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Abstract— We develop a robust fault detection and isolation
(FDI) technique in the presence of measurement noise and apply
it to the horizontal axis variable speed wind turbine. In the
first part, we provide a nonlinear model of the wind turbine in
the form of differential-algebraic equations. We consider wind
as a disturbance to the system, having two components: the
wind speed and the wind direction. In the second part, treating
the nonlinear term due to wind in the system dynamics as
an unknown disturbance, we propose an optimization-based
approach to robustify a linear residual generator with respect
to measurement noise. The contribution of the noise into
the residual is introduced in the framework of linear matrix
inequalities, in which the requirements of the FDI filter are
modeled as linear constraints. We illustrate the performance of
our proposed method on the wind turbine benchmark model
implemented in the FAST simulation code.

I. INTRODUCTION

Wind turbines contribute to a growing part of the world’s
power production. The high penetration of wind turbines in
the power grid gives rise to new challenges of increasing their
reliability while reducing their operational and maintenance
costs. Recently, these challenges have become more crucial
as wind turbines are installed in remote locations such
as offshore. One step in addressing the challenges is to
introduce fault tolerant control (FTC), that is, to prevent
faults from developing into failures by taking appropriate
actions. An essential part of an FTC system is the fault
detection and isolation (FDI) system [1], the design of which
is the focus of this paper.

In the past few years several approaches on model-based
FDI for wind turbines have appeared. A survey of these
methods is provided in [3]. In 2009 Odgaard et al. set up
a wind turbine benchmark model [11] for simulation of
fault detection and accommodation schemes. They also set
a competition that drew a series of papers. A summary of
the results of these papers are collected in [9]. Recently,
Odgaard and Johnson proposed the second benchmark model
[10] with the aim to make the results of FDI systems more
applicable to the wind power industry. We will use the
second wind turbine benchmark model as a test model for
our proposed FDI systems.

The model of the wind turbine is available in the FAST
code [6]. FAST is a comprehensive aeroelastic simulator
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which accounts for aerodynamics, mechanical structure, fa-
tigue, and turbulence of the wind turbine [6]. Although FAST
model is of great detail, it does not have a closed analytic
form and thus cannot be used with model-based FDI filter
design techniques. To overcome this, we develop an accurate
model of horizontal axis variable speed wind turbine in
the form of nonlinear differential-algebraic equations (DAE)
based on wind turbine dynamics and the actuators and
sensors provided in the FAST model. The FDI filter designed
for this nonlinear model will also be tested on the more
detailed FAST model.

For the state-of-the-art FDI for the class of DAE models
we refer to the work of Nyberg et al. [8] where the residual
generators are characterized as a set of matrix polynomial
equations. Recent work by Mohajerin Esfahani et al. [7]
proposed an optimization based approach of Nyberg’s char-
acterization to address the sensitivity of residuals to faults
and to expand the class of models to nonlinear systems.
Although these approaches provide provable gaurantees on
fault detection, unfortunately, they assume noiseless mea-
surements. Measurement noise is an inherenet part of the
wind turbine sensors, as well as many other realisic engi-
neering applications. In this article, following [7], we develop
an optimization framework to robustify the residuals of the
filter to measurement noise. The problem can be cast as
minimization of H2 norm of the transfer function from the
measurement noise to the residual, which can be written
in the form of linear matrix inequalities (LMIs) and solved
effectively. Our FDI filter is implemented on the FAST model
and the fault detection and isolation is validated for the faults
provided in the benchmark paper [10].

This article is organized as follows. In Section II we
develop a nonlinear state-space model of the horizontal axis
variable speed wind turbine, describe the controllers used
in the FAST model and the fault signals to be detected.
In Section III we briefly review the FDI design scheme
developed in [7] (approach I) and develop an optimization-
based approach to the FDI filter design which minimizes
the contribution of measurement noise to the filter residuals
(approach II). In Section IV we apply the two approaches
to the developed DAE wind turbine model. In Section V,
simulation results of applying the FDI filters designed based
on the two approaches to the wind turbine model in FAST
are shown. Finally, in Section VI we conclude and provide
directions for future research.



