge to the pre-defined violation level α. In order to
achieve this, we aim to iteratively update h̃t,k. An intuitive
way is given by the following updating rule

h̃t,k := h̃t−1,k −
α− Yt
γ

h̃t−1,k , (9)

where γ is a design parameter that influences the rate of
convergence (see Section V-B). The updating rule in (9)
simply takes the h̃t−1,k determined at the previous time
step and subtracts h̃t−1,k itself scaled by a factor which is
proportional to the deviation of Yt from α. Observe that if α
is larger (smaller) than Yt, h̃t,k is shrinking (growing), i.e.,
the constraints in Problem (1) are relaxed (tightened) and
hence the probability of violations is increased (reduced).
A block diagram showing the adaptive SMPC procedure
is given in Figure 1 and the adaptive MPC algorithm is
summarized as follows.

Algorithm 1: Adaptive Stochastic MPC
Initialization
1: t = 0
2: Draw λ samples according to Assumption 2 and (7)
3: Compute h̃0,k for all k ∈ Nk0 according to (6)

On-line
1: Solve ASMPC Problem
2: Apply u∗t
3: t = t+ 1
4: Measure xt and observe realizations of Vt and Yt
5: Compute new constraint tightening h̃t,k := h̃t−1,k − α−Yt

γ
h̃t−1,k

6: Repeat

V. CONVERGENCE RESULTS

A. Supermartingale Property

Defining

Zt := | α− Yt | , (10)

Adaptive 
constraint 
tightening 

System 

MPC 

h̃t

u∗t xt

Vt, Yt

Fig. 1. Block diagram of adaptive SMPC algorithm.

the aim of this section is to argue that the empirical prob-
ability of violation converges to the desired probability of
violation for t→∞. Comments on the rate of convergence
are given in Section V-B.

Assumption 3: (a) The input constraints are such that
the system can always cancel out the disturbance from
the previous time step, if needed, and additionally provide
enough control input to steer the system to the desired state.
(b) The system has reachability index 1, i.e., it is one-step
controllable.

Remark 5: Assumption 3(a) is essential for the proposed
strategy. Although it seems restrictive on the first sight,
for many practical applications it might actually hold, see
discussion. Assumption 3(b) basically means that there are
at least as many inputs as states and B is full row rank. This
assumption could be dropped leading to a more complicated
formulation, see discussion.

Let K(α, t) := (α − 1
2(t+1) , α + 1

2(t+1) ) and denote with
τ the first time Yt hits K, i.e.,

τK(w) := inf{t ∈ N | Yt(w) ∈ K(α, t)} . (11)

Furthermore, let Ẑt := Zt∧τ .

Theorem 1: Ẑ is a supermartingale.

Proof: The proof establishes the fulfillment of the three
conditions given in Definition 3.
(a) Let Ft = σ(W0,W1, . . . ,Wt). Since Zt =
ft(W0,W1, . . . ,Wt), where ft is a measurable function on
Rt+1, with Lemma 1 it follows that Z is adapted and hence
Ẑ is adapted.
(b) We need to show that E [|Ẑt|] < ∞, ∀t. Since Vt is
either 0 or 1, we have Yt ∈ [0, 1] ∀t. Furthermore, α ∈ [0, 1]
and hence Zt = | α − Yt | ∈ [0, 1] ∀t, which establishes the
assertion.
(c) We need to show that E [Ẑt+1 | Ft] ≤ Ẑt, a.s. For this,
it suffices to show that E [Zt+1 | Ft] ≤ Zt for the stochastic
interval 0 ≤ t ≤ τ , a.s.

It is easy to show that Yt+1 can be rewritten based on the
definition in (8) as

Yt+1 = Yt
t

t+ 1
+
Vt+1

t+ 1
. (12)



Since Vt+1 is either 0 or 1, let pt := P [Vt+1 = 1 | Ft] and
hence (1 − pt) = P [Vt+1 = 0 | Ft]. It suffices to show that
the following difference ∆t is ≤ 0 for any Yt 6∈ K(α, t).