II. MODEL DEVELOPMENT

We consider a generic, three-blade, horizontal axis variable
speed, pitch and yaw regulated 4.8 MW wind turbine [5].
We develop a wind turbine model of reduced complexity
compared to FAST in the form of nonlinear differential-
algebraic equations. The model takes into account accurate
dynamics of the wind turbine, actuators and sensors as well
as the controller structure developed based on FAST.

A. Wind Turbine Dynamics

We model wind as having two components: wind speed
and wind direction. Both components are accessible in FAST
through appropriate sensors. The model of the wind turbine
describes the conversion from wind power to mechanical
and eventually electrical power. Here, we describe modeling
of different components of the wind turbine: aerodynamics,
drive train, generator and convertor, pitch and yaw actuators,
and sensors. Our model is an extension of the model given
in [2] in that we consider both pitch and yaw angle actuation
and introduce appropriate models of actuators.

1) Aerodynamics: The aerodynamics of the wind turbine
determines the torque acting on the blades. In the case of
pitch and yaw regulated turbine, the aerodynamic torque
depends on both the pitch and yaw angles. Let ε1(t) represent
the yaw angle, dw(t) the measured wind direction, and Cε
the scaling factor. To model the effect of yaw angle, we
extend the expression for the aerodynamic torque for the
pitch actuated turbine, given in [4, p.74], by including the
term cos ((ε1 − dw)/Cε), given in [12, eq.(1)], which models
the loss in the extracted power due to the deviations in the
yaw angle. The aerodynamic torque for the pitch and yaw
actuated wind turbine can then be written as

τr =

3∑
i=1

ρπR3Cp(λ, βi1)

6Jr
cos

(
ε1 − dw
Cε

)
v2w. (1)

In the above, index i denotes the ith blade, ρ is the air
density, R is the radius of the blades, and Cp(λ, βi1) is the
so called efficiency coefficient. The latter is a function of the
tip speed ratio λ = ωrR

vw
and the pitch angle βi1. Typically,

Cp is given by numerical look-up tables. In this paper a
standard nonlinear analytical expression is used [14]:

Cp(λ, βi1) = 0.22

(
116

λt
− 0.4βi1 − 5

)
e

−12.5
λt ,

1

λt
,

1

λ+ 0.08βi1
− 0.035

β3
i1 + 1

.

This term is the main source of nonlinearity in the model.
2) Drive Train Model: The conversion from the mechan-

ical energy stored in the rotating blades (angular speed ωr,
inertia Jr) to electrical power is carried out via a flexible
drive train with torsion stiffness constant Kd, and torsion
damping constant Bd, and a gearbox with gear ratio Ng .
The gearbox is used to step up the slow speed of the rotor
to higher values at the generator side (angular speed ωg ,
inertial Jg). Figure 1 shows the schematic diagram of the
turbine mechanics. The torque at the rotor side is defined by
Equation (1). By applying the Newton’s law on that model,
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side

τr ωr

τgωg

Jr

Jg

Kd
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Fig. 1. Schematic diagram of the wind turbine mechanics

one can get the differential equations of ωr and ωg , as derived
in Equations (2a) and (2b). The dynamics of the torsion
δ of the flexible drive train is defined in [2] and written
in Equation (2c). The generator output power is given as
Pg(t) = ηgωg(t)τg(t), where ηg is the generator efficiency.

3) Generator and Converter Actuator Model: The gener-
ator and converter actuators are modeled in [10] as a closed
loop first order transfer function τg(s)

τg,r(s) =
αgc
s+αgc

, where
αgc is the generator and torque coefficient and τg,r is the
reference generator torque.

4) Pitch Actuator Model: The hydraulic pitch system is
modeled in [10] as a closed loop second order transfer
function

β(s)

βr(s)
=

ω2
b

s2 + 2ζbωb + ω2
b

,

where ωb is the natural frequency and ζb is the damping
factor of the hydraulic actuator and βr is the reference pitch
angle.

5) Yaw Actuator Model: The yaw actuator is modeled in
[6] as a closed loop second order transfer function

ε1(s)

εr(s)
=

2ζεωεs+ ω2
ε

s2 + 2ζεωεs+ ω2
ε

,

where ωε and ζε are the natural frequency and the damping
factor of the yaw actuator.

6) Sensors: The sensors in FAST provide measurements
of state variables with an additive noise. The list of sensors
available in the FAST model that we consider is given
in Table I. The corresponding estimated noise powers are
available in [10, Section III].

7) Overall model: The state space model of the horizontal
axis variable speed, pitch and yaw regulated wind turbine is
given by the following equations:

ω̇r =

3∑
i=1

ρπR3Cp(λ, βi1)

6Jr
cos

(
ε1 − dw
Cε

)
v2w

− Bd

Jr
ωr +

Bd

NgJr
ωg −

Kd

Jr
δ (2a)

ω̇g =
ηdBd

NgJg
ωr −

ηdBd

N2
gJg

ωg +
ηdKd

NgJg
δ − 1

Jg
τg (2b)

δ̇ = wr −
wg

Ng
(2c)

τ̇g = −αgcτg + αgcτg,r(t) (2d)
˙βi1 = βi2, i = 1, 2, 3 (2e)
˙βi2 = −ω2

biβi1 − 2ζbiωbiβi2 + ω2
biβr, i = 1, 2, 3 (2f)

ε̇1 = ε2 + 2ζεωεεr (2g)

ε̇2 = −ω2
εε1 − 2ζεωεε2 + ω2

ε(1− 4ζ2ε )εr (2h)



For brevity we provide definitions of state variables, inputs,
disturbances, and outputs of the model in Table I. The
numerical values of the model parameters (based on [5]) are
given in Table II.

TABLE I
DEFINITIONS OF STATES/INPUTS/DISTURBANCES/OUTPUTS OF THE

WIND TURBINE MODEL

States Description Units
ωr Angular rotor speed [rad/s]
ωg Generator rotor speed [rad/s]
δ Torsion angle [rad]
τg Generator torque [Nm]
βi1, βi2 Pitch angle and ang. vel. of ith blade [deg],[deg/s]
ε1, ε2 Yaw angle and angular velocity [deg],[deg/s]

Inputs Description Units
βr Pitch angle reference [deg]
τg,r Generator torque reference [Nm]
εr Yaw angle reference [deg]

Disturbances Description Units
vw Wind speed [m/s]
dw Wind direction [deg]

Outputs Description Units
vw,m Wind speed measurement [m/s]
ωr,m Angular rotor speed meas. [rad/s]
ωg,m Generator rotor speed meas. [rad/s]
τg,m Generator torque measurement [Nm]
Pg,m Generator power measurement [MW]
βi1,m Meas. of the pitch angle of ith blade [deg]
Ξe,m Yaw error measurement [deg]

B. Controller

The wind turbine benchmark model of [10] provides con-
trollers for pitch, torque, and yaw. The pitch angle commands
are computed using proportional-derivative (PD) control on
the error between the filtered generator speed and the rated
generator speed [5, Sec. 7.3]. The torque controller is a
nonlinear region-based feedback whose function depends on
the operating point. The inputs to the torque controller are
the generator speed error and commanded pitch angle values.
A lookup table which describes this feedback controller is
provided in [5, Sec. 7.2]. The yaw controller is an on/off
controller which operates with a constant angular speed and
the direction given by the sign of the yaw error [10, Sec.
II-B].

C. Modeling Faults

We consider the faults given by Table III, which are a
subset of all faults in the second benchmark model [10].
On the right-hand column of the table, we indicate the time
at which each fault occurs as provided in the benchmark
competition [10]. Our FDI design approach is developed for
additive faults. If a multiplicative fault, s occurs in a given
variable xi to result in the signal sxi, then we consider their
product sxi as a fault signal fi. This way, we are able to
detect and isolate both additive and multiplicative faults of
Table III.

TABLE II
MODEL PARAMETERS

R 63 [m] ζε 0.02 [-]
Jr 11.8 · 106 [kg·m2] Cε 1 [-]
Jg 534 [kg·m2] ωε 3 [Hz]
Ng 97 [-] ωr,nom 1.26 [rad/s]
ηd 0.97 [-] ωg,nom 122.22 [rad/s]
Kd 867.64 · 106 [kg·m2] ωr,min 0.72 [rad/s]

Bd 6.22 · 106 [ kg·m2

(rad·s) ] ωg,min 68.40 [rad/s]
αgc 50 [Hz] βi1,min -2 [deg]
ηg 0.944 [-] βi1,max 90 [deg]
ωbi 11.11 [Hz] |βi2|max 8 [deg/s]
ζbi 0.6 [-]

III. FAULT DETECTION SCHEMES

In this section, we first review the optimization-based ap-
proach for FDI filter design proposed in [7]. Then, motivated
by the presence of noise in the wind turbine sensors, we
modify the approach to minimize contribution of measure-
ment noise in the fault detection and isolation signal.