∆t(Yt, pt) := E [Zt+1 | Ft]− Zt

= E [| α− Yt
t

t+ 1
− Vt+1

t+ 1
| | Ft]− | α− Yt |

Prop. 1(a),(b)
= pt

(
| α− Yt

t

t+ 1
− 1

t+ 1
|
)

+ (1− pt)
(
| α− Yt

t

t+ 1
|
)
− | α− Yt |

= pt

(
| α− Yt

t

t+ 1
− 1

t+ 1
| − | α− Yt

t

t+ 1
|
)

+ | α− Yt
t

t+ 1
| − | α− Yt | . (13)

Observe that the only part one can influence is the value of
pt. Note that due to Assumption 3 at each step pt can be
chosen freely in the interval [0, 1].

We proceed with two steps: first, the optimal policy p∗t
is determined based on analysis of the term in the round
bracket of (13) and second, it is analyzed whether the last
two terms can render ∆t > 0 when applying the optimal
strategy p∗t .

Step 1: If

| α− Yt
t

t+ 1
− 1

t+ 1
| ≤ | α− Yt

t

t+ 1
| , (14)

the optimal strategy is p∗t (Yt) = 1. Let β := α − Yt
t
t+1 .

Then (14) yields

| β − 1

t+ 1
| ≤ | β | . (15)

For this to hold we need β ≥ 1
2(t+1) .

⇔ α− Yt
t

t+ 1
≥ 1

2(t+ 1)

⇔ α− Yt +
2α− 1

2t
≥ 0 .

The opposite case of (14) is symmetrical, we therefore have
as optimal policy

p∗t (Yt) =

{
1 if α− Yt + 2α−1

2t ≥ 0

0 if α− Yt + 2α−1
2t < 0 .

(16)

Step 2: By virtue of the analysis in Step 1, in the ‘critical’

region where ∆∗t := ∆t(Yt, p
∗
t ) may be positive it holds that

| α− Yt
t

t+ 1
| > | α− Yt |

⇔ α− Yt > − Yt
2(t+ 1)

⇔ α− Yt
t

t+ 1
>

Yt
2(t+ 1)

.

According to the optimal policy in (16), there are two
cases.

Case I: α − Yt
t
t+1 > 1

2(t+1) > Yt

2(t+1) with p∗t (Yt) = 1.
Using this in (13) yields

∆∗t (Yt) =| α− Yt
t

t+ 1
− 1

t+ 1
| − | α− Yt |

=| α− Yt +
1

t+ 1
(Yt − 1) | − | α− Yt | .

The ‘critical’ region in Case I is then given by

∆∗t (Yt) > 0

⇔ −Yt
2(t+ 1)

< α− Yt <
1

2(t+ 1)
− Yt

2(t+ 1)
.

Case II: This case is symmetrical to Case I. We have
1

2(t+1) > α − Yt t
t+1 > Yt

2(t+1) with p∗t = 0. Carrying out
the same analysis as in Case I yields the following condition
for the ‘critical’ region of Case II

−Yt
2(t+ 1)

< α− Yt <
1

2(t+ 1)
.

Using the largest upper and smallest lower bound of both
Cases I and II yields the overall ‘critical’ region

K(α, t) =

{
y ∈ R

∣∣∣ α− 1

2(t+ 1)
< y < α+

1

2(t+ 1)

}
and the desired result.

This leads us to the following time-dependent optimal up-
dating rule (observe the similarity with the intuitive updating
rule in (9))

h̃t,k := h̃t−1,k −
α− Yt + 2α−1

2t

γ
h̃t−1,k . (17)

Due to the monotonicity h ↑ ⇒ p ↓ and h ↓ ⇒ p ↑ , this
updating rule satisfies the behavior already described for the
intuitive updating rule in (9).

Corollary 1: At each time step t, there is at most one
possible Yt such that ∆∗t (α, Yt) > 0.

Proof: Observe that the width of K is 1/(t+1), which
is smaller than 1/t. Furthermore, observe that due to the
definition of Yt, at each time t, there is a finite number
of possible values of Yt with the minimum distance of 1/t
between any of them. Hence, at each time step t, there is at
most one possible Yt such that ∆∗t (α, Yt) > 0.

Ẑ is a supermartingale with arbitrary starting point. We
can therefore view Z as a concatenation of supermartingales.
Furthermore, since both K and ∆∗t are inversely proportional
with respect to time, both the probability of hitting the
‘critical’ region as well as the distortion are shrinking over
time. Intuitively arguing, these observations suggest that
lim
t↑∞

Zt = 0 a.s., but we do not provide a rigorous proof

here.
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Fig. 2. Heuristic updating rule (9) and time invariant constraints. Top:
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i=1 Vi over time. Bottom: Empirical

probability of violation Yt and desired violation level α over time.
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Fig. 3. Optimal updating rule (17) and time invariant constraints. Top:
Cumulative number of violations

∑t
i=1 Vi over time. Bottom: Empirical

probability of violation Yt and desired violation level α over time.