A. FDI Filter Design - Approach I

The class of general linear models for which the FDI filter
is designed has the form [8],

H(p)x+ L(p)z + F (p)f = 0, (3)

where p is the derivative operator and H,L, F are polyno-
mial matrices in the operator p. We assume that the vector
signal x := x(·) : R+ → Rnx is a piece-wise continuous
function. We denote the space of piece-wise continuous
functions x by Wnx . Similarly, we assume that z and f
are piece-wise continuous functions from R+ into Rnz and
Rnf , respectively, with the corresponding spaces of piece-
wise continuous functions Wnz and Wnf .

In this model the vectors x, z, and f represent, respec-
tively, all the unknown, known, and fault signals. Throughout
the paper, we use p as a variable of a matrix when the
matrix is viewed as an operator, e.g., H(p), and we shall
use the complex variable s instead of p if it is meant to be
polynomial matrix, e.g., H(s).

One can verify that a classical linear state space descrip-
tion{

GẊ(t) = AX(t) +Buu(t) +Bdd(t) +Bff(t)
Y (t) = CX(t) +Duu(t) +Ddd(t) +Dff(t)

(4)

TABLE III
DEFINITION OF FAULTS

No. Fault Type Time

Sensor faults
1 Generator speed sensor Scaling 130-150s
2 Pitch angle sensor Stuck 185-210s

Actuator faults
3 Pitch actuator Slow change in dynamics 350-410s
4 Pitch actuator Abrupt change in dyn. 440-465s



is a particular case of the linear model (3) by defining the

vector signals x :=

[
X
d

]
and z :=

[
Y
u

]
, and matrices

H(p) :=

[
−pG+A Bd

C Dd

]
, L(p) :=

[
0 Bu

−I Du

]
,

F (p) :=

[
Bf

Df

]
.

Let us denote the set of all behaviors of (3) in the absence
of the fault signal f as follows:

M := {z ∈ Wnz | ∃x ∈ Wnx : H(p)x+ L(p)z = 0} .

Definition 1. (Sensitive Residual Generator): In model (3),
a proper linear time invariant filter r := R(p)z is a residual
generator sensitive to fault f if the transfer function from f to
r is nonzero, and for all z ∈M it holds that lim

t→∞
r(t) = 0.

As shown in [8], a residual generator in the sense of
Definition 1 can be expressed as

R(p) = a−1(p)N(p)L(p), (5)

where the polynomial matrix N(p) satisfies the following set
of equations:

N(p)H(p) = 0, (6a)
N(p)F (p) 6= 0, (6b)

and a(p) is a polynomial of sufficiently high order whose
roots have negative real part. Since the denominator polyno-
mial of the filter (5), a(p), is chosen a priori, our approach
can be seen as selecting zeros of the transfer functions of
the filter (5). The nontrivial matrix polynomial equations (6)
can be written in a linear programming (LP) framework as
proposed by the following lemma:

Lemma 2. [7, Section III-A] Let N(s) be the solution of
(6), where

H(s) :=

dH∑
i=0

His
i, F (s) :=

dF∑
i=0

Fis
i, N(s) :=

dN∑
i=0

Nis
i.

In the above, dH , dF , and dN are the highest degrees of
polynomials in H(p), F (p), and N(p), respectively. Then the
conditions in (6) can equivalently be written as

N̄H̄ = 0, (7a)∥∥N̄ F̄∥∥∞ ≥ 1, (7b)

where ‖ · ‖∞ denotes the infinity norm, and

N̄ :=
[
N0 N1 · · · NdN

]
,

H̄ :=


H0 H1 · · · HdH 0 · · · 0

0 H0 H1 · · · HdH 0
...

...
. . .

. . .
. . . 0

0 · · · 0 H0 H1 · · · HdH

 ,

F̄ :=


F0 F1 · · · FdF 0 · · · 0

0 F0 F1 · · · FdF 0
...

...
. . .

. . .
. . . 0

0 · · · 0 F0 F1 · · · FdF

 .