B. Rate of Convergence

For both the intuitive updating rule in (9) and the optimal
updating rule in (17), γ determines the rate of convergence.
γ should in all cases be > 0 in order to tighten if Yt > α and
relax if Yt < α. Given γ > 0, the larger γ, the slower the
convergence and the smaller γ, the faster the convergence.

For the updating rule h̃t,k = µth̃t−1,k, we require µt > 0.
This is to ensure that the relaxation is not more than up to
the nominal constraint. This requirement yields γ > α for
the heuristic updating rule in (9) and γ > 2α for the optimal
updating rule in (17). If the initial tightening is found with
the scenario approach, it might furthermore make sense to
bound the tightening with the updating rule by not allowing
a tighter bound than given by the initial tightening, since
it is known that this tightening (conservatively) satisfies the
chance constraint. The initial tightening and the nominal con-
straint provide an upper and lower bound of the tightening.
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Fig. 4. Optimal updating rule (17) and time varying constraints. Top:
Cumulative number of violations

∑t
i=1 Vi over time. Bottom: Empirical

probability of violation Yt and desired violation level α over time.
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Fig. 5. Modified updating rule (19) and time varying constraints. Top:
Cumulative number of violations

∑t
i=1 Vi over time. Bottom: Empirical

probability of violation Yt and desired violation level α over time.

C. Modification of Updating Rule for Active Constraints

In this section a modification of the proposed approach
is introduced with two goals: (a) The first value of h̃ is de-
termined here with the scenario approach and all subsequent
updates only scale this first version. However, it appears to be
desirable to also be able to change the vector orientation as
some dimension might turn out to be more conservative than
another; (b) In many cases, it might happen that a particular
constraint cannot be violated with the required probability
level at a particular time instant since the state is too far
away from the nominal constraint. This is, e.g., regularly
the case in building climate control, where the temperature
rises during the day. So only in the mornings and evenings
it is critical to maintain the comfort constraint. Hence, the h̃
should only be updated for the constraints which are actually
prone to violations, i.e., at times when the measurement of
violations actually provides some feedback of the tightening.



To achieve this, we propose to only update active con-
straints, i.e., we determine all i such that

G[i](Axt + Bu∗t ) = g[i] − h̃
[i]
t . (18)

Then the update rule is changed to update only the rows
i for which the constraint in (18) is satisfied.

h̃
[i]
t := h̃

[i]
t−1 −

α− Yt + 2α−1
2t

γ
h̃
[i]
t−1 . (19)

VI. EXAMPLE

The proposed strategy is tested on a small-scale example
based on a simplified version of [26]. It is a building climate
control problem, where the goal is to minimize heating
energy consumption while satisfying a chance constraint on
room temperature. The system matrices of the discrete-time
system are given as

A =

0.0016 0.8676 0.1182
0.0017 0.9935 0.0044
0.0012 0.0229 0.9725

 B =

0.0431
0.0016
0.0011


E =

0.0126 0.0029
0.0005 0.0001
0.0034 0.0001

 (20)

and the time step is one hour. The system states x =
[x(1) x(2) x(3)]

T are the room temperature x(1), the tem-
perature in the inner wall x(2), and the temperature in
the outer wall x(3), all given in ◦C. The control input is
the heating u(1), given in W/m2. The disturbances are the
outside temperature w(1) in ◦C and the irradiation w(2) in
W/m2. For simulation purposes, i.i.d. disturbance samples
are drawn from a component-wise uncorrelated standard
normal distribution with each component truncated at 4, i.e.,
W = {w ∈ Rnw |‖w‖∞ ≤ 4}.

The goal is to minimize the cost function in (5) with Q =
0 while satisfying the following time-invariant constraints

0 ≤ ut+k|t ≤ 100 ∀k ∈ NN−10

P [ [1 0 0]xt+k|t ≥ 21] ≥ 1− α ∀k ∈ NN1 .