Remark 3. The inequality (7b) is not an LP. However, as
explained in [7, Remark 3.2], the formulation of (7) can
effectively be treated as several LP problems where the
number of LPs is proportional to the degree of the filter
dN , which is a design parameter and is chosen a priori.

As shown in [7, Approach I], the contribution of the fault
signal into the residuals can be maximized by solving the
following optimization problem:

max
N̄

∥∥N̄ F̄∥∥∞ (8)

s.t.
{
N̄H̄ = 0∥∥N̄∥∥∞ ≤ 1

B. FDI Filter Design - Approach II

In the residual generator design approach introduced in the
previous subsection, the measurement noise was not taken
into account. When there is noise in the measurement, its
influence on the residual can be significant, as we shall show
in Section V. To account for the measurement noise in the
FDI filter design, we augment conditions (7) with additional
conditions such that the contribution of measurement noise
in the residual is minimized.

The impact of measurement noise on the FDI filter residual
can be explained with the help of Figure 2. The FDI filter
is fed by two known signals: the controller output, u(t), and
the measurements with noise, y(t). Signal y0(t) represents
measurements without noise and r(t) is the residual. Note
that measurement noise affects the FDI filter in two ways:
as a direct input to the filter and as a signal filtered through
the controller. Block W is a constant gain from the white
noise signal e(t) to the measurement noise n(t) modeling
the level of noise at each sensor, block T selects some
of the measurements to feed the controller, and block K
represents the controller. In our proposed approach, one
needs to approximate the controller transfer function K via
a static matrix gain. Hence, hereafter we assume that block
K is a constant matrix, which in our application can be
approximated based on simulation results in FAST.

It is a well-known result that the minimization of the H2

norm of a transfer function of a given system corresponds to
minimization of the variance of its output when the system
is driven by a white noise [13]. Therefore, minimizing the
contribution of measurement noise in the residual can be cast
as minimization of the H2 norm of the transfer function from
the white noise signal to the residual.

Let us introduce a compact notation as in [13] to denote
the transfer function G(s) = D +C(sI −A)−1B by [A B

C D ].
Suppose the state-space representation of the filter transfer
function (5) is R(s) :=

[
AR BR
CR DR

]
. Thus, the transfer function

from the white noise signal e(t) to the residual r(t) has
the following form: G(s) =

[
AR BRM
CR DRM

]
, where M is the

constant gain matrix from e(t) to the input signals of the
filter, u(t) and y(t), defined as M = [KTWW ] .

Recall from subsection III-A that the target of the design
is the numerator of the rational transfer functions of filter
(5). Therefore, if we derive a state space representation of
filter (5) in the observable canonical form, then the numerator
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Fig. 2. Contribution of measurement noise in the residual

of the transfer function can be translated through the BR
component. Hence, the decision variables are expressed by
BR, and are related to the numerator of the FDI filter (5),
given by N̄ in Lemma 2, as

BR,i = N̄Li, i = 1, ..., dN .

where BR,i denotes the i-th row of matrix BR and Li denotes
a matrix with i-th row block equal L and other rows equal
zero.

The condition to bound the H2 norm of the transfer
function G(s) can be written as the following set of linear
matrix inequalities (LMIs) [13, Section III.C]:

‖G(s)‖22 ≤ λ ⇔

∃Q � 0,

[
QATR +ARQ BRM
MTBR I

]
< 0,

Trace(CRQC
T
R) < λ.

Now, to consider the contribution of measurement noise for
an FDI filter in the sense of Definitions 1, we formulate an
optimization problem with the objective concerned with the
minimization of the H2 norm of the transfer function G(s):

min
λ,N̄,Q,BR

λ (9)

s.t.



N̄H̄ = 0∥∥N̄ F̄∥∥∞ ≥ 1
BR,i = N̄Li, i = 1, ..., dN[
QATR +ARQ BRM
MTBR I

]
≺ 0

Trace(CRQC
T
R) < λ

Q ∈ Sn++

where Sn++ is the cone of symmetric positive definite ma-
trices. Note that the constraints in (9) are not entirely linear
in the decision variables, but nevertheless, the optimization
problem (9) can be effectively solved as several semidefinite
programming (SDP) problems. For the required number of
SDPs to solve, we refer to Remark 3 concerning the same
issue in approach I.