As an alternative to the state constraints given above, we
investigate time-varying state constraints, so-called temper-
ature setbacks, where the room temperature constraints are
relaxed during the night. This is given as{

P [ [1 0 0]xt+k|t ≥ 21] ≥ 1− α during daytime
P [ [1 0 0]xt+k|t ≥ 12] ≥ 1− α during nighttime .

The simulation starts from steady state. The initial state is
x0 =

[
21 21 19.38

]T
. The prediction horizon is N = 5

and the desired level of violation α = 0.1. Simulation time
is 720 hours which equals 30 days.

A. Investigations

Three investigations are carried out. All investigation are
using the adaptive SMPC scheme (Algorithm 1), the building
example in (20), and γ = 0.7 for all updating rules. The
investigations differ in terms of the used updating rule and
the definition of state constraints.

Investigation 1: In Investigation 1 the heuristic update rule
(9) is compared with the optimal update rule (17). Time-
invariant constraints are used.
Investigation 2: In Investigation 2 the optimal updating rule
(17) is used and time invariant constraints are compared with
setbacks.
Investigation 3: In Investigation 3 the optimal updating
rule (17) is compared with the updating rule (19) that only
updates active constraints. Setbacks are used.

B. Results

Note that the results obtained depend on the drawn sam-
ples. For comparability all simulations were carried out with
the same samples. For all investigated cases the empirical
probability of violation converges to the pre-specified viola-
tion level α within a couple of days, which is a reasonable
time frame for the application at hand.
Investigation 1: When comparing Figures 2 and 3 one can
see that the heuristic updating rule (9) produces a larger
overshoot of Yt, especially at the very beginning. With the
optimal, time-dependent updating rule this overshoot can be
reduced. For large t the difference between the two updating
rules goes to zero.
Investigation 2: When comparing Figures 3 and 4 a larger
overshoot at the beginning can be seen for the case of
setbacks. This is created by the additional relaxation of the
constraint during setback times when the constraint is not
active and not likely to be violated. Despite the overshoot of
more than 50% of the desired value of α at the beginning, the
system quickly converges to the desired value of α (within
5-6 days in this example).
Investigation 3: When comparing Figures 4 and 5 we see
that the modified updating rule (19) is producing much less
overshoot when setbacks are used.

VII. DISCUSSION AND CONCLUSIONS

The key result of the paper is that the empirical probability
of violation can be used to adapt the constraint tightening
such that it converges in closed-loop to the desired level
of constraint violation if the system meets the described
assumptions. This is in particular interesting for practical
applications, because it enables the exploitation of constraint
violations for improving the performance. This paper intro-
duces the basic idea and a convergence result, but there are
further points to be addressed.

First, the update of active constraints. This idea was
introduced in Section V-C. It can be expected that this be-
comes more important for more complex systems with many
constraints. Additionally it can make sense to define chance
constraints not for each time step, but for each individual
constraint and then measure the violation of this and do
the update according to the particular empirical violation
probability. Such formulations are particularly meaningful
for some applications, e.g., when the chance constraint is
naturally formulated only for one state not for all states of
each time step.



Second, the requirement of reachability index 1 (Assump-
tion 3(b)). This requirement basically means that the system
needs to have at least as many inputs as states and the matrix
B needs to have full row rank. For some practical systems
this might hold. If not, this requirement can be dropped
by formulating a different convergence result as follows.
Since each (controllable) system needs n steps to control the
state (with n ≤ nx), instead of showing a supermartingale
property where the expectation is decreasing at every step,
one may require the expectation to decrease every n steps.

Third, enough input power available (Assumption 3(a)).
This assumption is restrictive on the first sight, but it
holds for many practical applications, simply because the
systems are designed such that they can handle the respective
disturbances, e.g., in building control systems, systems are
designed such that there is enough input power available even
in the presence of uncertainties. This question is also strongly
linked to the question of recursive feasibility of the MPC
problem. In the presented setup, if the SMPC problem with
the initial tightening is feasible, then due to Assumption 3
the adaptive SMPC problem remains feasible for all t.

Fourth, the presented method is not limited to linear
systems, but can be applied to nonlinear systems as well.
Provided Assumption 3 holds, the convergence result also
holds in this case.
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IX. APPENDIX

A. Analysis of ∆t depending on pt and Yt
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Fig. 6. Plot of ∆t in (13) for α = 0.1 depending on pt and Yt. One can
see that by choosing pt, ∆t can be made negative for almost all values of
Yt. There is only a small ‘critical’ region around α.
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