IV. FDI FILTERS FOR THE WIND TURBINE

In this section, the two FDI filter design techniques,
described in subsections III-A and III-B, are applied to the
wind turbine model developed in Section II.

The wind turbine model (2) and the fault sig-
nals given in Table III, can be compactly written
in the state space notation (4), as follows: X(t) =

Pitch, Torque,

and Yaw

Controllers

Actuator

Model

Wind Turbine

Model

(implemented

in FAST)

Sensor

Models
FDI filter

y(t)

u(t)
r(t)

Fault

Generator

Fig. 3. Block diagram of major elements of the Simulink-based FDI model

[ωr ωg δ τg β11 β12 β21 β22 β31 β32 ε1 ε2]T ∈ Rnx are
states, u(t) = [βr τg,r εr]

T ∈ Rnu are inputs, Y (t) =
[vw,m wr,m wg,m τg,m Pg,m β1,m β2,m β3,m Ξe,m]T ∈ Rny
are outputs, d(t) = [vw dw dnl]

T ∈ Rnd are unknown
disturbances, f(t) = [f1(t) f2(t) f3(t) f4(t)] corresponds
to the fault signals we aim to detect. Here, the disturbance
term dnl denotes the nonlinearity due to wind as described
in equation (1). Thus, the only nonlinear term in the turbine
dynamics (2a) which is a function of the wind is treated
as an unknown disturbance. The matrices A ∈ Rnx×nx ,
Bu ∈ Rnx×nu , Bd ∈ Rnx×nd , Bf ∈ Rnx×nf , C ∈ Rny×nx ,
Dd ∈ Rny×nd , and Df ∈ Rny×nf are obtained from the
state-space model of subsection III-A, where nx = 12,
nu = 3, ny = 9, nd = 3, and nf = 4.

The next step in approach II to FDI filter design is
to estimate the variances of noises in each measurement.
The measurement noise levels can be obtained from the
Simulink R©-based model [10]. From the variances of the
measurement noises, one can obtain the static gain matrices
W and K as described in subsection III-B. Finally, for
both approaches, we select some stable dynamics for the
denominator of the filters (5). Then, by solving the LP
program (8) and the SDP program (9), one obtains the zeros
of the transfer functions of the FDI filter for approaches I
and II, respectively.

The designed FDI filter is integrated with the second
wind turbine benchmark model as shown in Figure 3. Since
the control signal u(t) can be obtained by passing the
corresponding measurements y(t) through the controller,
both approaches to FDI (see sections III-A and III-B) can
be applied as shown in Figure 2.

V. IMPLEMENTATION

We present the simulation results of integrating the fault
detection and isolation schemes designed in the previous sec-
tion to the second wind turbine benchmark model in FAST.
In order to show the practical importance of addressing the
measurement noise in the FDI filter design, we compare the
performance of the two filters for a given fault as shown in
Figure 4. Notice that the filter based on approach I cannot
identify the fault due to high measurement noise, while
the filter based on approach II successfully suppresses the
measurement noise and detects the fault.

In Figure 5 the simulation results of applying approach
II to design a bank of filters to detect and isolate the
faults in FAST are shown. The top panel indicates the fault
signals appearing consecutively in the benchmark problem in
FAST simluation code. The four lower panels show the filter



residuals corresponding to faults 1, 2, 3, and 4 respectively.
As anticipated, we observed that approach II works best if we
can accurately estimate variances of the measurement noises
and the static gain of the controllers. These gains could be
better estimated and approximated for faults 1, 2 and 4 than
fault 3 and thus the residual signal of fault 3 contains more
noise.
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Fig. 4. Comparison of the approaches I and II to robust FDI filter design
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Fig. 5. Fault detection and isolation according to approach II - The top
panel indicates the fault signals appearing consecutively. The four lower
panels show the filter residuals corresponding to faults 1, 2, 3 and 4
respectively.

VI. CONCLUSIONS

We developed a fault detection and isolation scheme for a
general class of dynamical systems modeled by differential

algebraic equations. Our filter was designed by formulating
an optimization problem which minimized the contribution
of measurement noise while detecting the fault signal in
the presence of unknown disturbances. We implemented our
methodology for the wind turbine model provided in the
FAST simulation environment. The wind turbine faults were
successfully detected and isolated. In future, motivated by
stochastic models of wind forecast, we plan to extend our
approach to address stochastic disturbances and faults.
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